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Abstract
Acute ischemic stroke (AIS) is a severe disorder characterized by complex pathophysiological processes, which can lead 
to disability and death. This study aimed to determine necroptosis-associated genes in acute ischemic stroke (AIS) and to 
investigate their potential as diagnostic and therapeutic targets for AIS. Expression profiling data were acquired from the 
Gene Expression Omnibus database, and necroptosis-associated genes were retrieved from GeneCards. The differentially 
expressed genes (DEGs) and necroptosis-related genes were intersected to obtain the necroptosis-related DEGs (NRDEGs) 
in AIS. In AIS, a total of 76 genes associated with necroptosis (referred to as NRDEGs) were identified. Enrichment analysis 
of these genes revealed that they were primarily enriched in pathways known to induce necroptosis. Using weighted gene co-
expression network analysis (WGCNA), five co-expression modules consisting of NRDEGs were identified, along with two 
modules that exhibited a strong correlation with AIS. Protein–protein interaction (PPI) analysis resulted in the identification 
of 20 hub genes. The Least absolute shrinkage and selection operator (LASSO) regression model demonstrated promising 
potential for diagnostic prediction. The receiver operating characteristic (ROC) curve validated the diagnostic model and 
selected nine characteristic genes that exhibited statistically significant differences (p < 0.05). By employing consensus 
clustering, distinct patterns of necroptosis were identified using these nine signature genes. The results were validated by 
quantitative PCR (qPCR) in venous blood from patients with AIS and healthy controls and HT22 cells, as well as external 
datasets. Furthermore, the analyzed ceRNA network included nine lncRNAs, six miRNAs, and three mRNAs. Overall, 
this study offers novel insights into the molecular mechanisms underlying NRDEGs in AIS. The findings provide valuable 
evidence and contribute to our understanding of the disease.
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model · Competitive endogenous RNA

Introduction

Stroke is a significant global health issue, leading to dis-
ability in adults and causing a substantial number of deaths 
worldwide (Johnson et al. 2019). It poses a considerable bur-
den at both individual and societal levels. An episode of cer-
ebral ischemia arises when a clot or thrombus obstructs the 
blood supply to the brain, leading to an acute ischemic stroke 
(AIS). During thrombolytic therapy for AIS, ischemia/rep-
erfusion (I/R) injury is likely to occur. I/R injury triggers 
oxidative stress and inflammation responses, leading to fur-
ther neuronal damage (Nagy and Nardai 2017). Currently, 
AIS can be effectively managed with intravenous thromboly-
sis and mechanical thrombectomy to restore blood flow in 
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occluded vessels. However, the prognosis heavily relies on 
the timely administration of treatment. Despite the effective-
ness of current treatment options in preventing long-term 
disability in AIS patients, accurate prognostic prediction 
remains challenging. Existing models for prognostic predic-
tion in AIS patients often lack reliable predictive capabili-
ties (Fahey et al. 2018; Quinn et al. 2017). The diagnosis of 
AIS primarily relies on neuroimaging techniques due to the 
absence of efficient, rapid, and accurate diagnostic biomark-
ers. Early diagnosis and successful treatment are crucial for 
reducing mortality rates and improving outcomes in AIS. 
Therefore, there is an urgent need for systematic studies to 
understand the biological processes involved in AIS.

