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Abstract

Meteorological data acquired with precision, quality, and reliability are crucial in various

agronomy fields, especially in studies related to reference evapotranspiration (ETo). ETo

plays a fundamental role in the hydrological cycle, irrigation system planning and manage-

ment, water demand modeling, water stress monitoring, water balance estimation, as well

as in hydrological and environmental studies. However, temporal records often encounter

issues such as missing measurements. The aim of this study was to evaluate the perfor-

mance of alternative multivariate procedures for principal component analysis (PCA), using

the Nonlinear Iterative Partial Least Squares (NIPALS) and Expectation-Maximization (EM)

algorithms, for imputing missing data in time series of meteorological variables. This was

carried out on high-dimensional and reduced-sample databases, covering different percent-

ages of missing data. The databases, collected between 2011 and 2021, originated from 45

automatic weather stations in the São Paulo region, Brazil. They were used to create a daily

time series of ETo. Five scenarios of missing data (10%, 20%, 30%, 40%, 50%) were simu-

lated, in which datasets were randomly withdrawn from the ETo base. Subsequently, impu-

tation was performed using the NIPALS-PCA, EM-PCA, and simple mean imputation (IM)

procedures. This cycle was repeated 100 times, and average performance indicators were

calculated. Statistical performance evaluation utilized the following indicators: correlation

coefficient (r), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Mean

Square Error (MSE), Normalized Root Mean Square Error (nRMSE), Willmott Index (d), and

performance index (c). In the scenario with 10% missing data, NIPALS-PCA achieved the

lowest MAPE (15.4%), followed by EM-PCA (17.0%), while IM recorded a MAPE of 24.7%.

In the scenario with 50% missing data, there was a performance reversal, with EM-PCA

showing the lowest MAPE (19.1%), followed by NIPALS-PCA (19.9%). The NIPALS-PCA

and EM-PCA approaches demonstrated good results in imputation (10%� nRMSE < 20%),

with NIPALS-PCA excelling in the 10%, 20%, and 30% scenarios, and EM-PCA in the 40%

and 50% scenarios. Based on statistical evaluation, the NIPALS-PCA, EM-PCA, and IM
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imputation models proved suitable for estimating missing ETo data, with PCA imputation

models in the NIPALS and EM algorithms showing the most promise. Future research

should explore the effectiveness of various imputation methods in diverse climatic and geo-

graphical contexts, as well as develop new techniques considering the temporal and spatial

structure of meteorological data, to advance understanding and climate prediction.

Introduction

Measuring evapotranspiration represents a significant challenge in agricultural meteorology

[1, 2], mainly due to the high costs associated with direct measurement techniques in terms of

implementation, operation and maintenance of measuring equipment [3, 4]. As an alternative,

indirect methods are used [5–10] by means of mathematical equations capable of adjusting to

local climatic conditions, requiring historical series of meteorological data. However, data

recorded over time is generally subject to flaws or errors [11], such as missing measurements,

commonly referred to as missings [12].

Addressing missing data is crucial for accurate analysis and decision-making in meteoro-

logical studies. Among the various methods available for imputing missing data [13–22], Prin-

cipal Component Analysis (PCA) has emerged as a versatile and effective tool for exploratory

data analysis and characterization of spatial variability [23–25]. Traditional PCA, known for

exploratory analysis and dimensionality reduction, can also serve as a viable imputation proce-

dure for missing data [26]. Iterative methods such as the Nonlinear Iterative Partial Least

Squares (NIPALS) algorithm [27–33] and the Expectation-Maximization (EM) algorithm

[34–38] are commonly employed in conjunction with PCA for imputation.

The application of the NIPALS-PCA and EM-PCA algorithms to the imputation of missing

data has shown promising results in various domains. For example, Martı́ and Zarzo [24] dem-

onstrated the superiority of NIPALS-PCA in imputing reference evapotranspiration data

recorded along the Mediterranean coast of Spain compared to methods based on nearest

neighbors. Similarly, Josse and Husson [39] introduced the EM-PCA method in the missMDA

package of the R-Gui computing environment [40], making it easier to reconstruct the data

matrix for high-dimensional data sets [23, 41–44].

In this context, even considering the advances, there is still a need for further exploration

and evaluation of alternative imputation techniques that employ PCA, particularly with regard

to their performance in different domains and datasets [44]. This study aims to fill part of this

gap by investigating the performance of alternative multivariate principal component analysis

procedures (NIPALS-PCA and EM-PCA) in the imputation of missing data in time series of

meteorological variables. Specifically, considering databases in high-dimensional scenarios

and reduced sample size, evaluating their performance under different percentages of missing

data.

