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Abstract

Given the growing interest in the metabolic heterogeneity of hepatocellular carci-

noma (HCC) and portal vein tumour thrombus (PVTT). This study comprehensively

analysed the metabolic heterogeneity of HCC, PVTT, and normal liver samples using

multi-omics combinations. A single-cell RNA sequencing dataset encompassing six

major cell types was obtained for integrated analysis. The optimal subtypes were

identified using cluster stratification and validated using spatial transcriptomics and

fluorescent multiplex immunohistochemistry. Then, a combined index based meta-

cluster was calculated to verify its prognostic significance using multi-omics data from

public cohorts. Our study first depicted the metabolic heterogeneity landscape of

non-malignant cells in HCC and PVTT at multiomics levels. The optimal subtypes

interpret the metabolic characteristics of PVTT formation and development. The

combined index provided effective predictions of prognosis and immunotherapy

responses. Patients with a higher combined index had a relatively poor prognosis (p

<0.001). We also found metabolism of polyamines was a key metabolic pathway

involved in conversion of metabolic heterogeneity in HCC and PVTT, and identified

ODC1 was significantly higher expressed in PVTT compared to normal tissue

(p =0.03). Our findings revealed both consistency and heterogeneity in the metabo-

lism of non-malignant cells in HCC and PVTT. The risk stratification based on cancer-

associated fibroblasts and myeloid cells conduce to predict prognosis and guide

Xiu-Ping Zhang, Wen-Bo Zou, Zhen-Qi Li, and Ze-Tao Yu contributed equally to this article.

Received: 27 April 2024 Revised: 14 July 2024 Accepted: 15 August 2024

DOI: 10.1111/cpr.13738

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2024 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

Cell Prolif. 2025;58:e13738. onlinelibrary.wiley.com/journal/13652184 1 of 17

https://doi.org/10.1111/cpr.13738

https://orcid.org/0000-0001-7485-5237
mailto:yuzhengao@zju.edu.cn
mailto:liurong301@126.com
mailto:hmg301@126.com
mailto:hmg301@126.com
http://creativecommons.org/licenses/by/4.0/
https://onlinelibrary.wiley.com/journal/13652184
https://doi.org/10.1111/cpr.13738


treatment. This offers new directions for understanding disease development and

immunotherapy responses.

1 | INTRODUCTION

Hepatocellular carcinoma (HCC) is increasingly threatening human life

and health and imposes a serious disease burden worldwide.1 Despite

advances in diagnostic and treatment strategies for HCC and its com-

plications, it has a poor prognosis and low long-term survival rate

compared to other malignant.2 Portal vein tumour thrombus (PVTT)

remains a common presentation in patients with HCC and is an impor-

tant risk factor for poor prognosis. Approximately 30%–50% of

patients diagnosed with HCC for the first time have concomitant

PVTT.3 Continuously evolving treatment approaches, including surgi-

cal resection, regional interventional therapy, chemotherapy, radio-

therapy, and combination therapy, have improved the long-term

survival of HCC patients with PVTT.4,5 However, the poor therapeutic

efficacy of treatments causes high mortality, and recurrence rates in

HCC patients with PVTT remain high level.6,7 Currently, the

metabolism-related signatures in HCC patients with PVTT are

expected to become key therapeutic targets and have attracted much

attention from researchers.8,9

The development of malignant tumours, including HCC, requires

plenty of nutrients to maintain rapid growth and escape immune

attack.10 The convergence of metabolic adaptations creates funda-

mental competition for nutrients required by cancer cells and other

non-malignant cells within the tumour microenvironment (TME).

Several studies have demonstrated that tumour initiation, progres-

sion, metastasis, and immune escape require metabolic reprogram-

ming of cancer cells.11,12 However, current progress in targeting

cancer metabolism has been limited. Strategies for targeting the

intrinsic metabolism of cancer cells often do not account for the

metabolism of non-malignant stromal and immune cells, which also

play pivotal roles in tumour progression and drug resistance.13,14

For example, cancer-associated fibroblasts (CAFs) and adipocytes

can support malignant cells by providing nutrients, such as alanine

and lipids within the TME.15 Tumour-associated macrophages

(TAMs), which are the most important non-malignant components

of the TME, affect tumour progression via multiple metabolic path-

ways and are considered novel therapeutic target.16 Additionally,

subtype transformation of CD8+ T cells can regulate the immune

response by partaking in metabolic reprogramming.17 An increasing

number of studies have revealed that metabolic reprogramming of

non-malignant cells can affect the immune status of malignant

tumours.18,19 Research has shown that TME and energy metabolic

pathways, such as fatty acid biosynthesis, are involved in regulating

the invasion and progression of PVTT.8 However, the corresponding

compositional changes and regulatory mechanisms of the TME in

PVTT still require further investigation. Therefore, studying meta-

bolic changes in non-malignant cells during the formation and devel-

opment of PVTT may be a new breakthrough.

Herein, we systematically depicted the first comprehensive meta-

bolic landscape of non-malignant cells and explored their metabolic

heterogeneity at single-cell, spatial, and transcriptomic levels in the

TME of HCC and PVTT. Notably, we identified and validated the key

roles of metabolism of polyamines and ODC1 in the conversion of

metabolic heterogeneity by combining spatial distribution analysis and

multiplex immunohistochemistry (mIHC) technology. It will also pro-

vide new prospects for identifying targeted metabolic pathways or

combined drugs for PVTT treatment.