Cell death plays a crucial role in regulating infarction 
during ischemia and I/R injury. Neurons in ischemic stroke 
undergo rapid necrotic cell death (Xing et al. 2012). There-
fore, our understanding of the mechanisms underlying neu-
ronal death in ischemic stroke is vital as it can provide valu-
able insights into potential targets that can be controlled. 
Necroptosis is a recently identified pathway of programmed 
cell death that can be induced by the activation of inflam-
matory receptors such as tumor necrosis factor receptor 1, 
toll-like receptor (TLR), and Fas/CD95 (Vercammen et al. 
1998a, 1998b; Holler et al. 2000; Matsumura et al. 2000; 
Liao et al. 2020). This process relies on the activation of 
receptor-interacting protein kinase (RIPK)1 through its 
interaction with RIPK3, resulting in the phosphorylation of 
the pseudokinase mixed lineage kinase domain-like protein 
(MLKL) by RIPK3 (Galluzzi et al. 2014; de Almagro and 
Vucic 2015). In the context of ischemia and I/R injury, neu-
rons experience rapid depletion of adenosine triphosphate 
(ATP) due to the sudden lack of oxygen and glucose caused 
by ischemia. This depletion results in plasma membrane 
depolarization, which triggers the secretion of glutamate 
and subsequent induction of N-methyl-d-aspartate (NDMA) 
receptors (Vacher et al. 2008). The excitotoxicity caused by 
glutamate and lactic acidosis further activates RIPK1 (Liao 
et al. 2020; Zhan et al. 2019). When caspase-8 is inhibited, 
RIPK1 is recruited via its receptor-interacting protein (RIP) 
homotypic interaction motif (RHIM) domain and phospho-
rylates RIPK3, forming complex IIb (Grootjans et al. 2017). 
Ultimately, MLKL is phosphorylated and polymerized, lead-
ing to the induction of necroptosis (Grootjans et al. 2017). 
Previous research has shown that intracerebral injection of 
necrostatin-1 (Nec-1), a specific inhibitor of RIPK1, can 
block ischemic stroke-induced neuronal necroptosis and 
attenuate delayed ischemic brain injury in mice (Degterev 
et al. 2005). Additionally, various investigations using the 
oxygen–glucose deprivation/re-oxygenation (OGD/R) model 
have observed elevated levels of necroptosis markers, such 
as RIPK1, RIPK3, and MLKL, in neuronal cells (Chen 
et al. 2018b; Yang et al. 2017; Vieira et al. 2014; Li et al. 
2020b; Tang et al. 2018). It has been shown that the use of 

microarrays has described distinct changes in gene expres-
sion in whole blood from 0 to 24 h after ischemic stroke. 
(Tang et al. 2006; Stamova et al. 2014). Over time, many of 
the changes in interleukins have been directly quantified in 
the peripheral blood of patients with IS (Nayak et al. 2012; 
Perini et al. 2001). Macrophage migration inhibitory factor 
(MIF) derived from peripheral blood is induced to upregu-
late and promote endothelial cell apoptosis and necroptosis 
through RIPK1 kinase-dependent pathway after ischemic 
brain injury (Li et al. 2023). We elaborated on the links 
between peripheral blood gene expression and different path-
ological processes of stroke and ensured that the literature 
review reflected the latest advances in the field. Discussions 
of specific genes or signaling pathways were closely related 
to the goals and results of our analyses, reinforcing their 
significance as potential biomarkers. At the same time, we 
explained the rationale for the selection of peripheral blood 
samples and the relevance of this choice for understanding 
the biologic basis of CNS events. However, effective drugs 
targeting necroptosis for potential neuroprotection against 
ischemic brain injury are still lacking.

In this study, necroptosis-related differentially expressed 
genes (NRDEGs) in AIS were identified using a comprehen-
sive analysis. Gene Ontology (GO), Kyoto Encyclopedia of 
Genes and Genomes (KEGG), Gene Set Enrichment Anal-
ysis (GSEA), and Weighted Gene Co-expression Network 
Analysis (WGCNA) were used to identify the molecular 
mechanism(s) of the NRDEGs in AIS. Next, a protein–pro-
tein interaction (PPI) network as well as the efficient and 
diagnostic Least absolute shrinkage and selection operator 
(LASSO) regression models were constructed. The effec-
tiveness of the diagnostic model was confirmed by analyzing 
receiver operating characteristic (ROC) curves. A total of 
nine potential NRDEGs were identified as significant indica-
tors for predicting the occurrence of AIS. To further inves-
tigate the immune component, we conducted an immune 
infiltration analysis and examined the correlations between 
the expression of these nine DEGs and 22 immune cell 
types. Additionally, we selected three DEGs to establish a 
competing endogenous RNA (ceRNA) network. Altogether, 
our study successfully unraveled the molecular mechanisms 
of necroptosis in AIS and established a foundation for its 
diagnosis and treatment. For a visual representation of our 
study design, please refer to Fig. 1 in the article.