Material and methods

The research was structured in three phases, in which we sought to carry out an extensive liter-

ature review on the subject of Missing Value Imputation (MVI), detail an algorithm for how to

carry out the simulation steps in MVI and compare alternative procedures for applying princi-

pal component analysis techniques in situations of high dimension, reduced sample size and

lack of data, by evaluating performance against observed reference evapotranspiration data

considering different contexts.
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The phases were structured as follows: Phase 1: Understand the panorama of worldwide

research on the subject of Missing Value Imputation through a bibliometric analysis; Phase 2:

Detail a plan for simulation studies in MVI, focusing on the database and type of data, mecha-

nism and missing rate, imputation technique and performance evaluation method, preparing

concepts for the application, used in phase three; Phase 3: Compares the performance of alter-

native multivariate procedures of principal component analysis in the imputation of missing

data in time series of meteorological variables, considering databases in the high-dimensional

and reduced-sample scenario, with different rates of missing data.

Fig 1 illustrates the methodological development used by means of a structured framework.

It provides an overview of the organization of the phases, emphasizing the deliverables of each

phase.

This paper focuses on phase three: comparison of principal component analysis algorithms

for imputation in high-dimensional agrometeorological data with a reduced sample size.

Simulation planning

There are some important definitions and steps when planning an MVI simulation study,

which are: database and data type, mechanism and fault rate, imputation technique and per-

formance evaluation method. Simulation studies, as is the case in this paper, usually aim to

verify the performance of imputation methods, as shown in Fig 2, considering the interactions

between application type, data type, mechanism, and fault rate.

Databases

Hourly databases were used, provided by National Meteorological Institute (INMET) [45] were

used for each meteorological variable, from January 1, 2012, to December 31, 2021, evaluated

at 45 automatic weather stations in the region of the State of São Paulo, Brazil.

For each station, the hourly databases covering the period in question were downloaded

from the website of the National Meteorological Institute in.csv format files, totaling four hun-

dred and fifty files (10 years x 45 stations).

Extracting weather data from INMET

To download weather data from INMET’s historical series, several steps are required:

1. Log on to the INMET website: https://bdmep.inmet.gov.br/;

2. Choose the annual data package option for all automatic stations separated by year, and

you will be taken to the page for annual historical data;

3. Choose the years of interest, among which data is available from the year 2000 onwards.

For each year selected, a file in “.csv”, comma separated values, format will be available for

each station;

4. Choose the stations of interest for the particular survey. To choose the stations of interest,

view the geographical distribution of the stations on the map of stations on the link: https://

mapas.inmet.gov.br/;

5. Rename all the files (.csv), this can be done manually or automatically. The automatic

method is preferable due to the number of files to be handled by a data processing routine,

for example, for a choice of 45 stations for a period of 10 years, there are 450 files. In order

to merge and automatically process the data contained in these files, it is necessary to
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standardize the names. Going from a full name, for example, INMET_SE_SP_A725_A-

VARE_01-01-2011_A_31-12-2011 to a shortened name A725_2011;

6. To facilitate the routine reading of these files, create a folder for each station with the

spreadsheet files for the years of interest;

7. Create a routine using a script in the R environment that automatically reads the data files

obtained, considering the following steps:

Fig 1. Research methodological framework. Source: Own authorship.

https://doi.org/10.1371/journal.pone.0315574.g001

PLOS ONE Comparison of principal component analysis algorithms for imputation in agrometeorological data

PLOS ONE | https://doi.org/10.1371/journal.pone.0315574 December 31, 2024 4 / 20

https://doi.org/10.1371/journal.pone.0315574.g001
https://doi.org/10.1371/journal.pone.0315574


• Read the files with the data from each station for all the years of the research;

• Exclude the first 9 lines, as they contain information on the weather stations from the

research data source (INMET);

• Use common column names for all the databases read into the R environment;

• Replace all "-9999" values with "NA";

• Convert the date-time (Greenwich time zone) to local time, with a specific adjustment for

São Paulo, subtracting three hours.

• Create a database aggregating all the files;

• Recalculate the variables of interest on a daily basis.

Automatic weather stations

Table 1 provides information on the automatic weather stations used in this research.

Variables of interest

A routine was created in R [40] was created to aggregate and generate daily data for the vari-

ables of interest: global solar irradiation (Rs, MJ m-2 hour-1), maximum and minimum air

Fig 2. Steps in an MVI experiment. Source: Own authorship.

https://doi.org/10.1371/journal.pone.0315574.g002
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Table 1. Information on automatic weather stations.