2 | MATERIALS AND METHODS

2.1 | Study design and single-cell RNA sequencing
acquirements

We obtained and comprehensively analysed 68,129 single-cell RNA

(scRNA) sequencing data encompassing six major cell types (T, B, mye-

loid, endothelial cells, fibroblasts, and hepatocytes) from the

GSE149614 dataset in the Gene Expression Omnibus (GEO) database

(https://ncbi.nlm.nih.gov/geo/). The corresponding search term was

referred to as ‘Hepatocellular Carcinoma’, ‘portal vein tumor throm-

bus’, and ‘Single-cell’. These cells were isolated from 20 patient sam-

ples, including primary HCC (n = 10), PVTT (n = 2), and adjacent

normal liver tissues (n = 8). The flowchart of the present study is dis-

played in Figure 1A, B. Non-malignant cells of the scRNA sequencing

data were extracted from 20 samples. Subsequently, we clustered

CAFs, myeloid, T, B, and endothelial cells into optimal subtypes using

the cluster method. In addition, we retrieved five public RNA tran-

scriptomics sequencing datasets and the corresponding prognostic

information from the GEO database (GSE14520, GSE10143,

GSE76427, and GSE15654) and the ICGC database (ICGC-LIRI-JP), as

well as pan-cancer cohorts, including bulk RNA sequencing data of

32 cancers from the Xena database (https://xenabrowser.net). To vali-

date these results, we retrieved the spatial transcriptomics sequencing

cohort (n = 3) from a public repository and prospectively collected

five pairs of samples from the Chinese People's Liberation Army Gen-

eral Hospital for mIHC. The use of all human samples was approved

by the Institutional Ethics Committee of the Chinese People's Libera-

tion Army General Hospital. Informed consent was obtained from all

patients.

2.2 | Cell annotation of metabolic pathway score

Due to the sheer volume of dimensions, directly performing dimen-

sionality reduction on high-dimensional gene expression data is a chal-

lenge. Thus, we employed the scMetabolism package (version 2.1.0,
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https://github.com/wu-yc/scMetabolism) to calculate metabolic path-

way scores for all collected scRNA sequencing data and further imple-

mented REACTOME and KEGG analyses. We condensed the

expression information for thousands of genes into hundreds of path-

way activity scores. These scores provide a summary of the metabolic

activities, making it easier to perform dimensionality reduction and

subsequent biological interpretation. To ascertain the metabolic path-

way scores (n = 162) for bulk RNA sequencing data, we compiled

gene lists corresponding to identical numbers of metabolic pathways

from the MSiDB database. These gene lists were analysed using the

gene set variation analysis (GSVA) method. In the present study,

the metabolic pathway scores of all HCC-related samples and pan-

cancer cohorts were generated using this method.

2.3 | Metabolism clustering for TME cells and
tissue distribution preferences analysis

The Seurat package (version 5.1.0) was used to process the

scRNA sequencing data based on the metabolism assay. Adhering

to established protocols for scRNA sequencing data analysis, we

implemented normalization, principal component analysis (PCA),

and the FindNeighbors algorithm, followed by setting the resolu-

tion parameter of the FindClusters function at 0.3. This approach

enabled effective clustering of the major cell types into 3–7 dis-

tinct meta-clusters based on their metabolic pathway scores. Then,

to delineate the tissue distribution of meta-clusters, odds ratio

(OR) values were calculated to analyse the tissue distribution of

meta-clusters. For each meta-cluster i and tissue j, a 2 � 2 contin-

gency table was used, and Fisher's exact test was used to deter-

mine OR and p-values, which were also adjusted using the BH

method. ORs >1.5 or <0.5 indicated significant tissue

preferences.20

2.4 | Differential expression analysis of
metabolism pathway scores and genes

To elucidate the metabolic profile characteristics of each meta-

cluster, we isolated individual cell types for comprehensive analy-

sis. We established a p-value < 0.001 as the threshold to identify

significantly differential expression of metabolic pathway scores

among these cells. Next, we defined a minimum percentage (min.

pct) of 0.25 and a log-fold change (logfc) threshold of 0.25 for

differentially expressed genes (DEGs) in the RNA assay. A network

correlation was then constructed to examine the interrelationships

between the top 10 genes and the top 3 most specific metabolic

pathways in the distinct cell clusters using the network igraph

package (version 2.0.3).

2.5 | Signature of HCC-related features for
TME cells

To assess the features of these cells within various metabolic clusters,

we used pre-established gene lists for scoring. There are two primary

methods for gene set acquisition. First, in the analysed scRNA

sequencing cohort, we leveraged the original clustering method to

identify differential genes, selecting the top 50 genes as representa-

tive signatures of cell features. Second, we gathered extensive data

from public datasets. In this study, multiple public HCC datasets were

compiled. Specifically, a set of 43 genes list associated with HCC

prognosis was extracted from the MSiDB database (https://www.

gsea-msigdb.org/gsea/index.jsp) using the keyword ‘HCC,’ which was

detailed in the supplementary table. Additionally, we included an

immune-related gene set derived from a prior publication.21 The third

CAFs gene set was obtained from pan-cancer CAFs scRNA sequenc-

ing analysis and can be divided into four subtypes: pan.pCAF(prolifer-

ation), pan.dCAF(collagen), pan.myCAF(smooth muscle), and pan.iCAF

(inflammation).22,23 Finally, the fourth gene set related to macro-

phages was obtained from a previous publication.24

2.6 | SCENIC and cellular communication analysis

In this study, we employed the pySCENIC Docker package (version

0.9.1), a Python-based tool, to explore the gene regulatory networks

(GRNs) of transcription factors (TFs) across various cell types

categorized based on their metabolic pathway scores. We utilized two

gene-motif rankings—‘hg19-tss-centred-10 kb’ and ‘hg19-500 bp-

upstream’—from the RcisTarget database to identify transcription

start sites and GRNs within the scRNA sequencing data. Next, we

conducted a cellular communication analysis across different cell

types using the CellPhoneDB package (version 4.1.0) in Python. Cell-

PhoneDB is one of the most widely used software packages in Python

to explain communication between cells and can distinguish between

ligands and receptors and classify them into different categories, such

as chemokines, costimulatory, and coinhibitory. The corresponding

generation of TFs and ligand-receptor pairs for these cells was visual-

ized using the R software.