Materials and Methods

Identification of DEGs and NRDEGs in AIS

The gene expression profiling dataset of peripheral whole 
blood specimens (GSE16561) was retrieved from the Gene 
Expression Omnibus (GEO) (Barrett et al. 2007) database, 
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and divided into 39 ischemic stroke patients (Stroke) and 
24 healthy control subjects (Control). Another GEO data-
set of peripheral blood specimens (GSE22255) (Krug et al. 
2012) was obtained and divided into 20 ischemic stroke 
patients and 20 normal patients. The two datasets were 
merged and batch effects were mitigated using the combat 
(package sva) function in R (Leek et al. 2012) and verified 
by principal component analysis (PCA). The third GEO 
dataset of peripheral blood specimens of Homo sapiens 
from GPL570 (GSE58294) (Stamova et  al. 2014) was 
downloaded and divided into 69 ischemic stroke patients 
(group name: Stroke) and 23 normal patients (group name: 
Normal). As the validation dataset, it was used to validate 
the hub genes and the comparison map between the two 
groups was drawn.

To assess the differential impact of gene expression val-
ues on AIS, group comparisons were conducted using the R 
package limma (Ritchie et al. 2015). For differential expres-
sion analysis, the following additional thresholds were used: 
logFC > 0.3 and adjP-value < 0.05 for upregulated genes (up_
regulated_genes) and logFC <  − 0.3 and adjP-value < 0.05 
for downregulated genes (down_regulated_genes).

We identified necroptosis-associated genes using Gen-
eCards (Stelzer et al. 2016), which is an integrative and com-
prehensive database of human genetic information. A search 
using the term “necroptosis” yielded 630 necroptosis-related 
genes (Table S1).

A Venn diagram was drawn using the DEGs and necrop-
tosis-related genes and the intersecting genes were identified 
as NRDEGs in AIS. These genes were then subjected to PPI 
network analysis.

DEG Function and Pathway Enrichment Analyses

GO (Ashburner et al. 2000), an international standard for 
gene functional classification, is widely used as a tool for 
functional annotation and enrichment analyses. GO terms 
are classified as cellular component (CC), molecular function 
(MF), and biological process (BP). KEGG database is com-
prised of the pathways of experimentally validated metabolic 
processes and gene sets of human diseases, and it stores an 
extensive collection of data on genomes, biological pathways, 
drugs, chemicals, and diseases. The DEGs underwent GO 
term and KEGG pathway analyses using the clusterProfiler 
(Yu et al. 2012) in R package. p < 0.05 was deemed statisti-
cally significant.

GSEA Evaluation

GSEA, a widely recognized computational method, is fre-
quently employed to assess variations in pathway activi-
ties and biological processes within expression datasets. It 
determines whether a predefined set of genes exhibits nota-
ble differences between two biological states (Subramanian 

Fig. 1  Schematic diagram of the research design
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et al. 2005). GSEA was conducted on the gene expression 
data in the combined dataset of GSE16561 and GSE22255 
using the clusterProfiler R package in order to study the 
biological differences between patients with the AIS and 
Control groups. The “c2.all.v7.5.2.entrez.gmt” gene set was 
obtained from the Molecular signatures database (MSigDB) 
(Liberzon et al. 2015) for GSEA of the combined dataset of 
GSE16561 and GSE22255. Adjusted p < 0.05 was deemed 
statistically significant. Both p-value and normalized 
enrichment score (NES) values are presented.

