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Abstract
Background Prostate cancer is the most common diagnosed tumor and the fifth cancer related death among men 
in Europe. Although several genetic alterations such as ERG-TMPRSS2 fusion, MYC amplification, PTEN deletion and 
mutations in p53 and BRCA2 genes play a key role in the pathogenesis of prostate cancer, specific gene alteration 
signature that could distinguish indolent from aggressive prostate cancer or may aid in patient stratification for 
prognosis and/or clinical management of patients with prostate cancer is still missing. Therefore, here, by a multi-
omics approach we describe a prostate cancer carrying the fusion of TMPRSS2 with ERG gene and deletion of 16q 
chromosome arm.

Results We have observed deletion of KDM6A gene, which may represent an additional genomic alteration to be 
considered for patient stratification. The cancer hallmarks gene signatures highlight intriguing molecular aspects that 
characterize the biology of this tumor by both a high hypoxia and immune infiltration scores. Moreover, our analysis 
showed a slight increase in the Tumoral Mutational Burden, as well as an over-expression of the immune checkpoints. 
The omics profiling integrating hypoxia, ROS and the anti-cancer immune response, optimizes therapeutic strategies 
and advances personalized care for prostate cancer patients.

Conclusion The here data reported can lay the foundation for predicting a poor prognosis for the studied prostate 
cancer, as well as the possibility of targeted therapies based on the modulation of hypoxia, ROS, and the anti-cancer 
immune response.
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Background
Prostate cancer (PC) is widely recognized for its elevated 
occurrence and genomic variability [1] resulting in sig-
nificant gene alteration [2, 3]. In 2020, the reported num-
ber of new cases exceeded 1,414,000 worldwide, with 
over 375,300 related deaths, underscoring the substantial 
global impact and burden associated with this neoplasia 
(https://gco.iarc.fr/tomorrow). Approximately 80% of 
cases are initially localized, while 20% exhibit metastasis 
to regional lymph nodes (13%) or distant organs (6–7%) 
at the time of diagnosis. The presence of metastasis sig-
nificantly impacts the 5-year survival rate, reaching 100% 
for localized cases and dropping to 30% for those with 
metastasis. PC exhibits an extended natural progression, 
categorized through various parameters including pros-
tate-specific antigen (PSA) levels, histological features, 
TNM classification, and clinical conditions such as local-
ized PC, advanced PC, and metastatic PC [4–6].

Treatment is currently depending on the stage of the 
tumor, evaluated both at clinical and histological level. 
Accordingly, the main therapeutical options include 
active surveillance, radical prostatectomy, or stand-
alone external-beam radiation therapy [7]. Despite the 
slow growth of prostate lesions, metastatic formations 
typically emerge around a decade post-diagnosis, pos-
ing a substantial health challenge in patient management 
[2, 8]. The current clinical and histological prognostic 
parameters used for PC management are still in evo-
lution. PSA levels used for early screening or recur-
rence detection, are influenced by several factors such 
as aging and inflammation [9]. The Gleason score, as 
well as its new Gleason Group classification, provides a 
more straightforward representation for clinicians and 
support in treatment decisions [10]. Nonetheless, sev-
eral studies demonstrate that PC lesions with the same 
Gleason group can exhibit different biological behav-
iors and responses to treatment [11, 12]. In this con-
text, the search of specific molecular profile for PC gains 
prominence. By integrating molecular markers, genomic 
profiling, and advanced technologies, researchers and cli-
nicians aim to refine the stratification of PC. A molecular 
characterization not only holds the promise of improving 
prognostic accuracy but also opens new perspectives for 
the development of targeted therapies.

In recent years, molecules implicated in various sig-
naling pathways have been suggested as targets for PC 
diagnosis, prognosis, and personalized therapies [13–15]. 
Specifically, germline mutations in DNA damage repair 
genes [16], pathways associated with cancer-related 
hypoxia [17], cell death [18], epithelial-to-mesenchymal 
transition (EMT) [19–21], proliferation, and anti-tumoral 
immune response have been proposed as main driv-
ers of PC occurrence and progression. Tumor hypoxia, 
stemming from an irregular and dysfunctional vascular 