ID Location State Latitude [˚] Longitude [˚] Altitude [m]

1 ARIRANHA SP 21˚7’59’’S 48˚50’26’’W 525,4

2 AVARE SP 23˚6’6’’S 48˚56’28’’W 776,4

3 BARRA BONITA SP 22˚28’16’’S 48˚33’27’’W 533,7

4 BARRA DO TURVO SP 24˚57’46’’S 48˚24’59’’W 659,9

5 BARRETOS SP 20˚33’33’’S 48˚32’42’’W 534,4

6 BARUERI SP 23˚31’26’’S 46˚52’10’’W 776,5

7 BAURU SP 22˚21’29’’S 49˚1’44’’W 636,2

8 JORDAN FIELDS SP 22˚45’1’’S 45˚36’14’’W 1.663,0

9 WHITE HOUSE SP 21˚46’50’’S 47˚4’31’’W 734,2

10 FRANCE SP 20˚35’4’’S 47˚22’57’’W 1.002,8

11 IBITINGA SP 21˚51’20’’S 48˚47’59’’W 496,8

12 IGUAPE SP 24˚40’18’’S 47˚32’45’’W 2,7

13 ITAPEVA SP 23˚58’55’’S 48˚53’9’’W 743,3

14 ITAPIRA SP 22˚24’54’’S 46˚48’19’’W 634,9

15 ITUVERAVA SP 20˚21’35’’S 47˚46’31’’W 610,6

16 JALES SP 20˚9’54’’S 50˚35’42’’W 460,4

17 LINS SP 21˚39’58’’S 49˚44’5’’W 460,7

18 PIRACICABA SP 22˚42’11’’S 47˚37’24’’W 566,5

19 PRADOPOLIS SP 21˚20’18’’S 48˚6’50’’W 540,4

20 PRESIDENT PRUDENTE SP 22˚7’12’’S 51˚24’31’’W 431,9

21 RANCHARIA SP 22˚22’22’’S 50˚58’29’’W 398,8

22 SAO CARLOS SP 21˚58’49’’S 47˚53’2’’W 859,3

23 SAO LUIS PARAITINGA SP 23˚13’42’’S 45˚25’1’’W 862,3

24 SAO MIGUEL ARCANJO SP 23˚51’7’’S 48˚9’53’’W 675,7

25 SAO PAULO—MIRANTE SP 23˚29’47’’S 46˚37’12’’W 785,6

26 SOROCABA SP 23˚25’34’’S 47˚35’8’’W 609,3

27 TAUBATE SP 23˚2’30’’S 45˚31’15’’W 582,3

28 VALPARAISO SP 21˚19’9’’S 50˚55’49’’W 381,9

29 VOTUPORANGA SP 20˚24’12’’S 49˚57’58’’W 510,4

30 PARATY RJ 23˚13’25’’S 44˚43’37’’W 3,0

31 RESENDE RJ 22˚27’5’’S 44˚26’42’’W 438,8

31 RESENDE RJ 22˚27’5’’S 44˚26’42’’W 438,8

32 JAPIRA PR 23˚46’24’’S 50˚10’50’’W 692,9

33 MARINGA PR 23˚24’19’’S 51˚55’58’’W 548,5

34 NEW FATIMA PR 23˚24’55’’S 50˚34’40’’W 664,3

35 PARANAPOEMA PR 22˚39’30’’S 52˚8’4’’W 308,7

36 VENTANIA PR 24˚16’49’’S 50˚12’37’’W 1.093,4

37 AGUA CLARA MS 20˚26’40’’S 52˚52’33’’W 323,6

38 PARANAIBA MS 19˚41’44’’S 51˚10’54’’W 408,1

39 CALDAS MG 21˚55’5’’S 46˚22’59’’W 1.077,3

40 CAMPINA VERDE MG 19˚32’21’’S 49˚31’5’’W 559,1

41 CONCEICAO DAS ALAGOAS MG 19˚59’9’’S 48˚9’6’’W 572,5

42 MONTE VERDE MG 22˚51’42’’S 46˚2’36’’W 1.544,9

43 PASS FOUR MG 22˚23’45’’S 44˚57’43’’W 1.017,1

44 STEPS MG 20˚44’43’’S 46˚38’2’’W 781,7

45 SACRAMENTO MG 19˚52’31’’S 47˚26’3’’W 913,1

Source: Own authorship based on INMET data.

https://doi.org/10.1371/journal.pone.0315574.t001
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temperatures (Tmax and Tmin, ˚C), maximum and minimum relative humidity (RHmax and

RHmin, %) and wind speed (u2, m s-1) measured at a height of 2 meters from the surface.

