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Chromosome-level genome 
assembly and annotation of Barbel 
chub Squaliobarbus curriculus
Qingmei Zheng1,3, Feng Huang1,3, Haiyan Zheng2,3, Hui Zhang2, Rushu Wen1 ✉ & Chao Li   2 ✉

The barbel chub Squaliobarbus curriculus, is an economically important freshwater fish in China. The 
fishery production of the wild populations has declined dramatically, making the development of 
aquaculture urgently needed. However, the lack of high-quality genome has impeded its artificial 
breeding and genetic breeding. Herein, we present a chromosome-level genome assembly for  
S. curriculus by combining HiFi sequencing, Hi-C sequencing, Iso-seq and short-reads RNA-seq data. 
This assembly was 910.27 Mb in size, with a contig N50 length of 34.70 Mb. 99.50% of the assembled 
sequences were placed onto 24 chromosomes supported by Hi-C contact map. Using Iso-seq and short-
reads RNA-seq data, we identified 28,329 protein-coding genes based on three prediction methods. Of 
these genes, 27,207 genes (96.04%) were functionally annotated to at least one of the six commonly 
used databases. Additionally, we annotated 2,041 miRNAs, 16,426 tRNAs, 5,488 rRNAs and 1,536 
snRNAs in the S. curriculus genome. Overall, the chromosome-level genome of S. curriculus will 
provide valuable genomic resources for genetic breeding, population genomics, sex-related marker 
identifications, and other future studies.

Background & Summary
The barbel chub Squaliobarbus curriculus (Cypriniformes: Xenocyprididae)1 is an endemic fish of East Asia, 
found in China, North Korea, South Korea, eastern Russia, and Vietnam. In China, this species is commonly 
known as “red-eye rod” or “wild grass carp” due to its red spots around the eyes and its body shape resembling 
that of the grass carp Ctenopharyngodon idella. Owning to its high adaptability to various environmental con-
ditions, S. curriculus is widely distributed across rivers and lakes, except for the Qinghai-Tibet Plateau and the 
Hexi Corridor2. The species has an average age-at mature of three years. Similar to the Four Major Chinese Carps 
(i.e. the black carp (Mylopharyngodon piceus), the grass carp (C. idellus), the silver carp (Hypophthalmichthys 
molitrix), and the big-head carp (Hypophthalmichthys nobilis)), S. curriculus migrates from rivers to lakes to 
complete its reproduction during spawning season, which lasts from April to September. Its eggs are pelagic and 
need long rivers for their eggs drifting and hatching.

S. curriculus is an economically important freshwater fish species in China due to its high nutritional value. 
The meat of the fish contains 18 amino acids, of which 46.12% are essential, and the content of essential amino 
acids in S. curriculus is significantly higher than other economic fish species such as the Four Major Chinese 
Carps in China2. In Meizhou, a city in eastern Guangdong province of southern China, S. curriculus is particu-
larly popular as the main ingredient in “Meizhou Yusheng”, a traditional Hakka raw fish salad that originated 
in the Qin dynasty (221-206 BCE) and flourished during the Tang dynasty (618–907 CE). Consequently, the 
demand of S. curriculus is high in the Pearl River Delta region, especially in areas with large Hakka populations.

Being the seventh most harvested fish species, S. curriculus is an important commercial fishing species in 
the Pear River, particularly in the western Pearl River Estuary3. However, it has experienced a sharp decline in 
fisheries production, with the population now dominated by small-sized individuals caused by dam construc-
tion, overfishing, and environmental pollution4. To address this, the National Aquatic germplasm resources 
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protection area for S. curriculus has been established in the Xijiang River (the main stream of the Pearl River)5, 
a spot with high genetic diversity of this species that deserves further monitoring and exploration6. Efforts to 
recover its natural populations include stock enhancement and artificial breeding. Currently, artificial breeding 
techniques are well-developed and several fish farms for this species can be found in Guangdong Province. 
Additionally, measures to control fishing intensity have also been implemented, such as optimizing spawning 
biomass per recruitment and suggesting optimal fishing age and body length based on previous studies.