F IGURE 1 Metabolic Heterogeneity in the Tumour Microenvironment of HCC with PVTT. (A) and (B) Design flowcharts for studying
metabolic heterogeneity in PVTT. (C) Enhanced metabolic characteristics in LIHC compared with other tumours. (D) Single-cell cohort consisting
of six primary cell types. (E) Variations in metabolic pathway enrichment across different cell types. (F) UMAP plots illustrating metabolic scores
in B, T, Myeloid, Fibroblast, Endothelial, and Hepatocyte cells. (G) UMAP plots of metabolic scores in the normal, tumour, and PVTT samples.
(H) Heterogeneity of metabolic scores in different cells from various sources, based on an analysis of tissue-specific differences.

4 of 17 ZHANG ET AL.

https://github.com/wu-yc/scMetabolism
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp


F IGURE 2 Legend on next page.

ZHANG ET AL. 5 of 17



2.7 | Functional enrichment analysis

We subsequently performed functional enrichment analysis on each

metabolic cell type using a list of the top 150 expressed genes. It

incorporates Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) for functional assessments. A q-value <0.05

was established to delineate significant statistics. The functional

enrichment analysis results for various cell types were visualized using

the ggplot2 package (version 4.2.3).

2.8 | Prognosis performance analysis

All patients possessing comprehensive prognostic data were analysed

to ascertain the prognostic significance of each metabolic cell type

within TME. For each cell type, the top 50 genes were employed to

calculate the GSVA scores in bulk RNA sequencing data.

The cut-off values for these variables were established using the

‘survminer’ package (version 4.2.3), which facilitates the differentia-

tion of distinctive differences.

2.9 | Immunotherapy response prediction

To detect the predicted value of PVTT-related cell types for immuno-

therapy efficacy, we obtained a total of 40 HCC patients using RNA

sequencing data and Response Evaluation Criteria in Solid Tumours

(RECIST) response data, in which all the patients had been accepted

by the immune checkpoint inhibitor therapy (6 patients were

responders, 29 patients were non-responders, and others were not

estimated, GSE140901). Next, we collected information on patients

with other tumours to further check the predictive value of these cell

types, including urothelial cancer, melanoma, and bladder cancer.25–29

2.10 | Spatial analysis for expression of genes
and cells

Spatial RNA transcript data were obtained from a previous publi-

cation.30 In the present study, we specifically focused on HCC-2T,

HCC-2P, and HCC-2N as exploration samples. We employed two

methods to map the distribution of cell types in the spatial tissue.

First, the AUCell method was used to generate specific cell scores

based on the top 50 genes, which is consistent with the approach

used in bulk RNA sequencing analysis. Gene or meta-cluster

scores were visualized using the SPATA2 package. Second, Cell2-

location, a Bayesian model capable of deciphering fine-grained cell

types within spatial transcriptomic data and constructing compre-

hensive cellular maps of different tissues, was employed to illus-

trate the co-expression of genes and cells. We set the

Cell2location model, which was trained by the complete scRNA

sequencing dataset including six main cell types previously utilized

in our analysis, to visualize the spatial distribution of specific cell

types and genes.

2.11 | Fluorescent mIHC and tissue imaging

Fifteen samples from five paired PVTT and primary cancer and

normal tissues from HCC patients, used as experimental and con-

trol samples, respectively, were processed as formalin-fixed

paraffin-embedded sections. The tissues were sectioned at a thick-

ness of 2 μm. The sections were then baked at 65�C for 1 h, fol-

lowed by deparaffinization in xylene for 10 min, which was

repeated three times. Rehydration was performed using absolute

ethyl alcohol for 5 min (repeated twice), 95% ethyl alcohol for

5 min, and 75% ethyl alcohol for 2 min. Subsequently, the slides

were rinsed three times with distilled water. Heat-induced epitope

retrieval was conducted in a microwave oven, and the slides were

immersed in boiling EDTA buffer (Alpha X Bio, Beijing, China) for

15 min. Blocking was performed using an antibody diluent (Alpha

X Bio, Beijing, China).

The mIHC staining process involved the use of the following pri-

mary antibodies: CD8 (ab237709, Abcam, Cambridge, UK), SMA

(AF1032, Affinity Biosciences, China), and ODC1 (28728-1-AP, Pro-

teintech, USA), each incubated for 1 h at 37�C. This was followed by a

10-min incubation at 37�C with Alpha X Polymer HRP Ms + Rb

(Alpha X Bio, Beijing, China). Visualization was facilitated using an

Alpha X 7-Colour IHC Kit (Alpha X Bio, Beijing, China). Primary anti-

bodies were linked to specific fluorophores: CD8 with AlphaTSA

520, SMA with AlphaTSA 570, and ODC1 with AlphaTSA 620. After

staining, heat-induced epitope retrieval was repeated to remove all

antibodies, including primary and secondary antibodies. Finally, the

slides were counterstained with DAPI for 5 min and mounted with

F IGURE 2 Tissue metabolic heterogeneity in fibroblasts. (A) Clustering of metabolic scores in fibroblasts from different sources. (B) Specific
metabolic pathways in fibroblast cell clusters with different metabolic scores. (C) Correlation analysis between the top 10 genes and the top
3 pathways in fibroblast cell clusters (clusters) with different metabolic score clustering. (D) Differential expression of genes in key cellular

pathways across various fibroblast metabolic subgroups. (E) Analysis of the relationship between fibroblast cell clusters with different metabolic
scores and existing types of fibroblast cells. (F) Differences between fibroblast cell clusters with different metabolic scores and the main ACTA2+
and COL1A1+ fibroblast cells. (G) Transcription factor analysis (TF) in fibroblast cell clusters with different metabolic scores. (H) Tissue propensity
analysis of fibroblast cell clusters with different metabolic classifications. (I) Cell communication analysis between fibroblast cell clusters with
different metabolic scores and other cells in PVTT samples. (J) and (K) Activation levels of different metabolic fibroblast cell types in the same
PVTT sample, scored using AUCcell; (J) Spatial visualization of activation levels in the sample; (K) Differences in activation levels among the four
cell types.
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Antifade Mounting Medium (I0052; NobleRyder, Beijing, China). Imag-

ing was performed using an Axioscan7 (ZEISS, Germany).