Establishment of Co‑expression Modules of DEGs 
Through WGCNA

WGCNA (Langfelder and Horvath 2008) is a systematic 
biological approach used to characterize the patterns of 
inter-gene correlations across samples in order to discover 
modules of highly correlated genes. Therapeutic targets 
or candidate biomarker genes were identified according 
to the intensity of the gene set as well as the relationship 
between the gene set and the phenotype. We analyzed the 
GSE16561 and GSE22255 datasets using the WGCNA 
package in R software. For the GSE16561 dataset, we 
set the minimum gene number, cut height and optimal 
soft-thresholding power to 50, 135 and 5, respectively, 
merged modules at a cut height of 0.95, and established 
a minimum distance of 0.2. For the GSE22255 dataset, 
the minimum gene number, cut height and optimal soft-
thresholding power were set to 50, 80, and 7, respectively; 
modules were merged at a cut height of 0.4, and the mini-
mum distance was fixed at 0.2. Using this approach, we 
successfully obtained co-expression modules for the DEGs 
within the two groups of both datasets.

Development of PPI Network

STRING (Szklarczyk et al. 2019) was used to search for 
known and predicted PPIs and was employed to construct 
the PPI networks of both DEGs and NRDEGs.

Cytoscape v3.6.1 (Smoot et  al. 2011), a well-known 
open-source software platform that integrates interaction 
networks, was utilized for the visualization of PPI networks. 
Cytoscape CytoHumba plugin (Chin et al. 2014) was used 
to study the network’s hub genes and identified the top 10 
genes in the maximum correlation coefficient (MCC). Func-
tional correlations for the key genes were calculated using 
the R package GOSemSim (Yu 2020).

Construction of Diagnostic Model via LASSO 
Regression Model

LASSO regression involves the simultaneous screen-
ing of variables and complexity adjustment to fit a 

generalized linear model. Through regularization, a 
shrinkage penalty is introduced to limit the coefficients. 
The regularization process uses the sum of the abso-
lute values of all the feature weights, which improves 
the interpretability of the model to a certain extent. A 
LASSO regression model was built for the genes in the 
co-expression modules of the DEGs using the glmnet 
package in R software (Engebretsen and Bohlin 2019; 
Mazumder and Hastie 2012). During the model construc-
tion process, we carefully screened the selected features 
and identified the best model for building a diagnostic 
model for cerebral infarction. Subsequently, we deter-
mined that the genes included in the model were the 
distinctive genes associated with cerebral infarction. To 
validate the models, ROC curves were drawn using the 
pROC package (Robin et al. 2011). A box plot was gen-
erated to display the characteristic genes of peripheral 
blood samples from patients with cerebral infarction and 
normal control patients. The genes with p < 0.05 were 
selected for visualization.

Molecular Subtype Analysis of Cerebral Infarction

Consensus clustering is an algorithm based on resampling 
techniques. Its purpose is to identify individual members 
and their respective subgroup numbers, while also assess-
ing the reliability and validity of the clustering data. The 
previously identified NRDEGs based on the combined 
dataset of GSE16561 and GSE22255 were defined as key 
necroptosis-associated genes. The ConsensusClusterPlus 
package (Wilkerson and Hayes 2010) in R software was 
employed to determine the gene expression profiles of the 
previously screened NRDEGs, and the cluster with the 
best clustering was selected. Based on these results, dif-
ferent necroptosis patterns were identified.

Immune Infiltration Analysis

The CIBERSORT package (Chen et  al. 2018a) was 
employed, utilizing a deconvolution algorithm with linear 
support vector regression, to predict the expression matrix 
associated with immune cell subtypes. This approach was 
applied to evaluate immune cell infiltration in patients 
with ischemic stroke and the control group using RNA-seq 
data. The differential enrichment of immune cells between 
patients with AIS and the control group was identified in 
the combined dataset of GSE16561 and GSE22255. Fur-
thermore, we determined the Pearson correlation coeffi-
cients between immune cells and nine NRDEGs and exam-
ined the relationship between NRDEGs and the levels of 
immune infiltration.
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Network Construction for the Interactions Among 
Hub‑mRNA, Hub‑microRNA (miRNA), and Hub‑Long 
Non‑coding RNA (lncRNA)