network within the tumor, represents a significant bar-
rier to the effectiveness of immunotherapy [22]. Indeed, 
hypoxia gives rise to an immunosuppressive tumor 
microenvironment (TME) [23] by fostering processes 
such as angiogenesis, metabolic reprogramming [24, 
25], remodeling of the extracellular matrix, the EMT, 
p53 inactivation [26–30], and evasion of the immune 
response [31–34]. Hence, mitigating cancer-associated 
hypoxia could potentially serve as an effective strategy to 
decrease PC proliferation, as well as enhance the effec-
tiveness of various conventional and unconventional 
treatments, including hormone therapy or immune 
modulation. In particular, the possibility to modify the 
anti-tumoral immune response is becoming a therapeu-
tic choice for patients with recurrent PC, as recent evi-
dence has demonstrated the overexpression of immune 
checkpoint molecules such as PDL-1 and CTLA4 in PC 
[35–37].

The convergence of morphological and molecular evi-
dence could provide a comprehensive understanding of 
PC, offering clinicians the tools they need to make more 
informed decisions regarding prognosis and personal-
ized therapeutic interventions [38, 39]. This synthesis of 
traditional pathology and cutting-edge molecular biology 
represents a crucial step forward in advancing our capa-
bilities to detect and cure PC.

To achieve this goal, comprehensive data related to 
the molecular characterization of specific PC cases are 
essential. In light of this, in this case report, we present 
a thorough morphological and multi-omics investigation 
of a PC sample from a 69-year-old patient. This analysis 
highlights intriguing molecular aspects that characterize 
the biology of this tumor such as immune checkpoints 
up-regulation and very high hypoxia and proliferation 
molecular signature scores. This paradigmatic case dem-
onstrates the need to individual multi-omic analysis.

Methods
Collection of samples
Tumor tissues collection was performed using standard-
ized protocol [40, 41]. Hematoxylin and Eosin (H&E) 
stained serial sections were used for pathological qual-
ity control (QC). Criteria for selecting tumor samples 
included a tumor content of at least 30%, necrosis less 
than or equal to 30%, and the presence of invasive tumor 
cells. Adjacent normal tissues were also procured. Pro-
tein lysate preparation and nucleic acid extraction were 
carried out using 10 mg of each tissue specimen [42–45]. 
Throughout the procedure, tissues remained frozen to 
maintain integrity.

Histological examination utilized serial sections from 
formalin-fixed and paraffin-embedded (FFPE) blocks 
[47–49]. Two independent pathologists conducted 
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histological analysis on hematoxylin and eosin (H&E)-
stained slides.

Nucleic acid extraction and quality assessment
As previously described, frozen tissue slices were used 
for nucleic acid extraction and quality assessment [50].

Library preparation and NGS sequencing
Libraries for whole genome sequencing (WGS) and 
whole transcriptome sequencing were performed as pre-
viously described [50].

NGS data processing
To align NGS data, Grch38 genome assembly was used 
as reference. As concern the normal samples, the Haplo-
type Caller from the Genome Analysis Toolkit (GATK) 
was used for both identification and annotation of short 
genomic variations. WGS somatic variations were called 
using a consensus of Mutect2 [51], Strelka [52], Varscan 
[53] and Somatic Sniper [54]. Structural variations were 
called using R packages TitanCNA [55], DellyCNV and 
DellyCall [56], as well as Manta [57]. RNA-Seq differen-
tial expression was based on normalized readcount data 
(TPM: transcripts per million).

Bioinformatical analyses
Mutational signatures were calculated using the R pack-
age MutationalPatterns [58–61]. MSI classification was 
done using R package MSIseq [63]. Metrices to define 
chromosomal instability were determined using R pack-
age CINmetrics [50] and CNHplus [64]. Aneuploidy 
events were analysed using ASCETS [65]. Aneuploidy 
event span more than 90% of the chromosome. Visualiza-
tion of results was done in IGV [66]. TMB was calculated 
as the number of non-synonymous mutations of protein 
coding genes divided by exome size in Megabases.

Results and discussion
A 69-year-old patient underwent radical prostatectomy 
due to the presence of a suspicious nodule in the apical 
and left posterolateral region. Histological examination 
allowed the identification of several multifocal cancer 
lesions, the largest of which measured 2.3  cm. Accord-
ing to the WHO grade, the lesion was classified as an 
acinar prostate infiltrating carcinoma with a Gleason 
score of 9 (4 + 5), grade group 5, very aggressive PC. In 
the upper left lateral portion of the prostate, the carci-
nomatous lesion infiltrated the prostatic apex and the 
surrounding adipose tissue. No metastatic lymph nodes 
were detected. According to the TNM classification, the 
tumour was staged as pT2c pN0. The patient did not 
undergo previous therapy.