2.12 | Statistical analysis

The primary statistical methods employed in this study are described

in detail in the corresponding methodology section. Routine statistical

analyses, such as Spearman's correlation analysis and non-parametric

tests, were conducted for the cell score or metabolism score in each

subgroup. For PVTT occurrence in HCC samples, receiver operating

characteristic (ROC) analysis was used to evaluate the diagnostic

values of the combined cell signatures. Cox regression analysis was

performed to investigate the prognosis of each cell type. Logistic

regression analysis was used to construct the combined-index based

meta-cluster. The main statistical software used in this study included

R version 4.2.3 and Python 3.9. Unless stated otherwise, a p value of

0.05 was considered the threshold for statistical significance.

3 | RESULTS

3.1 | Metabolic heterogeneity in the
microenvironment of HCC and PVTT

Initially, we calculated the KEGG metabolic pathways in the pan-

cancer cohorts of TCGA by GSEA method, the results showed that

HCC displayed markedly distinct metabolic profiles compared to other

cohorts in the pan-cancer cohort (Figure 1C). Subsequently, to

observe the metabolic status of TME cells in HCC with PVTT, we

annotated all single cells, categorizing them into B cells, T cells, CAFs,

endothelial cells, myeloid cells, and hepatocytes (Figure 1D), in the

20 samples from 10 HCC and two PVTT patients using 162 metabolic

pathways by the scMetabolism tool. Next, we observed significant dif-

ferences in metabolic pathway scores among the six primary cell types

(Supplemental Table S1). Metabolic diversity among non-malignant

cells in HCC, particularly in CAFs and myeloid cells, relative to hepato-

cytes, is shown in Figure 1E. The Uniform Manifold Approximation

and Projection (UMAP) plot further corroborated this metabolic het-

erogeneity (Figure 1F). Intriguingly, cells from PVTT possessed distinct

metabolic profiles compared with those from normal and tumour tis-

sues (Figure 1G and Supplemental Table S2). The markedly different

metabolic pathway activations in non-malignant cells across HCC,

PVTT, and normal tissues are shown in Figure 1H and Supplemental

Table S3. The metabolic UMAP for each patient is shown in Supple-

mentary Figure S1A. Building on this observation, we categorized all

non-malignant cells into distinct metabolic meta-clusters, as depicted

in Supplementary Figure S1B. The bar plot for an individual sample of

these meta-clusters is illustrated in Supplementary Figure S1C. In

summary, our initial analysis revealed significant metabolic heteroge-

neity among non-malignant cells within the HCC microenvironment,

particularly concerning PVTT, warranting further investigation.

3.2 | PVTT tissue-specific metabolic CAFs exhibit
strong cell communications

In this study, we analysed 2199 CAFs derived from HCC, PVTT,

and normal tissues (Supplemental Table S4 and Supplementary

Figure S2A) and illustrated them in the UMAP plot (Figure 2A).

Based on their metabolic pathway scores, we divided CAFs into

four meta-clusters (Fib-C0, C1, C2, and C3). The top three meta-

bolic pathways with the highest enrichment in each cell type are

shown in Figure 2B. Notably, metabolism of polyamines was

prominently active in both Fib-C0 and C3 meta-clusters. By corre-

lating the dominant metabolic pathways with the key genes in

each meta-cluster, we constructed a network of metabolic path-

ways and top DEGs (Supplementary Figure S2B) to elucidate the

potential influence of metabolic processes on transition of the

TME of HCC (Figure 2C). Compared to Fib-C0, C1, and C2 meta-

cluster, C3 meta-cluster exhibited higher expression of cancer-

related pathway genes, including MMPs, TGF-β, and collagen path-

way genes (Figure 2D). Furthermore, using the established CAFs

signatures, we observed that Fib-C3 meta-cluster had elevated

proliferation scores (pan.pCAF) and collagen scores (pan.dCAF), as

shown in Figure 2E. Additionally, Fib-C3 meta-cluster was charac-

terized by a higher presence of COL1A1+ CAFs (Figure 2F,

p <0.001). TF analysis revealed several distinct TFs in the Fib-C3

meta-cluster, notably IRF2 and ELK4 (Figure 2G). Tissue prefer-

ence analysis indicated that Fib-C3 meta-cluster had higher OR

values in PVTT, whereas Fib-C2 meta-cluster was more prevalent

in HCC tissues and Fib-C1 meta-cluster in normal tissues

(Figure 2H and Supplemental Table S5). Moreover, Fib-C3 meta-

cluster demonstrated increased cell communication links within

PVTT tissue (Figure 2I, Supplementary Figure S2C, D). A PVTT

spatial sample was used to detect the distribution of fibroblast

F IGURE 3 Metabolic heterogeneity analysis of Myeloid cells. (A) Classification of metabolic scores in myeloid cells from various sources.
(B) Correlation analysis between the five metabolically classified myeloid cell types and common macrophages. (C) Detection of hepatic activity in

myeloid cells using five different metabolic classifications. (D) Top three activated metabolic pathways and the top 10 genes in myeloid cells
across 5 metabolic classifications. (E) Differences in inflammation, polarization scoring, and other functional scores in myeloid cells across the five
metabolic classifications. (F) Expression of M2-like associated genes in Myeloid cells across five metabolic classifications (Heatmap). (G) Tissue
propensity analysis of myeloid cells according to the five metabolic classifications. (H) Differences in immune checkpoint expression in the four
metabolically classified myeloid cell types in PVTT samples (heatmap). (I) Differences in transcription factor activation in four metabolically
classified myeloid cell types in PVTT samples. (J) Changes in cell communication intensity between four metabolically classified myeloid cell types
and other cells in the PVTT samples. (K) Expression of M-C0, M-C3, C1QC, and CD68 in three paired spatial transcriptomic samples.
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cells (FAP+ cells), which confirmed that the top 50 gene signa-

tures of Fib-C3 meta-cluster were higher than those of the other

meta-clusters (Figure 2J, K).