We conducted an analysis of lncRNA and miRNA expres-
sion, focusing on their interaction with hub genes at the post-
transcriptional level. To identify miRNA-mRNA targeting 
relationships, we utilized the miRTarBase database, which 
contains experimentally validated miRNA-target interac-
tions (MTIs) from over 8500 articles (Huang et al. 2020). 
The database has been augmented with the newly released 
CLIP-seq dataset, resulting in over 500,000 MTIs. Leverag-
ing improved natural language processing (NLP) technol-
ogy, we collected additional target relationship pairs along 
with their network functions and annotation information. For 
identification of miRNAs potentially binding to hub genes, 
we utilized the miRTarBase 2020 database (https:// mirta 
rbase. cuhk. edu. cn/) (Huang et al. 2020). Additionally, the 
TarBase database (version 8), which compiles experimen-
tally validated miRNA targets across multiple species, was 
used to predict miRNAs interacting with hub genes (Karag-
kouni et al. 2018). A list of miRNAs predicted by both data-
bases was generated.

To search for miRNA targets, we employed the starBase 
database, which incorporates high-throughput sequencing 
datasets (CLIP-seq and Degradome-seq) and offers various 
visualization tools to explore microRNA targets (Cai et al. 
2014). The database includes extensive data on miRNA-
mRNA, miRNA-ncRNA, RNA-RNA, and RBP-RNA inter-
actions. Using the starBase database, we predicted lncRNAs 
interacting with miRNAs. An interaction network compris-
ing hub lncRNAs, hub miRNAs, and hub-mRNAs was 
constructed, and the Cytoscape software was employed to 
visualize the network as a Sankey diagram.

HT22 Cell Culture and Treatment

The HT22 cells (Zhejiang Ruyao Biotechnology Co. Ltd., 
Zhejiang, China), which are an immortalized mouse hip-
pocampal neuronal cell line, were cultured in Dulbecco’s 
modified Eagle’s medium (DMEM, Corning, NY, United 
States) containing 10% fetal bovine serum (FBS, BI, Israel) 
and 1% double antibodies (37 °C, 5%  CO2 cell culture incu-
bator). When the cells attached to the wall and reached 80 to 
90% confluence, the culture medium were discarded, washed 
once with PBS, and digested with 3 ml of trypsin for 2 min. 
The process of digestion was terminated by adding medium 
immediately after the cells became round and detached. The 
cells were transferred to a centrifuge tube, centrifuged at 
1000 rpm for 5 min, re-suspended in fresh culture medium, 
and distributed at a 1:2 ratio. The original cells were trans-
ferred into a new cell culture bottle for continued culture, 
with medium changed every 2 to 3 days.

We divided the cells into both a control group and a 
model group, seeded them into 96-well plates at a density 
of 5 ×  104, with 3 replicate wells for each group, and then 
cultured overnight. After 24 h, we removed the original cul-
ture medium in the model group, washed the cells twice 
with PBS, and then added 300 μl of glucose-free, serum-free 
DMEM medium to each well before being incubated in an 
anaerobic culture box for 4 h. After oxygen–glucose depriva-
tion treatment, the cells in the model group were restored to 
complete DMEM medium, and returned to e cell incubator 
at 37 °C and 5%  CO2 for 2 h. The cells in the normal control 
group were continuously cultured in complete medium and 
a cell incubator at 37 °C, 5%  CO2.