Developing aquaculture of S. curriculus is a promising strategy for balancing fisheries supply and consump-
tion demand, thanks to the success of artificial breeding. Nevertheless, the lack of selected populations or strains 
with fast growth rates is hindering the expansion of S. curriculus aquaculture. Studies have shown that the 
growth rate of S. curriculus varies among populations from different water systems7,8, as well as between pop-
ulations in the upper and lower reaches of the same river3. However, the underlying molecular basis remains 
unknown. The lack of genomic resources is a key bottleneck in addressing these questions. Generating a 
high-quality reference genome is the first step toward advancing this field. Genomic resources of S. curriculus 
will enable us to investigate genomic markers and regions associated with important phenotypic traits, such as 
body size, body weight and growth rate. Moreover, these resources will provide the opportunities to explore 
additional aspects, including the mechanism of sex determination and high environmental adaptability of  
S. curriculus9–11, which will also be helpful in subsequent genetic breeding efforts.

In this study, using a combination of HiFi sequencing, Hi-C sequencing, Iso-seq and short-reads RNA-seq, a 
chromosome-level of S. curriculus has been de novo generated. This assembly was 910.27 Mb in size with a contig 
N50 length of 34.70 Mb and 24 chromosomes supported by Hi-C contact map. BUSCOs assessment showed 
3,626 (99.61%) BUSCOS was complete. We believe our high-quality S. curriculus reference genome will serve as 
a valuable genomic resource for genetic breeding, population genomics, and sex-related marker identifications 
for future research.

Methods
Ethics statement.  Fishes used in this study complied with China animal welfare laws, guidelines and pol-
icies. The protocols were approved by Laboratory Animal Ethics Committee of Jiaying University (permit refer-
ence number No. 2022ZDJS086). Fishes were collected for experiment purposes and under conservation laws of 
this species. Sampled fish was fatally anesthetized with MS-222 (Sigma).

Sample collection and DNA extraction.  One adult male individual of S. curriculus was collected from a 
fish farm in Meizhou City, Guangdong Province, China. A piece of muscle (~ 2 g) was collected along the dorsal 
fin of the fish and the whole tissue was frozened in liquid nitrogen quickly for 30 minutes. The high molecular 
weight of genomic DNA was extracted using QIAGEN Genomic DNA extraction kit according to the manufac-
turer’s instructions. The quality of extracted DNA was evaluated by 1% agarose gel and Qubit 3.0 Fluorometer 
(Invitrogen, USA).

Library construction and DNA sequencing.  There were two libraries type used in the assembly. For 
PacBio HiFi sequencing, a 20 kb long-read sequencing library (SMRT bell library) was constructed according to 
PacBio’s standard protocol (Pacifc Biosciences, Menlo Park, CA, USA). After passing the quality assessment, the 
library was sequenced on a PacBio Revio System. All circular consensus sequencing (CCS) reads were produced 
using the CCS module in SMRT Link v9.012. Finally, approximately 31.14 Gb PacBio HiFi reads with an N50 of 
20.47 kb were generated, covering 34.21× of the genome in depth (Table 1).

For Hi-C sequencing, libraries were constructed using the GrandOmics Hi-C kit with DpnII enzyme 
(GrandOmics, China) by following the standard manufacturer’s protocol. These Hi-C libraries were sequenced 
on a MGISEQ-2000 platform (MGI, BGI Shenzhen, China). A total of 97.98 Gb raw Hi-C paired-end reads were 
generated and fed to fastp v0.19.513 to filter low quality reads. After filtering, a total of 94.98 Gb (104.34×) clean 
reads with 149 bp mean length were obtained and subsequently used for chromosome-level scaffolding.

RNA extraction and sequencing.  For assisting gene structure annotation, both Iso-seq and short-reads 
RNA-seq were employed to achieve a better solution. Total RNA from multiple tissues (heart, liver, gill, mus-
cle, skin, fin and gonad) were equally mixed and extracted by using a TRIZOL Kit (Invitrogen, Carlsbad, CA, 
USA) following the manufacturer’s instructions. RNA integrity and quality was checked by the Nanodrop 2000 
spectrophotometer and the Agilent 2100 Bioanalyzer System (Agilent Technologies, Santa Clara, CA, USA). 
RNA with RIN (RNA integrity number) ≥ 7.0 were selected for library construction. For Iso-seq, procedures 
described in previous study14 were performed. Briefly, the extracted RNA was used for cDNA synthesis fol-
lowed by a large-scale PCR amplification step. PCR products were purified and subjected to the construction 
of SMRTbell template libraries. Finally, the SMRT bell libraries were sequenced on a PacBio Revio platform. 