3.3 | PVTT tissue-specific myeloid metabolism
promotes the M2 polarization

For myeloid cells, we obtained and analysed a total of 14,990 individ-

ual cells. Using the metabolic characteristics (Supplementary

Table S6), we divided them into five groups based on the significantly

different numbers of cells for the Myeloid-C0, C1, C2, C3, and C4

meta-clusters (Figure 3A). Compared with the original cell annotation

features, we observed significant differences among these clusters.

The Myeloid-C2, C3, and C4 meta-clusters had excessive patient-

specific macrophages, which related with patient's genetic

background,24,31 whereas Myeloid-C0 and C1 meta-clusters had

monocyte-derived macrophages (Figure 3B). Notably, Myeloid-C4

meta-cluster exhibited a high hepatic score (Figure 3C), suggesting a

diverse macrophage origin. We further analysed the top specific meta-

bolic pathways in different subgroups and found that Myeloid-C2, C3,

and C4 meta-clusters also enriched similar pathways, whereas the

DEGs were completely different (Figure 3D). Within the previous sig-

natures for myeloid features, we found that the C3 meta-cluster had a

high M2 polarization score and immune escape ability (Figure 3E). To

check the expression of M2-like genes in each cluster, we found that

Myeloid-C2 and C3 meta-cluster had more corresponding genes such

as C1QA, C1QB, and C2QC (Figure 3F). For tissue preference, we

found that Myeloid-C0 and C3 meta-cluster were higher in the PVTT

tissue, Myeloid-C2 and C4 meta-cluster were higher in HCC tissue,

and only Myeloid-C1 meta-cluster was higher in the normal tissue

(Figure 3G and Supplemental Table S7). In the PVTT samples, CD274

was highly expressed in Myeloid-C3 meta-cluster compared with the

other meta-clusters (Figure 3H). In addition, we detected the activity

of TF for each meta-cluster and found that CEBPD was the only TF in

the Myeloid-C3 meta-cluster (Figure 3I). The cell–cell communication

of myeloid cell metabolic meta-cluster with other main cell types from

different sources is listed in Supplemental Figure S3. Similar to Fib-C3

meta-cluster, Myeloid-C0 and C3 meta-cluster in PVTT had more links

with other main cell types (Figure 3J). A patient with three paired spa-

tial samples in the normal, HCC, and PVTT was used to detect the dis-

tribution of myeloid metabolism cluster cells (CD68+ cells). We

annotated the Myeloid-C0, C3, and two marker genes, CD68 and

C1QC, in the spatial cells and found that PVTT had high expression of

these cell activated scores and genes (Figure 3K).

3.4 | Metabolic heterogeneity of T cells exhibit
different immune activities

Similar to the CAFs and myeloid cells, metabolic meta-cluster method

was performed on T cells, which generated eight metabolic meta-

clusters (Figure 4A and Supplementary Table S8). The results revealed

substantial variations in the number of cells in different meta-cluster

across the different tissue types (Figure 4B and Supplementary

Table S9). Organizational bias analysis indicated that T-C3 meta-

cluster labelled with metabolism of polyamines, and T-C7 meta-cluster

labelled with sulphur metabolism demonstrated a pronounced bias

towards PVTT (Figure 4C). Notably, the T-C7 meta-cluster showed

enhanced cellular communication in the PVTT samples, markedly sur-

passing the other meta-clusters (Figure 4D). Furthermore, metabolic

pathway and gene network analyses highlighted distinct

metabolic features of T-C3 and T-C7 meta-cluster (Figure 4E). The

networks of meta-clusters is detailed in Supplementary Figure S4A.

Then, we performed differential expression analyses of immune genes

(Supplementary Table S10) between T-C3 and T-C7 meta-cluster and

found that T-C7 meta-cluster lacked most of the co-inhibitors, check-

points, and effective and exhausted T-related genes, which are pre-

sent in T-C3 meta-cluster (Figure 4F). Metabolic clustering also

correlated significantly with T cell annotation classes, exemplified by

T-C7 meta-cluster marked downregulation in cytotoxicity, NK cell

characteristics, and effector T cells, and upregulation in regulatory T

cells, tissue-resident memory T cells, and proliferative CD4 and CD8+

T cells (Figure 4G). Additionally, TF analysis also showed differences

in the C3 and C7 meta-clusters (Figure 4H). Finally, cellphone analysis

showed that ligand-receptors of T cell meta-clusters with other cells

indicated marked disparities in PVTT samples (Supplementary

Figure S4B, C).