Reference evapotranspiration

Next, with the daily values of the variables (Rs, Tmax, Tmin, URmax, URmin, u2) and using the

Penman-Monteith model [46], recommended by the Food and Agriculture Organization, in

bulletin FAO-56, a daily database of reference evapotranspiration (ET)o was obtained for this

region. Naturally, this initial database, a matrix of 45 stations (in rows) by 3653 days (in col-

umns), totaling 164,385 elements, had missing data, about 9.45%, which corresponds to 15,531

missing data in total, which were fully filled in by the average value of the column correspond-

ing to the position of the missing data, resulting in a complete database. This complete data-

base was used to verify, using a script implemented in the R environment, the performance of

the NIPALS-PCA algorithms [33, 47] EM-PCA [39] and imputation by the mean of the col-

umns (IM) for filling in missing data, carried out by means of a simulation to evaluate the

methods for imputing missings in the complete daily ETo data matrix.

Equação de penman-monteith

The Penman-Monteith model [46] for calculating reference evapotranspiration, ETo, given by

the equation:

ETo ¼
0; 408D Rn � Gð Þ þ g 900

Tmedþ273
u2 es � eað Þ

Dþ g 1þ 0; 34 u2ð Þ
ð1Þ

Where: ETo—reference evapotranspiration (mm dia-1), Rn—net radiation at the crop sur-

face (MJ m-2 dia-1), G—soil heat flux density (MJ m-2 dia-1), Tmed—mean daily air temperature

at 2 m height (˚C), u2—wind speed at 2 m height (m s-1), es—saturation vapour pressure (kPa),

ea—actual vapour pressure (kPa), es—ea—saturation vapour pressure déficit (kPa), Δ—slope

vapour pressure curve (kPa ºC-1), γ—psychrometric constant (kPa ºC-1).

Imputation methods

The treatment of missing data can begin with the decision to eliminate or estimate the missing

values [48]. To eliminate missing values, techniques such as complete deletion (listwise dele-

tion) and pairwise deletion are used. In listwise deletion, all cases with at least one missing

value are eliminated, which can result in the loss of a lot of data.

In pairwise deletion, only observations with missing values for the variable of interest are

excluded, which allows different subsets of data to be used in different analyses, depending on

the availability of data for each variable. Although paired exclusion can be more efficient than

complete exclusion of cases, it can result in different sample sizes for each analysis and affect

the validity of comparisons between variables. These approaches are simple and easy to imple-

ment but can result in significant loss of information [49].

Imputation refers to replacing missing data with estimated values. There are several ways in

which missing values can be imputed, depending on the nature of the problem and the data.

Depending on the nature of the problem, imputation techniques can be broadly classified as

basic imputation techniques that do not take time into account are replaced by a constant

value, which can be some descriptive measure of position (mean, median or mode) of each col-

umn in which the missing values are located [50, 51]. Now for the basic techniques that take

time into account, such as time series, there are the techniques of forward fill, back fill and
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linear interpolation [52]. Linear interpolation is an imputation technique that assumes a linear

relationship between the observed and missing values.

Advanced methods can be classified as multivariate statistical techniques or machine learn-

ing. Advanced machine learning imputation techniques use machine learning algorithms to

impute missing values in a data set. One such technique is K-nearest neighbor [53], which uses

the observed values of the nearest neighbors to replace the missing value. Among the statistical

techniques, we highlight the application of principal component analysis (PCA), in conjunc-

tion with the NIPALS algorithm [33] and the EM algorithm [38].

Principal component analysis

Principal component analysis (PCA), introduced by Karl Pearson [54] and based on Hotelling

[55], aims to reduce the dimension of a data set by explaining the variance and covariance

structure of a random vector made up of p random variables, by constructing new variables

obtained by linearly combining the original variables. These linear combinations are called

principal components and are not correlated with each other [56]. PCA traditionally seeks to

find the directions of maximum variance in the data and represents each observation in terms

of these directions, principal components. However, in incomplete data sets, conventional

PCA requires association with other algorithms, such as NIPALS [33] and EM [38], i.e.

NIPALS-PCA and EM-PCA, respectively.

NIPALS-PCA

NIPALS-PCA is an extension of PCA that uses the NIPALS algorithm to find the principal

components. The NIPALS algorithm is iterative and calculates the principal components one

at a time using the partial least squares technique. This allows it to deal with non-linearities in

the data and is especially useful in data sets with high dimensionality or complex correlations

between variables. Its ability to deal with these complexities makes it a valuable tool for explor-

atory analysis and data modeling. This work makes use of the NIPALS-PCA algorithm imple-

mented in the R-Gui computing environment, NIPALS package [33].