Library type Library size (bp) Raw data (Gb) Clean data (Gb) Depth (×)† Mean length/N50 (bp)

HiFi 20,000 31.14 — 34.21 19,520/20,474

Hi-C 350 97.98 94.98 104.34 −/149

Iso-seq — 146.21 — — 4,319/4,417

RNA-seq 350 19.34 17.88 19.64 −/149

Table 1.  Sequencing data for Squaliobarbus curriculus genome assembly. †Estimated by genome size of 
910.27 Mb.
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For short-reads RNA-seq, cDNA libraries with insert sizes of ~350 bp were constructed and sequenced on a 
MGISEQ-2000 platform (MGI, BGI Shenzhen, China). 146.21 Gb and 19.34 Gb raw data were generated from 
Iso-seq and short-reads RNA-seq, respectively (Table 1).

Genome assembly.  For the initial contig-level assembly, raw HiFi reads were assembled using hifiasm 
v0.19.5-r58715 with default parameters. This primary assembly was about 910.27 Mb in size, consisting of 67 
contigs. The length of contig N50 was 34.70 Mb. To further scaffold these contigs, Hi-C reads were mapped onto 
the primary assembly using BWA v0.7.816 (-5SP). The output sam file was piped to samtools v1.19.217 (view -S 
-h -b -F 3340) to generate a bam file. The resulted bam file was dealt with HapHiC v1.0.518 pipeline to generate 
a scaffold assembly and a Hi-C contact map. Briefly, the bam was filtered by python script (filter_bam.py input.
bam 1–NM 3). The filtered bam file was set as an input for haphic pipeline (chromosome number set as 24 
according to the diploid chromosome number of 4819) which could result in a chromosome-level assembly. The 
Hi-C contact map was visualized by using haphic plot module. We finally obtained a genome size of 910.27 Mb 
(including gap regions), comprising 41 sequences with N50 length of 35.62 Mb (Fig. 1). 24 of these sequences 
were chromosome-level in length supported by strong Hi-C signals (Fig. 2). The length ranges from 28.10 Mb to 
69.93 Mb, accounting 99.50% of the total genome size. The chromosome numbers detected by the Hi-C heat map 
was also in agreement with a published karyotype study of S. curriculus19.

Fig. 1  Circos plot of Squaliobarbus curriculus genome. (a) chromosome sizes, (b) gene density, (c) GC density, 
(d) repeat elements abundance, (e) DNA transposons, (f) LTRs, and (g) ncRNAs.
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Repeat elements annotation.  We used two methods (homology and de novo prediction) to anno-
tate repeat elements in the S. curriculus genome. For de novo prediction, a novel library was generated using 
RepeatMasker v4.1.2-p120 based on Repbase TE v21.0121. Then, types of repetitive sequences were detected and 
classified by RepeatModeler v2.0.322 and LTR-FINDER v1.0.623. For homology prediction, repeat sequences were 
searched using RepeatProteinMask v4.1.2-p120 and RepeatMasker v4.1.2-p120 with default parameters. The out-
puts showed 445.23 Mb (48.91%) was identified to be repetitive sequences (Table 2), in which DNA transposons 
accounting for 25.74% (234.27 Mb), LTR 3.89% (35.37 Mb), LINE 2.55% (23.24 Mb) and SINE 0.19% (1.68 Mb). 
The masked genome was subsequently used as an input for gene structure prediction in ab initio prediction.

Gene structure prediction and functional annotation.  Gene structure was predicted 
using three approaches: (1) Ab initio prediction: for ab initio prediction, AUGUSTUS v3.5.024 was 
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Fig. 2  Chromosome heatmaps of Hi-C data of Squaliobarbus curriculus genome.

Class Repeat size (bp) Percentage of genome (%)

DNA 234,266,062 25.74

LINE 23,240,389 2.55

SINE 1,684,265 0.19

LTR 35,371,892 3.89

Unknown 121,687,567 13.37

Other 28,855,791 3.17

Total 445,229,121 48.91

Table 2.  Statistics of repetitive sequences.
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performed (–species = zebrafish–gff3 = on–softmasking = True–stopCodonExcludedFromCDS = False); 
(2) Homology-based prediction: we used GeMoMa v1.925 to do homology-based prediction. Genome and gff 
files of five representative species (C. idella, Danio rerio, Megalobrama amblycephala, Oreochromis niloticus, 
Xiphophorus maculatus) were download from the NCBI database. Using these data as references, gene structures 
in the S. curriculus genome were predicted using GeMoMa v1.925 (tblastn = false); (3) Transcriptome-based: for 
transcriptome-based predictions, we integrated two kinds of RNA-seq data, Iso-seq and short-reads RNA-seq. 
For short-reads RNA-seq, raw reads were filtered using fastp13 (-a auto–adapter_sequence_r2 auto–dedup–dup_
calc_accuracy 3). After filtering, 17.88 Gb clean reads were mapped onto the S. curriculus genome using HISAT2 
v2.2.126. The gft file was generated using stringtie v2.2.127. For Iso-seq, bam format file was converted to fastq 
using isoseq pipeline28. For the short reads, stringtie v2.2.127 was called to output the gtf file. These two gft files 
were combined using TACO29 (–filter-min-expr 0.0). For the latter two approaches, an unmasked genome was 
used as inputs. Finally, gene structures predicted from three approaches were integrated by EVidenceModeler 
v1.1.130. Genes with a length below 150 bp were removed from the final dataset. The final resulting output 
comprised consistent and non-overlapping sequence assemblies, which described as the gff file of S. curriculus 
genome.