3.5 | Metabolic phenotypes of B cell and
endothelial cell show metabolism source
heterogeneity

We conducted metabolic clustering for both B and endothelial cells

using identical resolution parameters, as shown in Figure 4I and

F IGURE 4 Analysis of metabolic heterogeneity in T, B, and endothelial cells. (A) Classification of metabolic scores of T-cells from various
sample sources. (B) Differences in cell numbers of the eight metabolically classified T cell types across different samples. (C) Tissue propensity
analysis of the eight metabolic classifications of T cells. (D) Cell communication analysis between eight metabolically classified T-cell types and

other cells. (E) Correlation analysis of the top three metabolic pathways and top 10 genes in T-C3 and T-C7 cells. (F) Differential expression
analysis of major immune genes in eight metabolically classified T-cell types. (G) Differential expression of major cell-type scores in eight
metabolic classifications of T cells (symbols indicate significant differences between groups). (H) Key activated transcription factors in T-C3 and
T-C7 cells. (I) Classification of metabolic scores in B and endothelial cells from various sample sources. (J) Tissue source propensity analysis of
metabolic classifications in B and endothelial cells. (K) Cell communication analysis of B and endothelial cells in different metabolic states with
other cells. (L) Differences in transcription factor activation among the four metabolic states of the B cells. (M) Transcription factor differences in
the three metabolic states of endothelial cells.
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Supplementary Table S11. Regarding their origin, we observed that

B-C3 meta-cluster exhibited a predilection for PVTT, whereas cells

expressing high levels in the tumour comprised of B-C1, B-C2, and

End-C2 meta-cluster (Figure 4J and Supplementary Table S12). Addi-

tionally, analysis of cellular communication indicated marked disparities

among B and endothelial meta-cluster with others (Figure 4K). Further-

more, as illustrated in Figure 4L, M, the TF analysis of post-clustering

revealed substantial differences between B cells and epithelial cells.

3.6 | Prognostic implications of TME metabolic
subtypes

To check the prognosis value of the TME metabolic subtype in HCC

with PVTT, we firstly sought 43 HCC prognosis signatures from

MSigDB (Supplementary Table S13) and subsequently examined the

associations between these HCC prognosis scores and metabolic sub-

type scores in six bulk RNA sequencing data of HCC (Figure 5A). All

marked genes of these meta-clusters of non-malignant cells in HCC are

listed in Supplementary Table S14. Remarkably, in the context of high

expression in PVTT, T-C3, T-C7, Myeloid-C0, and Fib-C3 meta-clusters

showed significant alignment with these adverse HCC-related signa-

tures. Conversely, Myeloid-C2, Myeloid-C4, and most T-cell meta-

clusters displayed minimal correlation with these signatures (Figure 5A).

A meta-analysis was performed to evaluate the prognostic implications

of these meta-clusters in HCC across multiple cohorts. Regarding

recurrence-free survival (RFS), Fib-C3, T-C3, and T-C7 meta-clusters

were identified as contributors to HCC progression (Figure 5B and Sup-

plementary Table S15). However, for overall survival (OS), only Fib-C3

meta-cluster demonstrated a notable negative impact (Figure 5C and

Supplementary Table S16). Intriguingly, by focusing on cell subtypes

with high expression in PVTT including Fib-C3, Myeloid-C0, Myeloid-

C3, T-C3, and T-C7 meta-clusters, we discerned a distinctive influence

on PVTT occurrence using logistic regression analysis (AUC, 0.722;

95%CI = 0.580–0.864, Figure 5D). This combined index also provided

effective predictions for the OS and RFS of HCC patients in the TCGA-

LIHC cohort (Figure 5E, F p <0.001).

3.7 | Evaluating of metabolic subtypes for
immunotherapeutic response in cancers

To investigate the role of metabolically active cells and their response

to immunotherapy in HCC patients with PVTT treated with immune

checkpoint inhibitors, we employed logistic regression model to exam-

ine the relationship between meta-clusters (Fib-C3, Myeloid-C0,

Myeloid-C3, T-C3, and T-C7) and RECIST response outcomes. This

revealed that an increased score of cell metabolic phenotype genes

correlates with a change in immunotherapy response in HCC patients

(Figure 5G). Notably, the composite combined index of meta-clusters

in PVTT demonstrated significantly differential expression between

the response (RE) and non-response (non-RE) group (Figure 5H). The

ROC analysis indicated that the area under the curve (AUC) of

the combined index to predict the immunotherapy response was

0.822 (95%CI 0.599–1.000) (Figure 5I). Furthermore, we extended

our analysis to evaluate the relevance of these metabolically active

PVTT cells in other cancers treated with immunotherapy, such as met-

astatic melanoma, urothelial carcinoma, and bladder cancer, as

depicted in Supplementary Figure S5A. ROC analysis corroborated

the similar predictive efficacy of the combined index, with a range of

0.65–0.71, as detailed in Supplementary Figure S5B. Beyond meta-

bolic pathway characterization, our investigation encompassed GO

function analysis and KEGG pathway analysis of the predominant

genes in these single cell meta-clusters. We identified several com-

mon tumour-associated pathways in Fib-C3, T-C3, and Myeloid-C3

meta-clusters, including glycolysis/gluconeogenesis and amino acid

biosynthesis, as indicated in Figure 5J and Supplementary

Figure S5C, D.

3.8 | Co-expression of metabolism of polyamines
in TME cells of PVTT promotes the occurrence
of PVTT

To identify common highly expressed metabolic pathways in TME

cells of PVTT samples, we employed co-expression analysis for these

meta-clusters. The top three metabolic pathways were selected

among the five cell types (Fib-C3, Myeloid-C0, Myeloid-C3, T-C3, and

T-C7 meta-clusters). Using Venn diagrams, we observed similarities in

the metabolic pathway activation across these meta-clusters. For

instance, metabolism of polyamines was highly expressed in Fib-C3,

Myeloid-C0, and Myeloid-C3 meta-clusters, whereas oxidative phos-

phorylation was predominant in Myeloid-C0 and T-C3 meta-clusters.