EM-PCA

The EM-PCA iterative method [57] seeks to minimize the least squares criterion in the

observed inputs. Minimization is achieved through an iterative procedure, missing values are

replaced by random values. PCA is then applied to the completed data set and the missing val-

ues are updated by the fitted values using a predefined number of dimensions. This procedure

is repeated until convergence [44]. This method provides estimates for individuals and vari-

ables, and an imputation for missing values. An important question concerns the number of

dimensions that must be defined at the start of the iterative algorithm. The researchers Josse

and Husson [58] suggested methods based on cross-validation to estimate this parameter from

an incomplete data set. The method is implemented in the R-Gui computing environment,

using the imputePCA function from the missMDA package [23, 39]. Further details can be

found in the works [38, 41, 42, 57, 59].

Number of components

The missMDA package [39] of the R-Gui computing environment provides functions for cal-

culating the number of components (estim_ncpPCA) and some imputation methods, includ-

ing EM-PCA (imputePCA function). For NIPALS-PCA, the nipals function from the nipals
package was used. [33] implemented in R.
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Cross-validation was used to define the number of components to be used in imputation via

PCA [23, 60] using the kfold method [61–63]. The percentage of missing values (pNA) is

removed and estimated with an EM-PCA model using the range of dimensions [ncp.min, ncp.

max]. This process was repeated nbsim times. Each cell is estimated using the imputePCA func-

tion, i.e. using the iterative PCA algorithm (EM cross-validation). The number of components

resulting in the lowest mean square error was set as the number of components for imputation.

Missing scenarios

Five miss scenarios were simulated (10%, 20%, 30%, 40% and 50%), using the mechanism

Missing Completely at Random, MCAR [64]. To create each missings scenario, a data set was

randomly generated with some positions taken from the ET database. This procedure begins

with the random generation of seeds with the sample function of the basic R package, for each

specific seed (set.seed) the random positions of the missings were generated, again with the

sample command, according to a specific rate of missing data. For all positions, the observed

values were replaced by the value "NA", i.e. missing data. For each missings scenario specified,

imputations were made using the NIPALS-PCA, EM-PCA and IM procedures. This cycle was

run 100 times and, at the end, the average performance indicators were calculated.

Statistical performance evaluation

The following indicators were used to assess the statistical performance of the NIPALS-PCA,

EM-PCA and IM imputation procedures: correlation coefficient (r) [65–67], Mean Absoluto

Error (MAE) [68–70], Mean Absolute Percentage Error (MAPE) [68], Mean Square Error

(MSE) [71–73], Root Mean Square Error (RMSE) [67, 68, 70, 72–75], Normalized Root Mean

Square Error (nRMSE) [66, 68], Willmott Index (d) [67, 73, 76] e o performance index (c)

[77]. The indicators can be calculated by Eq (2) through Eq (9):

r ¼

Xm

i¼1
xi � �xð Þ yi � �yð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1
xi � �xð Þ

2
Xm

i¼1
yi � �yð Þ

2
q ð2Þ

MAE ¼
1

m

Xm

i¼1
jxi � yij ð3Þ

MAPE ¼ 100 ∗
1

m

Xm

i¼1

�
�
�
�
xi � yi
xi

�
�
�
� ð4Þ

MSE ¼
1

m

Xm

i¼1
xi � yið Þ

2
ð5Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm

i¼1
xi � yið Þ

2

r

ð6Þ

nRMSE ¼ 100 ∗
RMSE

1

m

Xm

i¼1
xi

ð7Þ

d ¼ 1 �

Xm

i¼1
xi � yið Þ

2

Xm

i¼1
jxi � �xj þ jyi � �xjð Þ

2
ð8Þ
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c ¼ r ∗ d ð9Þ

Where “xi” is i-th observed value (i = 1, . . .., m), “�x” is average of observed values, “yi” is i-th
imputed value (i = 1, . . .., m), “�y” is average of imputed values, “m” is number of missings.

Results and discussion

In the missing data scenarios (10%, 20%, 30%, 40%, 50%) simulated in the ET database, Princi-

pal Component Analysis was used using the NIPALS (with 45 components) and EM (with 5

components) algorithms and simple mean imputation (MI) to reconstruct the database and,

consequently, obtain the estimated values of the simulated missings. Seven performance mea-

sures (r, MAE, MAPE, MSE, nRMSE, d and c) were implemented to evaluate the performance

of the methods: NIPALS-PCA, EM-PCA and IM.