Clinical Data Collection

A total of 6 patients diagnosed with acute ischemic stroke 
(AIS) in the emergency department of Hebei General 
Hospital from April 2023 to April 2024 were selected as 
the research subjects. The mean age of the patients was 
66.67 ± 5.22 years. Inclusion criteria were the following: 
the diagnostic criteria were in line with the guidelines 
for AIS diagnosis and treatment in China and the results 
of MRI and/or CT. Exclusion criteria were intracerebral 
hemorrhage; severe hepatic and renal insufficiency; severe 
cardiopulmonary and functional impairment; malignancy; 
and autoimmune diseases. At the same time, 6 healthy 
people who underwent health screening in the physical 
examination center of the hospital at the same time were 
randomly selected as the healthy control group. The aver-
age was 65.83 ± 5.24 years. All patients with AIS were 
scored using the National Institutes of Health Stroke Scale 
(NIHSS) to assess the severity of neurological impairment. 
There was no significant age difference between the two 
groups (p > 0.05). There were no significant differences in 
age, gender, and risk factors such as diabetes, hypertension, 
and hyperlipidemia between the AIS group and the control 
group (Table 1).

Table 1  The demographic data of AIS

Groups AIS (n = 6) Control (n = 6)

Age (year) 66.67 ± 5.22 65.83 ± 5.24
Male, n (%) 3 (50%) 3 (50%)
Hypertension, n (%) 3 (50%) 3 (50%)
Diabetes, n (%) 3 (50%) 2 (33.33%)
Total cholesterol (mmol/l) 4.61 ± 1.01 3.79 ± 1.38
Triglyceride (mmol/l) 1.93 ± 1.18 1.64 ± 0.82
NIHSS score
(1–4)
(5–15)
(16–25)

1
3
2

https://mirtarbase.cuhk.edu.cn/
https://mirtarbase.cuhk.edu.cn/
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This study has been approved by the Ethics Committee of 
Hebei General Hospital, and the study notification has been 
signed with patients and their families. Informed consent, 
ethics approval number was [2024(102)]. Whole blood from 
all subjects was collected and loaded into a 2 × 5 ml EDTA 
anticoagulant tube.

Quantitative Polymerase Chain Reaction (qPCR 
Analysis)

The mRNAs were extracted from HT22 cells and venous 
blood (5 ml) collected from healthy controls and hospital-
ized AIS patients within 24 h by adding Trizol reagent. The 
Fast Plus RT Master mix reverse transcription reagent kit 
(Supersmart® 6-min Heat-resistant first-strand cDNA Syn-
thesis Kit) was used to synthesize the extracted mRNAs into 
cDNAs, called the reverse transcription, RT reaction. PCR 
was carried out using the SYBR Green qPCR Mix pre-mixed 
qPCR reagent kit (Superbrilliant® Third generation ZAPA 
SYBR Green qPCR premix) to amplify the cDNA in a two-
step process and perform fluorescence quantification, with 
the reaction conditions as follows: 95 °C for 300 s; 95 °C 
for 10 s; and 60 °C/65 °C for 20 s, for 40 cycles. The final 
primer concentration was 0.4 μM, with GAPDH as the ref-
erence gene. The relative expression levels were calculated 
using the  2^(−△△Ct) method, and the melting curve of the 
products were analyzed to ensure reaction specificity (see 
Supplemental Files for primer sequences).

Statistical Analysis

All statistical tests were conducted with R v4.0.2 (https:// 
www.r- proje ct. org). For normally distributed continuous 
variables, the statistical significance was assessed using an 
independent Student’s t-test. Non-normally distributed con-
tinuous variables were compared using the Mann–Whitney 
U test and the Wilcoxon rank sum test. All p-values were 
two-sided, and p < 0.05 was deemed statistically significant.

Results

DEGs in Patients with AIS

To compare the patients with AIS with normal patients, we 
merged the two sets of GSE data as GSE_combine, and the 
batch effects were then eliminated. PCA analysis showed 
that batch effects had been removed from the datasets 
(Fig. 2a and b). For the identification of DEGs, differential 
expression analysis was carried out using the limma software 
package, with |logFC|> 0.3 and adjPvalue < 0.05. A total of 
1945 DEGs were acquired, including 1195 upregulated and 
750 downregulated genes. The ten up- and downregulated 

DEGs with the highest logFC are presented as heatmaps 
(Fig. 2c) and gene correlation coefficient heatmaps (Fig. 2d). 
We compared the DEGs obtained from the combined dataset 
of GSE16561 and GSE22255 and necroptosis-related genes 
to identify 76 NRDEGs (Table S2 and Fig. 2e). A PPI net-
work of these 76 genes is shown in Fig. 2f.

