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Abstract

In this paper, the unified approach is used in acquiring some new results to the coupled Mac-

cari system (MS) in Itô sense with multiplicative noise. The MS is a nonlinear model used in

hydrodynamics, plasma physics, and nonlinear optics to represent isolated waves in a

restricted region. We provide new results with complicated structures to this model, includ-

ing hyperbolic, trigonometric and rational function solutions. We draw the two dimensional

(2D) and three dimensional (3D) graphs to some of the study’s solutions under appropriately

chosen physical parameter values. Random factors can alter the collapse caused by turbu-

lence in the model medium. We noticed that our results may be useful for solving some real-

world physical issues by identifying the motion of an isolated wave in a small area.

1 Introduction

Nonlinear partial differential equations (NPDEs) are widely used in the applied sciences to

describe many complicated processes [1–6]. One of the areas that scientists find most intrigu-

ing in the current period is nonlinear phenomena. Different types of exact solutions to

NPDEs, like soliton, negaton, peakon, explosive, cuspon, rational and periodic solutions, have

attracted a lot of attention in recent years. These solutions play an essential role in the research

of nonlinear physical processes. In the modern scientific and technical era, various researches

have been employed to create several analytical processes to get solitary wave solutions for

NPDEs [7–13].

A deterministic model consists of equations that explain the system’s evolution throughout

time. A random variable results from a stochastic process that reflects an observation at a cer-

tain point in time. In a stochastic model, evolution is somewhat random, and repeating the

process may not provide the same outcomes. Deterministic models and stochastic models can

be compared. The growth of chaotic models in recent years has somewhat blurred the line
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between deterministic and stochastic models. A common stochastic process that combines the

characteristics of a Markov process with a martingale is the Wiener process [14]. A popular

stochastic process in dispersive situations is this one [15, 16]. Recent advances in stochastic cal-

culus, especially in the context of stochastic partial differential equations (SPDEs), seem to us

to provide the foundation for a comprehensive modeling of practical applications [15]. Mathe-

maticians are the most comfortable using SPDEs and stochastic processes on natural models.

The dynamics of an isolated wave in a limited area of space is often described by the Mac-

cari’s system (MS), a kind of NPDEs utilized in many different domains, including materials

science, acoustic waves in crystals, superfluid, nonlinear optics, and so forth [17–22]. Maccari

developed this system from the Kadomtsev-Petviashvili equation by employing a reduction

approach based on spatiotemporal rescaling [23]. He demonstrated how the MS accurately

characterised the extremely significant aspects of rogue waves and how they might be utilized

to examine diverse nonlinear forms such as standing waves, nonlinear optical fibres, and fluid

dynamics [24]. The MS system might be applied to complicated systems to explore the dynam-

ics of water and energy waves. Various mathematical approaches may be used to identify soli-

tons and dark solitons, however rogue wave solutions have just been identified in the MS

system [17–22]. These prior studies were all carried out from a deterministic perspective.

The coupled MS reads [18, 25, 26]:

i Ut þ Uxx þ FU ¼ 0 ;

Ft þ Fy þ ðjUj2Þx ¼ 0;
ð1:1Þ

U = U(x, y, t), F = F(x, y, t) denote the complex scalar field and real scalar field, respectively.

Zhao [27] present various solitary wave solutions for model (1.1). Furthermore, many periodic

and solitons of the above model have recently been found in [18, 25, 26, 28]. In this paper, we

consider model (1.1) via Wiener process as follows [29]:

i Ut þ Uxx þ FU � i sUWt ¼ 0 ;

Ft þ Fy þ ðjUj2Þx ¼ 0:
ð1:2Þ

The noise Wt is a Wiener times derivative of W(t) and σ denotes noise strength [30]. Specif-

ically, we use a unified method to investigate this system via multiplicative noises in the Itô

sense. This methodology provides a number of benefits over the bulk of existing methods,

including the avoidance of difficult and calculations that take a long time and the generation

of precise results. It is not difficult, dependable, and effective. This technique provides several

sorts of solitary waves dependent on the physical parameters. The presented solutions have sig-

nificant applications in hydrodynamics, optical fiber communications, and plasma physics.

This approach may be used as a box-solver for several systems in natural science. To our

knowledge, the proposed approach for solving the MS has never been applied previously.