Dispersion and the correlation coefficient

Figs 3–5 show the dispersion of the ordered pairs corresponding to the imputed values (by

NIPALS-PCA, EM-PCA and IM) and the observed ETo values in a typical simulation. When a

point coincides with the ideal line, represented by the black curve, this indicates that the

Fig 3. Dispersion between observed ETo values and those imputed by the NIPALS-PCA, EM-PCA and IM methods (10% and 20% scenarios). Source: Own

authorship.

https://doi.org/10.1371/journal.pone.0315574.g003
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Fig 5. Dispersion between observed ETo values and those imputed by the NIPALS-PCA, EM-PCA and IM methods (50% scenario). Source: Own authorship.

https://doi.org/10.1371/journal.pone.0315574.g005

Fig 4. Dispersion between observed ETo values and those imputed by the NIPALS-PCA, EM-PCA and IM methods (30% and 40% scenarios). Source: Own

authorship.

https://doi.org/10.1371/journal.pone.0315574.g004
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estimate and the observed value are corresponding. If the point is above this curve, it means

that the imputed value is underestimated; when it is below, it means that it is overestimated.

The curve in red represents a linear regression of the cloud of estimated versus observed

points, and it is important to note that the deviation from this curve indicates the performance

of the model in question. Like the points, when the red line is above the black line, it indicates

underestimated estimates, and when it is below, it indicates overestimated estimates. As can be

seen in Figs 3–5, the IM imputation method visually shows a greater distance between the

ideal and observed lines compared to the NIPALS-PCA and EM-PCA methods.

In Fig 3, two scenarios of missing data are presented, with rates of 10% and 20%. It is

observed that the correlation coefficients for the EM-PCA and IM methods remain

unchanged, at 0.88 and 0.76, respectively. Conversely, the NIPALS method shows superior

results, with correlation coefficients of 0.90 and 0.89 for the 10% and 20% cases, respectively.

In Fig 4, the NIPALS-PCA and EM-PCA methods show similar results, with correlation

coefficients of 0.87 and 0.86 for the 30% and 40% scenarios, respectively, while the IM method

shows a result of 0.75.

Fig 5 shows the scenario of 50% missing data, estimated by the NIPALS-PCA, EM-PCA

and IM methods. In this case, there was an inversion between the methods in terms of correla-

tion coefficient, with values of 0.85 and 0.84 for EM-PCA and NIPALS-PCA, respectively.

Analysis of performance indicators

A descriptive summary of the results obtained by performance indicators in simulations for

each scenario and imputation procedure can be observed in Tables 2–5, which include the

mean, minimum, and maximum values.

Regarding the correlation coefficient, in Table 2, no significant differences were observed

between the missing data scenarios for the IM method. For all missing data scenarios, the cor-

relation coefficient ranged from 0.75 to 0.76 for the IM method, except for 50% missing data,

where it was observed that the value practically did not vary between the simulations

conducted.

The NIPALS-PCA method has an amplitude of 0.06, which is greater than that of the

EM-PCA (0.03). However, in terms of average correlation coefficient, there is practically no

difference between the two methods.

The Table 3 presents the results for the MAE and MSE indicators. Once again, it is observed

that for the IM method, the results of the MAE and MSE indicators practically do not undergo

changes. As for the NIPALS-PCA and EM-PCA methods, there is a reversal in performance:

the NIPALS-PCA shows better performance in the scenarios of 10% and 20%, while the

EM-PCA performs better in the scenarios of 40% and 50%.

Table 2. Correlation coefficient (10%, 20%, 30%, 40% and 50% scenarios).

Indicators % missings NIPALS-PCA EM-PCA IM

r 10 0,90 [0,89; 0,91] 0,88 [0,88; 0,89] 0,76 [0,75; 0,76]

20 0,89 [0,88; 0,89] 0,88 [0,88; 0,89] 0,76 [0,75; 0,76]

30 0,87 [0,87; 0,88] 0,87 [0,86; 0,88] 0,75 [0,75; 0,76]

40 0,86 [0,85; 0,86] 0,86 [0,86; 0,86] 0,75 [0,75; 0,76]

50 0,84 [0,83; 0,84] 0,85 [0,85; 0,86] 0,75 [0,75; 0,75]

Source: Own authorship.

*Average; [Minimum value, Maximum value]

https://doi.org/10.1371/journal.pone.0315574.t002

PLOS ONE Comparison of principal component analysis algorithms for imputation in agrometeorological data

PLOS ONE | https://doi.org/10.1371/journal.pone.0315574 December 31, 2024 12 / 20

https://doi.org/10.1371/journal.pone.0315574.t002
https://doi.org/10.1371/journal.pone.0315574


Table 3. MAE and MSE indicators (10%, 20%, 30%, 40% and 50% scenarios).