Functional and Pathway Enrichment Analyses

Next, GO functional enrichment analysis was conducted 
for the NRDEGs (Table 2). The DEGs related to AIS were 
mainly enriched in BP terms such as toll/interferon response 
factor (TRIF)-dependent TLR signaling pathway, myeloid 
differentiation factor 88 (MyD88)-independent TLR sign-
aling pathway, and pattern recognition receptor signaling 
pathway (Fig. 3a); in CC terms such as cytosolic part, myo-
sin complex, and ficolin-1-rich granule (Fig. 3b); and in MF 
terms such as microfilament motor activity, death receptor 
activity, and actin binding (Fig. 3c). Next, KEGG analysis 
demonstrated that the DEGs were enriched in biological 
pathways, such as hepatitis B, pathogenic Escherichia coli 
infection, and tumor necrosis factor (TNF) signaling path-
way (Fig. 3d, Table 3).

GSEA

Through GSEA of the combined dataset, we explored the 
relationships between AIS and the DEGs’ BP, CC, and 
MF. The results of GSEA with adjPvalue < 0.05 showed an 
enrichment in neutrophil degranulation, G protein-coupled 
receptors (GPCR) ligand binding, signaling by interleukins, 
G alpha (i) signaling events, neuronal system, rhodopsin-like 
receptors (class A/1), and NABA-secreted factors (Fig. 4a–d, 
Table 4).

Co‑expression Modules of DEGs Identified 
by WGCNA

We performed WGCNA on the control and AIS groups to 
screen for co-expression modules. In the process of ana-
lyzing the GSE16561 dataset using WGCNA, we success-
fully identified 23 outlier samples by setting the cut height 
(Fig. 5a). After employing a scatter plot, it was found that 
the optimal soft threshold for our study was 5. Next, we car-
ried out further investigations based on this finding (Fig. 5b). 
The co-expressed genes in the two groups were subsequently 
clustered in the dark red and pink modules (Fig. 5c). Accord-
ing to the expression pattern and grouping information of 
module genes, we found that the dark red and pink mod-
ules were positively correlated with ischemic stroke with 
p < 0.05 and were used for further analyses (Fig. 5d). During 
WGCNA of the GSE22255 dataset, an outlier sample was 
detected by setting the cut height (Fig. 5e). Using a scatter 

https://www.r-project.org
https://www.r-project.org
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plot, we determined that a soft threshold of 7 provided opti-
mal results, prompting us to proceed with subsequent inves-
tigations (Fig. 5f). The genes co-expressed in the two groups 

were subsequently clustered in the brown and dark orange 
modules (Fig. 5g). According to the expression patterns and 
grouping information of the module genes, we found that the 

Fig. 2  Differential expression analysis. a PCA analysis of GSE_com-
bine prior to mitigating batch effects. b PCA analysis of GSE_com-
bine after removing batch effects. c The abscissa and ordinate repre-
sent the patient ID and DEGs, respectively. Yellow, upregulated gene 
expression; blue, downregulated gene expression; green annotation 
bars, normal patients; dark red annotation bars, cerebral infarction 

patients. d Correlation of the DEGs. Yellow is positive correlation 
of genes; blue is negative correlation of genes. e The blue circle rep-
resents the DEGs of GSE_combine, and the yellow circle represents 
necroptosis-associated genes. The NRDEGs were identified by per-
forming the intersection. f PPI network map of NRDEGs
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Table 2  GO functional enrichment analysis of DEGs