A Wiener process is a stochastic process that is continuous across time. The primary char-

acteristics of Brownian motion {W(t)}t�0 are shown as follows:

(a) W(t), t� 0 are continuous functions of t and W(t) * N(0, t) for time t.

(b) For 0� t1 < t2 < t3. . .< tn; W(t2) −W(t1); W(t3) −W(t2);. . . W(tn) −W(tn−1) are

independent.

(c) W(t) −W(s) follows a normal distribution with zero mean and variance t − s, i.e.

CðtÞ � CðsÞ �
ffiffiffiffiffiffiffiffiffiffi
t � s
p

Nð0; 1Þ, where N(0, 1) is a standard normal distribution.
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The rest of the paper is constructed as follows. Section 2 briefly describes the unified tech-

nique. In Section 3, we introduce new stochastic solutions in the Itô sense for MS system. We

demonstrate the physical behavior of the solutions and the influence of the noise factor on

their evolution. Furthermore, graphs of specific achieved solutions are provided. Section 5

presents findings, perspectives, and recommendations for further work.

2 Unified solver method

We introduce a condensed version of the unified solver approach for the following equation

[31]:

L1u00 þ L2u3 þ L3u ¼ 0: ð2:1Þ

The solutions of this equation are

(i) Hyperbolic solutions: (at
L3

L1
> 0)

u1;2ðx; tÞ ¼ �

ffiffiffiffiffiffiffiffiffi
� L3

L2

s

tanh

ffiffiffiffiffiffiffiffi
L3

2L1

s

zþ Wð Þ

 !

ð2:2Þ

and

u3;4ðx; tÞ ¼ �

ffiffiffiffiffiffiffiffiffi
� L3

L2

s

coth

ffiffiffiffiffiffiffiffi
L3

2L1

s

zþ Wð Þ

 !

: ð2:3Þ

(ii) Trigonometric solutions: (at
L3

L1
< 0)

u5;6ðx; tÞ ¼ �

ffiffiffiffiffiffi
L3

L2

s

tan

ffiffiffiffiffiffiffiffiffi
� L3

2L1

s

zþ Wð Þ

 !

ð2:4Þ

and

u7;8ðx; tÞ ¼ �

ffiffiffiffiffiffi
L3

L2

s

cot

ffiffiffiffiffiffiffiffiffi
� L3

2L1

s

zþ Wð Þ

 !

: ð2:5Þ

(iii) Rational solutions: (at Λ3 = 0)

u9;10ðx; tÞ ¼ �

ffiffiffiffiffiffiffiffiffi
� L2

2L1

s

zþ Wð Þ

 ! � 1

: ð2:6Þ

Here ϑ is an arbitrary constant.

3 Solutions of MS

In this section, we introduce the stochastic solutions to MS (1.2) via Itô sense with multiplica-

tive noise.

Using the transformation [29]:

Uðx; y; tÞ ¼ uðzÞ eiðrxþa yþg tÞþs WðtÞ� s2 t ; Fðx; y; tÞ ¼ FðzÞ; z ¼ xþ by � 2rt; ð3:1Þ

r, α, γ and β are constants. Applying the same steps in [29], gives

FðzÞ ¼
1

2r � b

� �

u2 ðzÞ ð3:2Þ
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and

L1 u00ðzÞ þ L2 u3ðzÞ þ L3 uðzÞ ¼ 0; ð3:3Þ

where

L1 ¼ 1;L2 ¼
1

2r � b
;L3 ¼ � ðgþ r2Þ: ð3:4Þ

Thus the solutions of Eq (1.2) are:

u1;2ðzÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgþ r2Þð2r � bÞ

p
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ðgþ r2Þ

2

r

z

 !

; 2r � b < 0; gþ r2 < 0: ð3:5Þ

Hence,

U1;2ðzÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgþ r2Þð2r � bÞ

p
eiðrxþa yþg tÞþsWðtÞ� s2 t tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ðgþ r2Þ

2

r

ðxþ by � 2rtÞ

 !

; ð3:6Þ

2r − β< 0, γ + r2 < 0.

u3;4ðzÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgþ r2Þð2r � bÞ

p
coth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ðgþ r2Þ

2

r

z

 !

; 2r � b < 0; gþ r2 < 0: ð3:7Þ

Hence,

U3;4ðzÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgþ r2Þð2r � bÞ

p
eiðrxþa yþg tÞþsWðtÞ� s2 t coth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ðgþ r2Þ

2

r

ðxþ by � 2rtÞ

 !