Indicators % missings NIPALS-PCA EM-PCA IM

MAE
[mm day-1]

10 0,50 [0,49; 0,51] 0,53 [0,52; 0,54] 0,75 [0,73; 0,76]

20 0,53 [0,53; 0,54] 0,54 [0,54; 0,55] 0, 75 [0,74; 0,76]

30 0,57 [0,56; 0,57] 0,58 [0,55; 0,59] 0, 75 [0,75; 0,76]

40 0,61 [0,60; 0,61] 0,60 [0,59; 0,60] 0, 76 [0,75; 0,76]

50 0,65 [0,65; 0,66] 0,60 [0,60; 0,61] 0, 76 [0,76; 0,77]

MSE
[mm2 day-2]

10 0,48 [0,45; 0,51] 0,54 [0,52; 0,56] 1,07 [1,03; 1,11]

20 0,55 [0,53; 0,58] 0,56 [0,54; 0,58] 1,07 [1,05; 1,10]

30 0,62 [0,60; 0,64] 0,62 [0,57; 0,66] 1,08 [1,06; 1,10]

40 0,70 [0,68; 0,72] 0,66 [0,65; 0,67] 1,08 [1,06; 1,11]

50 0,80 [0,78; 0,83] 0,69 [0,67; 0,69] 1,09 [1,08; 1,11]

Source: Own authorship.

*Average; [Minimum value, Maximum value]

https://doi.org/10.1371/journal.pone.0315574.t003

Table 4. MAPE and nRMSE indicators (10%, 20%, 30%, 40% and 50% scenarios).

Indicators % missings NIPALS-PCA EM-PCA IM

MAPE
[%]

10 15,44 [14,95; 15,89] 16,96 [16,53; 17,43] 24,65 [23,90; 25,43]

20 16,40 [16,04; 16,72] 17,15 [16,83; 17,54] 24,74 [24,26; 25,23]

30 17,46 [17,16; 17,72] 18,29 [17,18; 18,98] 24,84 [24,42; 25,23]

40 18,59 [18,29; 18,85] 18,89 [18,63; 19,15] 24,93 [24,60; 25,26]

50 19,92 [19,65; 20,37] 19,13 [18,91; 19,29] 25,06 [24,76; 25,28]

nRMSE
[%]

10 17,16 [16,60; 17,60] 18,18 [17,78; 18,55] 25,50 [25,03; 26,01]

20 18,27 [17,96; 18,70] 18,41 [18,15; 18,76] 25,55 [25,24; 25,89]

30 19,41 [19,18; 19,65] 19,46 [18,58; 20,01] 25,61 [25,41; 25,89]

40 20,62 [20,31; 21,01] 20,03 [19,85; 20,19] 25,67 [25,45; 25,94]

50 22,07 [21,77; 22,41] 20,30 [20,14; 20,45] 25,77 [25,58; 25,96]

Source: Own authorship.

*Average; [Minimum value, Maximum value]

https://doi.org/10.1371/journal.pone.0315574.t004

Table 5. Willmott and performance indicators (10%, 20%, 30%, 40% and 50% scenarios).

Indicators % missings NIPALS-PCA EM-PCA IM

d 10 0,95 [0,94; 0,95] 0,94 [0,93; 0,94] 0,85 [0,84; 0,86]

20 0,94 [0,94; 0,94] 0,94 [0,93; 0,94] 0,85 [0,85; 0,86]

30 0,93 [0,93; 0,93] 0,93 [0,92; 0,93] 0,85 [0,85; 0,85]

40 0,92 [0,92; 0,93] 0,92 [0,92; 0,92] 0,85 [0,85; 0,85]

50 0,91 [0,91; 0,92] 0,92 [0,92; 0,92] 0,85 [0,85; 0,85]

c 10 0,85 [0,84; 0,86] 0,83 [0,82; 0,84] 0,65 [0,64; 0,66]

20 0,83 [0,82; 0,84] 0,82 [0,82; 0,83] 0,64 [0,64; 0,65]

30 0,81 [0,81; 0,82] 0,80 [0,79; 0,82] 0,64 [0,64; 0,65]

40 0,79 [0,78; 0,80] 0,79 [0,79; 0,79] 0,64 [0,64; 0,65]

50 0,77 [0,76; 0,77] 0,79 [0,78; 0,79] 0,64 [0,64; 0,64]

Source: Own authorship.

*Average; [Minimum value, Maximum value]

https://doi.org/10.1371/journal.pone.0315574.t005
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In Table 4, the results for the MAPE and nRMSE indicators are presented. It is observed

that the NIPALS-PCA method outperforms the EM-PCA for the scenarios of 10%, 20%, and

30%. However, there is a performance reversal in the 50% scenario. A gradual increase in

MAPE and nRMSE was observed as a greater number of missing values were added, indicating

a deterioration in the performance of the procedures considered. For the scenario with 10% of

missing values, NIPALS-PCA obtained the lowest MAPE (15.44%), followed by EM-PCA

(16.96%), while IM obtained a MAPE equal to 24.65%. In the scenario with 50% of missing val-

ues, there is a performance reversal, with a lower MAPE (19.13%) for EM-PCA, followed by

NIPALS-PCA (19.92%).