Genomic and transcriptomic profile of the prostate 
cancer revealed ERG-TMPRSS2 gene fusion [37] (Fig. 1). 

This genomic alteration was first described in 2005 [66] 
and is characterized by a chromosomal rearrangement 
that leads to the fusion of the promoter region of the 
transmembrane protease serine 2 (TMPRSS2) (locus 
21q22.3) with locus 21q22.2 carrying the gene ERG, a 
member of the transcription factor erythroblastosis virus 
E26 transforming sequence family (ETS). In agreement 
with the literature [67], our transcriptomic analysis show 
that both genes are also highly up regulated in our patient 
of interest (log2FC: 6.4 and 5.1) (Fig. 1A and B). In addi-
tion, we have also found several chromosome rearrange-
ments including large chromosomal deletions (> 90% of 
the chromosome arm) in chromosome arms 16q (cohort: 
5.6%) and 18q (cohort: 19.4%), which have been already 
reported in prostate cancer [68, 69] (Fig.  1C). These 
alterations are predictors of poor prognosis. Indeed, they 
are associated with advanced tumor stage, high Gleason 
score and increased risk of biochemical recurrence [70, 
71]. ERG fusion positive PC show a higher frequency of 
3p13, 16q23, TP53 and PTEN deletion [72, 73]. In agree-
ment, analyzed PC shows both deletion of 16q and ERG 
fusion [74].

PC is associated with the accumulation of somatic 
mutations in the prostate epithelial involving mainly 
genes that modulate cell growth, cell proliferation, cell 
death and DNA damage response [75]. However, the 
mutational burden of prostate cancer is very low [76] and 
copy number changes and chromosomal rearrangement 
are the most characteristic genomic alterations displayed 
in PC [77]. In keeping, we did not find somatic mutations 
in cancer related genes. Nevertheless, we observed some 
germline mutations affecting genes involved the regula-
tion of DNA damage response (Table 1). To further sup-
port this, the DNA mismatch repair (MMR) signature 
has a slightly increased frequency (Fig. 2A).

Relevant studies revealed genetic abnormalities affect-
ing DNA repair mechanisms in almost 20–30% of 
advanced castration-resistant PCs, some of which are 
inherited and present in the germline [78]. Phase II/III 
clinical trial findings, along with additional clinical evi-
dence, endorse the exploration of PARP inhibitors and 
DNA-damaging agents in this specific molecular PC sub-
group, building upon successes observed in other cancer 
types [79–82]. These investigations present a promis-
ing avenue for enhancing patient care through tailored 
therapeutic approaches. The increase in MMR signature 
suggests the potential for these innovative therapies for 
patients of our interest.

Compared to a cohort of 40 pancreatic cancer patients, 
the analysed PC sample also exhibited elevated reference 
signature 18 (Fig. 2A). According to the Human Genome 
Variation Society, this signature is linked to C > A a muta-
tion resulting from ROS-induced guanine oxidation, 
indicating high levels ROS in the tumor environment. 
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Table 1 Germline variation in genes belonging to DNA damage response pathways in the patient of interest
Symbol Transcript Effect AA change
APEX1 ENST00000216714.7 missense variant Asp148Glu
BARD1 ENST00000432456.5 splice region variant
BRCA1 ENST00000357654.7 missense variant Ser1613Gly
BRCA1 ENST00000357654.7 missense variant Glu1038Gly, Pro871Leu
CHEK1 ENST00000428830.6 missense variant Ile471Val
EME1 ENST00000338165.8 missense variant Glu69Asp
ERCC2 ENST00000391945.8 missense variant Lys751Gln, Asp312Asn
ERCC4 ENST00000311895.7 splice region variant, intron variant
ERCC5 ENST00000355739.8 missense variant Gly1053Arg, Gly1080Arg
ERCC6 ENST00000355832.9 splice region variant, intron variant
EXO1 ENST00000348581.9 missense variant Val458Met
FANCA ENST00000567510.1 frameshift variant Glu77fs
FANCM ENST00000267430.9 missense variant Asn1253Ser, Asn1876Ser
GEN1 ENST00000317402.11 missense variant Ser92Thr
LIG4 ENST00000356922.5 missense variant Ala3Val
PMS1 ENST00000409985.5 frameshift variant Leu164fs
PMS2 ENST00000265849.11 missense variant Gly857Ala
POLE ENST00000320574.9 missense variant Pro1549Ala
POLE ENST00000320574.9 missense variant Phe695Ile
POLM ENST00000492605.5 splice region variant, non coding transcript exon variant
SEM1 ENST00000606019.5 splice region variant, intron variant
TOPBP1 ENST00000260810.9 missense variant Asn1042Ser