; ð3:8Þ

2r − β< 0, γ + r2 < 0.

u5;6ðzÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgþ r2Þðb � 2rÞ

p
tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgþ r2Þ

2

r

z

 !

; b � 2r > 0; gþ r2 > 0: ð3:9Þ

Hence,

U5;6ðx; y; tÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgþ r2Þðb � 2rÞ

p
eiðrxþa yþg tÞþs WðtÞ� s2 t tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgþ r2Þ

2

r

ðxþ by � 2rtÞ

 !

; ð3:10Þ

β − 2r> 0, γ + r2 > 0.

u7;8ðzÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgþ r2Þðb � 2rÞ

p
cot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgþ r2Þ

2

r

z

 !

; b � 2r > 0; gþ r2 > 0: ð3:11Þ

Hence,

U7;8ðx; y; tÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgþ r2Þðb � 2rÞ

p
eiðrxþa yþg tÞþs WðtÞ� s2 t cot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgþ r2Þ

2

r

ðxþ by � 2rtÞ

 !

; ð3:12Þ
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β − 2r> 0, γ + r2 > 0.

u9;10ðzÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðb � 2rÞ

p 1

Wþ z
; b � 2r > 0: ð3:13Þ

Hence,

U9;10ðx; y; tÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðb � 2rÞ

p 1

Wþ xþ by � 2rt
eiðrxþa yþg tÞþsWðtÞ� s2 t; b � 2r > 0: ð3:14Þ

4 Physical interpretation

We have put into practice the cohesive method for identifying new significant stochastic forms

in Itô sense for the coupled MS with multiplicative noise. This model is a sophisticated nonlin-

ear model that is used in a variety of disciplines, including hydrodynamics, plasma physics,

and nonlinear optics, to describe the dynamics of isolated waves that are contained in a tiny

region of space [18, 32].

Most typical papers evaluated the suggested MS in deterministic situations. Unlike our

approach, we investigate this model under the stochastic condition, i.e., in the Itô sense of

being forced by multiplicative noise. A unified method was employed to discover some inno-

vative random solutions to the MS through the Itô sense. This provided a range of dispersive

and dissipative structures in the form solutions of Eq (3.3). The obtained solutions are hyper-

bolic, trigonometric and rational functions that explained a variety of remarkable physical phe-

nomena in Bose-Einstein condensates, nonlinear optics, superconductivity, plasma and

atmospheric physics, and other topics.

We provide some 2D and 3D graphs for some chosen solutions of the proposed model for

appropriate parametric choices using Matlab release 18. In the absence of a noise term i.e.,

σ = 0, the solution (3.6) depicts periodic waves as in Figs 1 and 2. The solution (3.6) represents

a random structural representation as illustrated in Figs 3 and 4. These figures illustrate how

the dissipative solution (3.6) varies with space x, time t, and the noise effect σ. As σ grows, the

rate forcing wave rises and a high-amplitude shock random wave is produced, as seen in Fig 3.

Finally, the efficient, simple, succinct, and potent technique that is being used to extract

accurate solitons may be extended to various nonlinear partial differential equations in mathe-

matical physics, engineering, and applied sciences.

5 Conclusions

In this study, the unified technique is used acquiring some travelling wave solutions to the

nonlinear Maccari’s system in Itô sense with multiplicative noise. Significant new solitary

waves are created. These solutions can prevent energy waves from collapsing or being forced.

This applies to plasma physics, Langmuir solar wind, nonlinear optics and hydrodynamics. It

was observed that increasing the random parameter induced both frenzied solitonic collapse

and driving shock wave amplitude. To our knowledge, no prior material has been published

that applies the unified technique to the model under consideration in this work. We’ll employ

different analytical techniques in subsequent work to obtain different kinds of solutions. Addi-

tionally, we may examine the Maccari model’s bifurcation and chaotic patterns.
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Fig 2. 2D plot of soliton wave solution (3.6) for σ = 0.

https://doi.org/10.1371/journal.pone.0312741.g002

Fig 1. 3D plot of soliton wave solution (3.6) for σ = 0.

https://doi.org/10.1371/journal.pone.0312741.g001
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Fig 3. 2D plot of soliton wave solution (3.6).

https://doi.org/10.1371/journal.pone.0312741.g003

Fig 4. Trajectory of solution (3.6) with noise strength σ.

https://doi.org/10.1371/journal.pone.0312741.g004
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