To annotate the function of predicted genes, protein sequences based on gff file were extracted from the  
S. curriculus genome and blasted against six commonly used protein databases (NR, Swissprot, KEGG, KOG, 
GO, Pfam) using BLASTP v2.2.2631 with an E value of 1e−5.

Non-coding RNA (ncRNAs, i.e., tRNAs, rRNAs, miRNAs and snRNAs) in the S. curriculus genome were 
also annotated. We first utilized tRNAscan-SE v1.3.132 to predict tRNA in the assembly. For the rRNA genes, 
RNAmmer v1.233 was used (-S euk -m lsu,ssu,tsu -gff). MiRNAs and snRNAs were searched by CMSAN v1.1.234 
sofware against the Rfam v14.10 database35 (–cut_ga–rfam–nohmmonly–tblout–fmt 2). Finally, 2,041 miRNAs, 
16,426 tRNAs, 5,488 rRNAs and 1,536 snRNAs were annotated in the S. curriculus genome (Table 3).

Ab initio prediction using AUGUSTUS v3.5.024 found 26,240 genes in the S. curriculus genome. 
Homology-based prediction suggested there were 25,475 to 30,335 genes according to different reference 
genome. Using RNA-seq as evidence, 33,108 genes were predicted using short-reads RNA-seq while TACO 
found 29,567 gene structures based on a combination of Iso-seq and short-reads RNA-seq data (Table 4). After 
integration by EVidenceModeler v1.1.130, 28,329 protein-coding genes were annotated in the end. Functional 
annotation using six public databases showed 14,239 to 27,137 hits of 28,329 protein sequences. A total of 27,207 
genes (96.04%) had at least one database annotation (Table 5).

Data Records
Raw reads sequenced in this study have been submitted to the National Genomics Data Center (https://ngdc.
cncb.ac.cn/, BioProject number: PRJCA029958, GSA: CRA01886436, Run IDs: CRR1288665-CRR1288668). 
The genome sequences and annotation files were deposited at figshare (https://doi.org/10.6084/
m9.figshare.26968774)37 and NCBI (accession number: JBJUSD00000000038).

Technical Validation
For validation of the quality of our genome assembly, we mapped the HiFi reads onto our reference genome 
using Minimap2 v2.22-r110139, the results showed that the mapping rate was 100%, suggesting the high accu-
racy of our assembly. Chromosome numbers of our assembly were confirmed by Hi-C heat map (Fig. 2). 
The quality of the assembly was assessed using compleasm v0.2.640 with the actinopterygii_odb10 database  

Type Number

miRNA 2,041

tRNA 16,426

rRNA 5,488

snRNA 1,536

Table 3.  Statistics of non-coding RNAs.

Method Software Species Gene number

Ab initio Augustus — 26,240

Homology-based GeMoMa

Ctenopharyngodon idella 27,488

Danio rerio 26,830

Megalobrama amblycephala 30,335

Oreochromis niloticus 25,475

Xiphophorus maculatus 22,806

Transcriptome-based
HISAT2 + StringTie — 33,108

TACO — 29,567

EvidenceModeler — 28,329

Table 4.  Statistics of gene prediction.
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(3,640 BUSCOs). As a result, 3,626 (99.61%) BUSCOs were identified as complete in total, of which 3,612 
(99.23%) and 14 (0.38%) were single-copy and duplicated, respectively. Completeness assessment of protein 
sequences showed that a total of 3,401 (93.5%) were identified as complete BUSCOs. Of these, 3,347 (92.0%) 
were single-copy and 54 (1.5%) were duplicated BUSCOs (Fig. 3). All the evidence above suggested the high 
quality of genome assembly and annotation of S. curriculus.

Code availability
No new scripts or pipelines were developed for this study. Softwares for reads quality control, genome assembly 
and annotation have been described in the method part of this paper with parameters specified if applicable.
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