Fig. 1 Tumor isolated from our patient of interest carries ERG-TMPRSS2 gene fusion. A) ERG mRNA expression is higher in tumor tissue of our patient of 
interest when compared to the normal adjacent tissue. B) TMPRSS2 mRNA expression is higher in tumor tissue of our patient of interest when compared 
to the normal adjacent tissue. RNA levels were assessed by RNA sequencing; TPM = transcripts per million. C) Image shows aneuploidy of analyzed PC 
tissue. Boxplots indicate the values of prostate cancer background cohort, and the red triangle refers to our patient of interest
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ROS seems indeed associated with poor prognosis, can-
cer progression, and importantly, resistance to common 
treatments such as chemotherapy [83, 84]. Therefore, 
reducing ROS levels could represent a strategy for 
improving the success of anti-cancer treatments in 
patients with high reference signature 18. Of note, in our 
case we have also detected the deletion of the gene cod-
ing for lysine demethylases 6 (KDM6A) (Fig. 2B). In PC 
several epigenetic alterations have been described [85–
87], including overexpression of histone lysine demethyl-
ases LSD1/KDM1A [88, 89] which is associated with an 
increased proliferation. To our best knowledge, here for 
the first time is described a deletion of KDM6A in human 
PC. To further characterize KDM6A genetic alterations 
in PC, we took advantage of the online tool cBioPortal 

for cancer genomics [90–92] for searching genetic altera-
tions across both prostate adenocarcinoma and meta-
static prostate adenocarcinoma. As shown in Fig. 2C, the 
variation frequency of KDM6A is about 8% (cBioPortal), 
frequency that is comparable with two relevant genes in 
prostate cancer such as BRCA2 [93] and ATM [94]. The 
most representative alterations are amplification and 
deep deletion. Moreover, in few patients several muta-
tions have been identified, including truncating, splice 
and missense mutations. Among them, truncating muta-
tions of KDM6A have been described mainly in bladder 
cancer, where are considered likely oncogenic [95]. In 
particular, those mutations lead to increased cell prolifer-
ation and migration. There are also evidences that loss of 
KDM6A may have a role in resistance to chemotherapy 

Fig. 2 MMR and ROS related signatures. (A) Prostate cancer isolated from the patient of interest display a prevalence in MMR2 signature and slightly 
elevated contribution to signature 18. (B) RNA-Seq analysis showing an increase in the KDM1A expression and a reduction in the KDM6A mRNA levels. (C) 
KDM6A genetic alterations in prostate adenocarcinoma and metastatic adenocarcinoma. An oncoPrint of individual patient tumours which are positive 
for genetic alterations in KDM6A compared to the most representative genes involved in the pathogenesis of prostate cancer. Patient cohorts (Prostate 
Adenocarcinoma: TCGA, PanCancer Atlas; Metastatic Prostate Adenocarcinoma: SU2C/PCF Dream Team, PNAS 2019). Boxplots indicate the values of 
prostate cancer background cohort, and the red triangle refers to our patient of interest
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in acute myeloid leukaemia [96]. Moreover, our bioin-
formatic analysis highlights a subset of patients in which 
KDM6A gene is amplified, suggesting a possible onco-
genic function. Therefore, further investigation is 
needed to understand whether KDM6A acts either as 
tumor suppressor gene or oncogene in PC and whether 
it can potentially play a role as biomarkers for predict-
ing patient prognosis and/or a possible pharmacologi-
cal target. Beside the classification of tumor subtype by 
genomic alterations that may assist in predicting progno-
sis and to guide treatment decision [97], gene expression 
signature may be a complementary approach to identify 
biomarkers for a better management of cancer patients. 
Our RNA-Seq analysis indicates that tumor isolated from 
our patient of interest is characterized by a high hypoxia 
(Fig. 3A) and immune infiltration scores (Fig. 3B), which 
is associated with worse prognosis [98, 99]. The RNA-
Seq analysis conducted on PC unveils a striking increase 
in the expression of hypoxia-related genes. This suggests 
a profound hypoxic state within the tumor microenvi-
ronment, likely stemming from inadequate oxygen sup-
ply due to rapid tumor growth and aberrant vasculature 
[100–102].