Additionally, sulphur metabolism was notably expressed in T-C7 and

Fib-C3 meta-clusters (Figure 6A). Focusing on the key gene Ornithine

Decarboxylase 1 (ODC1) in the metabolism of polyamines pathway in

Fib-C3 meta-clusters, we conducted a spatial transcriptomics

sequencing for further validation. We examined the spatial

F IGURE 5 Clinical prognosis and therapeutic prediction value analysis of different metabolic classifications in non-TME cells. (A) Correlation
analysis between all metabolic classifications and common malignant tumour pathways in six public datasets. (B) Analysis of all metabolic
classifications with overall survival (OS) in liver cancer across the four public datasets. (C) Analysis of all metabolic classifications with recurrence-
free survival (RFS) in liver cancer across the six public datasets. (D) ROC analysis of the combined scoring of cells with high metabolic expression
in PVTT for predicting PVTT occurrence (from TCGA-LIHC). (E) Prediction of liver cancer RFS using the combined scoring of cells with high
metabolic expression in PVTT. (F) Prediction of liver cancer OS using the combined scoring of cells with high metabolic expression in PVTT.
(G) Prediction of immune response in liver cancer patients who underwent immunotherapy based on all metabolic classification scores.
(H) Expression differences in the combined scoring of cells with high metabolic expression in PVTT between liver cancer patients with and
without an immune response. (I) ROC analysis for predicting the immune response in liver cancer using combined scoring of cells with high
metabolic expression in PVTT. (J) Functional enrichment scoring of key PVTT cells with high metabolic expression levels.
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distribution of ODC1 in spatial transcriptome sequencing of PVTT

and its co-expression with CAFs and hepatocyte cells. In tissue sam-

ples, the positivity rate of ODC1 in the CAFs of PVTT was signifi-

cantly higher than that in HCC and normal samples (Figure 6B). In

contrast, the positivity rate of ODC1 in PVTT hepatocytes was similar

to that in HCC samples and higher than that in normal samples

(Figure 6B). Subsequently, we performed fluorescent mIHC on 15 sam-

ples from five paired PVTT-HCC-normal samples. These results fur-

ther confirm our findings (Figure 6C). Paired t-tests revealed

statistically significant differences in the expression of ODC1+ fibro-

blasts in normal, HCC, and PVTT samples (Figure 6D, 35% vs. 21%

vs. 17%, p <0.05). Moreover, we observed that ODC1 expression was

significantly higher in PVTT and HCC tissues than in normal tissues

(Figure 6E, F), and identified a negative correlation between ODC1

and CD8A (Figure 6G).

4 | DISCUSSION

The utility of various sequencing technologies for understanding the

underlying mechanisms of tumorigenesis has been revealed and vali-

dated.32 Accumulating evidence has shown that the metabolic abnor-

mality could contribute to the initiation and progression of malignant

tumours including HCC.33,34 Understanding the extent and detailed

metabolic heterogeneity of HCC and PVTT is crucial because it could

predict outcomes in HCC patients with PVTT and guide therapeutic

strategies. Our study is the first to present comprehensive metabolic

landscape analysis of non-malignant cells in HCC and PVTT through

multi-omics analysis of large-sample, multicenter sequencing data.

Our findings deepen the knowledge of non-malignant cells within the

TME and extend the understanding of metabolic landscape of HCC

and PVTT.

Poor prognosis and low response to treatment with PVTT remain

common challenges.35–37 Few studies have demonstrated the meta-

bolic heterogeneity in HCC and PVTT, which may pose pivotal chal-

lenges for developing effective treatment strategies. For this status,

we explored six major cells including T, B, myeloid, endothelial cells,

CAFs, and hepatocytes in the TME to reveal the metabolic heteroge-

neity among HCC, PVTT, and normal liver tissues. We found signifi-

cant differences in the metabolic pathway scores among these six

primary cell types, such as riboflavin, D-d-arginine, and d-ornithine

metabolism and so forth, which have been verified to be widely

involved in tumour metabolism and affect the malignant progression

of tumours.38–40 Next, we depicted the different metabolic land-

scapes within non-malignant cells in HCC, PVTT, and normal liver

tissues. Compared to HCC and normal tissues, PVTT had distinct met-

abolic landscape, particularly in CAFs and T cells. This showed a signif-

icant conversion of metabolic heterogeneity among the non-

malignant PVTT cells.

Previous studies have demonstrated that CAFs can modulate can-

cer cell growth, progression, and evasion from cancer therapies and

act as active participants in the complex metabolism of tumours.15,22

Our study first categorized CAFs into four meta-clusters (Fib-C0, C1,

C2, and C3), and revealed the top three metabolic pathways with the

highest expression in each cluster. Compared to other clusters, we

found that cluster Fib-C3 exhibited a higher correlation with tumour

biology, which was also verified using spatial transcriptomics sequenc-

ing data. These findings demonstrate that CAFs have dynamic plastic-

ity during HCC and PVTT progression, and cluster Fib-C3 indicates

poor prognosis and therapeutic efficacy, which is in accordance with

previous research. It is a noteworthy strategy to make use of CAFs

plasticity for the conversion of different clusters to affect the compo-

nent in the TME, and finally improve the therapeutic efficiency.

Myeloid cells are the most abundant components in the TME,

where they exert a variety of functions including tumour metabolism

and immunosuppression.41,42 The myeloid cells are composed of

many different cell types, including monocytes, macrophages, den-

dritic cells and granulocytes.43 Among these cell types, TAMs are con-

sidered pivotal components that contribute to tumour proliferation

and progression.43–45 The results showed that Myeloid-C2, C3, and

meta-clusters had excessive patient-specific macrophages,

and Myeloid-C0 and C3 meta-clusters were involved in the metabo-

lism of polyamines. In addition, we found that the Myeloid-C3 meta-

cluster had a high anti-inflammatory (M2) polarization score. Previous

studies have demonstrated that TAMs can alter polarization into pro-

inflammatory (M1) and M2 phenotypes, depending on the TME.46 M2

polarization of TAMs promotes the proliferation and metastasis of

various tumours47,48 and can exert immunosuppressive effects to

reduce the efficacy of immunotherapy.49 Recent studies using scRNA

sequencing analysis have comprehensively delineated TAMs hetero-

geneity in HCC.50,51 Our study also found that Myeloid-C0 and C3

meta-cluster were enriched in HCC patients with PVTT. Therefore,

For Myeloid-C3 meta-cluster PVTT, the response to immunotherapy

is relatively poor. Our findings had a certain ability to guide the imple-

mentation of classification and treatment strategies for PVTT

patients.