Considering the classification scale for the different nRMSE intervals, the NIPALS-PCA

and EM-PCA approaches present good results (10%� nRMSE < 20%) in the imputation of

missing values. Particularly noteworthy is the NIPALS-PCA method for the scenarios of 10%,

20%, and 30%, and the EM-PCA for the scenarios of 40% and 50%.

In Table 5, the results for the performance indices (c) and Willmott’s agreement index (d)

are presented. It is observed that, for Willmott’s agreement index (d), the NIPALS-PCA and

EM-PCA methods stand out, on average, with an agreement index of 93%, compared to 85%

for the IM method. Regarding the confidence coefficient (c), the NIPALS-PCA and EM-PCA

methods present an average value of 0.81, classified as "very good" estimation models accord-

ing to the classification provided by researchers Camargo and Sentelhas [77]. On the other

hand, the IM method showed an average value of 0.64, classified as a "good" estimation model.

Fig 6 presents the results for the MAPE indicator for the scenarios of 10% and 50%. It can

be observed that the EM-PCA and NIPALS-PCA methods are similar, while the IM method

deviates, showing results with higher deviations.

Research comparison

Compared to the results obtained by researchers Martı́ and Zarzo [24] modeling 30 weather

stations located in the Valencia region of Spain, from 2000 to 2007, we see lower results in the

Fig 6. MAPE indicator (10% and 50% scenarios). Source: Own authorship.

https://doi.org/10.1371/journal.pone.0315574.g006
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performance indicators than those found in this research, as shown in Table 6, for the 10%

missings scenario.

Researchers Dray and Josse [44] review some PCA imputation methods applied to data in

the field of ecology. They suggest using EM-PCA rather than NIPALS-PCA, due to the diffi-

culty of convergence. This was not observed in this study.

Research limitations

It is important to note that the simulations carried out in this study used the Missing
Completely at Random (MCAR) mechanism and, therefore, the results presented may not be

generalizable to situations in which the missing values occurred in a non-random or biased

manner. In addition, this study used the mean to complete the initial base, favoring this

method in the simulations carried out and, therefore, the differences between the performance

of the multivariate methods via PCA in relation to imputation by the mean may be greater.

Conclusions

This study examined the performance of alternative multivariate principal component analysis

procedures using NIPALS and EM algorithms, along with simple mean imputation (IM), for

reconstructing a high-dimensional, small-sample reference evapotranspiration database. Con-

sequently, estimated values for simulated missing data were obtained under scenarios of 10%,

20%, 30%, 40%, and 50% missing data. The study spanned from 2012 to 2021 and focused on

automatic weather stations in the São Paulo region, Brazil. Results underscored the importance

of choosing the right imputation approach, with significant implications for the accuracy of

climate estimates. PCA proved to be a useful tool for estimating missing values, particularly

when the sample size was small relative to the number of variables. This study focused on

imputing missing data in an evapotranspiration database, considering ETo measurement days

as correlated variables (3653 columns) measured across 45 automatic weather stations (rows).

Statistical performance comparison among the techniques revealed that NIPALS-PCA and

EM-PCA outperformed IM, depending on the percentage of missing data. Based on the statis-

tical indicator classification of the validation base for NIPALS-PCA, EM-PCA, and IM imputa-

tion models, there are indications that they are suitable for estimating missing reference

evapotranspiration values, with particular emphasis on PCA imputation models in the

NIPALS and EM algorithms. For future work, exploring the effectiveness of different imputa-

tion methods across various climatic and geographic contexts is recommended. Investigations

into the development of new imputation techniques, especially those considering the temporal

and spatial structure of meteorological data, are essential for advancing understanding and

forecasting capacity in climatology. In summary, this study provides a solid foundation for

future research on imputation strategies for missing meteorological data, with the potential to

significantly improve the accuracy and utility of climate estimates in various applications.

Table 6. Values of some statistical performance indicators.

Researchers Location MSE

mm2 day-2
MAE

mm day-1
pMAE

%

r

Martı́ and Zarzo (2012) Valencia—Spain 0,11 0,24 9,20 0,98

Present research São Paulo—Brazil 0,48 0,50 15,44 0,90

Source: Own authorship.

https://doi.org/10.1371/journal.pone.0315574.t006
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