Skip to main content
. 2024 Dec 18;11:1426964. doi: 10.3389/fmolb.2024.1426964

TABLE 5.

Performance values of proposed models calculated on the testing dataset.

Trained model for feature selection Classification model Accuracy Std of accuracy Precision Std of precision Recall Std of recall Specificity Std of specificity
RF RF 86.02% 10.93 90.25% 6.33 85.77% 11.25 72.44% 23.44
LR 85.07% 8.95 86.98% 7.82 84.91% 9.1 80.56% 18.15
GB 83.52% 8.11 85.30% 7.09 83.37% 8.34 77.56% 18.81
SVM 85.00% 10 89.15% 6.04 84.78% 10.13 70.56% 20.51
LR RF 83.02% 10.8 85.93% 7.98 82.81% 11.12 71.44% 22.43
LR 82.52% 8.77 83.78% 8.53 82.32% 8.89 77.56% 14.62
GB 80.52% 9.9 83.19% 9.56 80.36% 10.23 75.44% 19.38
SVM 84.02% 8.63 88.06% 5.49 83.77% 8.99 70.44% 19.37
GB RF 87.50% 12.09 90.22% 9.69 87.22% 12.41 75.44% 22.71
LR 83.07% 11.24 84.19% 10.89 82.96% 11.4 81.56% 18.9
GB 83.55% 9.27 85.06% 8.61 83.31% 9.59 79.44% 19.39
SVM 84.50% 10.11 88.86% 5.94 84.22% 10.4 69.44% 21.1
SVM RF 84.02% 12.02 87.22% 9.04 83.77% 12.28 73.44% 24.36
LR 88.52% 6.75 89.50% 6.79 88.38% 6.88 83.67% 10.69
GB 80.60% 8.5 82.88% 7.44 80.45% 8.82 76.44% 19.84
SVM 84.50% 10.59 87.01% 8.57 84.27% 10.93 72.44% 19.73