A growing body of research on metabolic abnormalities of T cells

has demonstrated obvious heterogeneity of immune cell distribution

in HCC.52 For instance, it has been reported that increased glycolytic

metabolism is related to resistance to immunotherapy.53 Several

F IGURE 6 Discovery and validation of co-expressed metabolic pathways in PVTT non-TME cells. (A) Cross-analysis of metabolic pathways in
different high-expression cells in the PVTT (Venn diagram). (B) Cell2location show the spatial co-expression of metabolism of the key polyamine
enzyme ODC1 with Fibroblast and hepatocyte cells in spatial samples. (C) mIHC validation of α-SMA/ODC1 co-expression in normal, tumour, and
PVTT samples. (D) Differential analysis of α-SMA+/ODC1+ cells in normal, tumour, and PVTT samples. (E) Co-expression analysis of ODC1 and
CD8T cells in normal, tumour, and PVTT samples. (F) Differential expression analysis of ODC1+ cells in normal, tumour, and PVTT samples.
(G) Correlation analysis of ODC1 and CD8A in normal, tumour, and PVTT samples.
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recent studies have demonstrated that targeting specific aspects of

tumour-intrinsic metabolism, such as the hexosamine biosynthesis

pathway or glutamine metabolism, can foster an immune response

and sensitize tumours to checkpoint blockade.17,54 In our study, we

found that T-C3 meta-cluster labelled with metabolism of polyamines

and T-C7 meta-cluster labelled with sulphur metabolism

demonstrated a pronounced bias towards PVTT. Notably, the T-C7

meta-cluster showed enhanced cellular communication. We also

found that T-C7 meta-cluster lacked most co-inhibitors, checkpoints,

and effective and exhausted T cell-related genes. This could also

explain the relatively poor effectiveness of immunotherapy in HCC

patients with PVTT.

Remarkably, Fib-C3, Myeloid-M0, Myeloid-M3, T-C3, and T-C7

meta-clusters were significantly enriched in PVTT and were signifi-

cantly aligned with adverse liver cancer signatures. Highly enriched

Fib-C3, T-C3, and T-C7 meta-clusters indicated shorter RFS in

patients with HCC. However, only Fibroblast-C3 meta-cluster demon-

strated a notable negative impact on the OS of patients with HCC.

Therefore, to facilitate the clinical usage of metabolic clusters, we

integrated five meta-clusters, Fib-C3, Myeloid-M0, Myeloid-M3,

T-C3, and T-C7, to develop a combined index. This combined index

discerned a distinctive influence on PVTT occurrence and provided

effective predictions for OS and RFS in HCC patients. Cheng et al.

study constructed a CT-based radiomics nomogram to predict OS of

HCC patients with PVTT, the C-index for the radiomics model was

0.759 in the training cohort and 0.730 in the validation cohort. In the

present study, the C-index of our risk score was higher than Cheng

et al.'s model.55

Given the recent establishment of cancer immunotherapy, includ-

ing the use of blocking antibodies against immune checkpoint path-

ways, several studies have begun to establish a relationship between

tumour-intrinsic metabolism and successful immunotherapy.56 In the

present study, we revealed that the combined index of metabolic cells

in PVTT was significantly different between responder and non-

responder groups. Patients with a high combined-index exhibited a

sensitivity response to immunotherapy. This implies a combined index

that might guide immunotherapy for HCC patients with PVTT. How-

ever, given that the survival analysis, patients often have poor progno-

ses without immunotherapy, and patients can benefit significantly

with immunotherapy.

As previously mentioned, metabolism of polyamines is considered

a key metabolic pathway involved in the conversion of metabolic het-

erogeneity in HCC and PVTT. Thus, we detected and validated a key

gene, ODC1, in the metabolism of polyamines pathway by spatial dis-

tribution analysis and mIHC technology. ODC1, a key rate-limiting

enzyme, is a poor prognostic indicator for HCC and other tumours.57

In line with the results of a previous study, ODC1 expression was sig-

nificantly higher in HCC patients with PVTT.58 We also found a nega-

tive correlation between ODC1 and CD8A expression. At present,

few researchers explored the role of ODC1 in the tumour immuno-

therapy response. Thus, by conducting further investigations of

ODC1, it is hopeful target to enhance the effectiveness of

immunotherapy.

Despite its comparative advantages, our study has certain limita-

tions. First, the present study deeply explored the impact of metabolic

heterogeneity on the development and therapeutic strategy of PVTT,

but there is a lack of research on the impact of metabolites on PVTT

and the interpretation of spatial level. In addition, some of the data

used in this study comes from public databases; therefore, selection

bias is inevitable. Therefore, future research efforts should be devoted

to confirming the applicability and efficacy of the cluster approach

and the combined index using more extensive patient cohorts.

In conclusion, this study for the first time conducted a compre-

hensive analysis of metabolic heterogeneity in non-malignant cells at

the multi-omics level. Our study reveals both consistency and hetero-

geneity in the metabolism of non-malignant cells in HCC patients with

PVTT. The risk stratification based on CAFs and Myeloid cells con-

duces to predict prognosis and guide treatment. We also explore the

key role of polyamine and sulphur metabolism in immune cell func-

tion. These findings offer new directions for understanding PVTT

development and immunotherapy response.
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