Hypoxia is currently considered a hallmark feature of 
aggressive cancers, including PC, and is closely associ-
ated with poor prognosis [103]. Specifically, hypoxia 
plays a multifaceted role in shaping the tumor microenvi-
ronment and promoting cancer progression. By inducing 
angiogenesis, metabolic reprogramming, extracellular 
matrix remodeling, epithelial-mesenchymal transition, 
p53 inactivation, and immune evasion, hypoxia cre-
ates a hostile environment that facilitates tumor growth 
and metastasis [17, 26, 104]. One notable consequence 
of hypoxia is the suppression of anti-tumor immune 
responses within the tumor microenvironment [105, 

106]. Therefore, we asked whether immunotherapy may 
be an option for treating patients that share the same 
profile of genomic alterations found in our case. To do 
so, we assessed the specific immunotherapy markers 
that may hold clinical relevance such as TMB, MSI and 
immune checkpoint gene expression [107]. As shown in 
Fig. 4A and B, tumor isolated from our patient of interest 
show a slight increase in TMB, low MSI and is also chro-
mosome stable. Gene expression profile of PC displays an 
upregulation of immune checkpoints as CTLA-4, PD-1 
and PD-L2 (Fig. 4C). Overall, these biomarkers indicate 
that in this patient the immunotherapy with checkpoint 
inhibitors would be recommended.

In this context, vascular normalization, a therapeutic 
approach aimed at restoring the structure and function 
of tumor blood vessels, has emerged as a promising strat-
egy to counteract the effects of hypoxia in cancer [108]. 
By improving oxygen delivery and reversing hypoxia-
induced signaling pathways, vascular normalization can 
alleviate the hypoxic conditions within tumors. This, in 
turn, could elevate the efficacy of cancer immunotherapy 
by creating a more favorable tumor microenvironment 
for immune cell infiltration and activation. According to 
this, we also observed the downregulation of miR-224-5p 
(Fig.  5A). In fact, this miRNA is involved in the com-
plex network that link hypoxia and anti-cancer immune 
response [109]. Indeed, the miR-224-5p capability to 
affect the anti-cancer activity of NK cells on PC is regu-
lated by HIF-1α via NCR1/NKp46 pathway. In light of 
this, the investigated PC tumor was characterized by the 
presence of few infiltrated NKs (Fig. 5B).

Overall, strategies that target hypoxia and promote vas-
cular normalization hold great potential for improving 
cancer treatment outcomes, particularly in the context of 
immunotherapy. By addressing the immunosuppressive 
effects of hypoxia and enhancing anti-tumor immune 
responses, these approaches offer new avenues for 
enhancing patient survival.

Conclusion
The presented case underscores the crucial importance 
of molecular profiling in prostate carcinomas, emphasiz-
ing the shift towards personalized medicine [25, 105, 110, 
111]. By identifying specific genomic aberrations such 
as the ERG-TMPRSS2 gene fusion, deletion of KDM6A, 
and elevated immune checkpoint expression, we gain 
invaluable insights into the underlying mechanisms of 
tumor development and progression. Furthermore, the 
detection of the MMR signature and ROS-associated 
reference signature 18 suggests the potential for tar-
geted therapeutic interventions tailored to the individual 
patient’s molecular profile. These findings emphasize 
the importance of comprehensive molecular character-
ization in guiding treatment decisions and improving 

Fig. 3 Cancer gene expression signature. Elevated hypoxia (a) and im-
mune system signature (b) scores are detected in patient’s cancer. Red 
triangle refers to our patient of interest, boxplots to the prostate cohort
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patient outcomes [112–114]. Moving forward, integrat-
ing molecular profiling into clinical practice holds great 
promise for optimizing therapeutic strategies and 
advancing personalized care for PC patients. Specifically, 
the data reported here lay the foundation for predicting 
a poor prognosis for the studied PC, as well as the pos-
sibility of targeted therapies based on the modulation of 
hypoxia, ROS, and the anti-cancer immune response.
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