Ontology ID Description GeneRatio BgRatio pvalue p.adjust qvalue

BP GO:0035666 TRIF-dependent toll-like receptor signaling pathway 6/76 29/18670 1.64e-09 4.08e-06 2.96e-06
BP GO:0002756 MyD88-independent toll-like receptor signaling pathway 6/76 33/18670 3.78e-09 4.70e-06 3.41e-06
BP GO:0002221 Pattern recognition receptor signaling pathway 10/76 197/18670 7.10e-09 4.84e-06 3.51e-06
CC GO:0044445 Cytosolic part 9/76 247/19717 4.51e-07 1.21e-04 8.35e-05
CC GO:0016459 Myosin complex 5/76 65/19717 5.13e-06 5.60e-04 3.87e-04
CC GO:0101002 Ficolin-1-rich granule 7/76 185/19717 7.24e-06 5.60e-04 3.87e-04
MF GO:0000146 Microfilament motor activity 4/76 22/17697 2.17e-06 6.00e-04 4.74e-04
MF GO:0005035 Death receptor activity 3/76 11/17697 1.23e-05 0.001 8.91e-04
MF GO:0003779 Actin binding 10/76 431/17697 1.50e-05 0.001 8.91e-04

Fig. 3  Functional and pathway enrichment analyses. a–c GO analysis. 
The ordinate is -log(p.adjust), the abscissa is the GO terms, and the 
node’s color indicates the p.adjust value. Less than 0.02, more blue; 
more than 0.01, more yellow. d KEGG analysis. The abscissa and 

ordinate represent the gene ratio and KEGG pathways, respectively. 
The node’s size corresponds to the number of genes in the enrichment 
pathway, and the node’s color indicates the p.adjust value. Less than 
0.02, more blue; more than 0.01, more yellow
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brown and dark orange modules were positively correlated 
with cerebral infarction with p < 0.05 and were subjected  to 
further analyses (Fig. 5h).

Protein–Protein Interaction Network

A total of sixty-nine genes were obtained upon the 
intersection of AIS-related co-expressed genes in the 

GSE16561 and GSE22255 datasets and necroptosis-
related genes (Fig. 6a). The PPI network of AIS-related 
genes was constructed, and the data were plotted using 
Cytoscape software (Fig. 6b). Using the MCC algorithm 
of cytoHubba, a Cytoscape plugin, the top 20 hub gene 
scores were calculated. These top 20 genes included 
RPL4, PTGES3, RBM14, HSP90AA1, RPLP1, HNRNPM, 
RPL38, CCT3, PABPN1, RPL13A, ELAVL1, RPL12, FUS, 

Table 3  KEGG functional 
enrichment analysis of DEGs

Ontol-
ogy

ID Description GeneRatio BgRatio pvalue p.adjust qvalue

KEGG hsa04668 TNF signaling pathway 9/53 112/8076 3.65e-08 7.01e-06 4.96e-06
KEGG hsa05130 Pathogenic Escherichia 

coli infection
10/53 197/8076 4.65e-07 4.46e-05 3.15e-05

KEGG hsa05161 Hepatitis B 8/53 162/8076 9.07e-06 5.81e-04 4.11e-04

Fig. 4  GSEA results. a GSEA analysis of the combined dataset of 
GSE16561 and GSE22255. The horizontal and vertical axes represent 
the gene ratio and the number of genes for each enriched GO terms, 

respectively. b–d GSEA showed enrichment in b neutrophil degranu-
lation, c signaling by interleukins, and d G alpha (i) signaling
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AHR, RPL23, STUB1, TLR4, RPL3, BNIP3, and MYC 
(Fig. 6c). We generated a correlation coefficient heat-
map to visualize the relationships among the hub genes 
(Fig. 6d).

Construction of a Stroke Diagnostic Model 
and Determination of Eigengenes

In order to identify AIS-associated genes and assess their 
diagnostic potential, we employed the LASSO regres-
sion model on the GSE_combine dataset. The dataset was 
randomly divided into Training and Test groups in a 7:1 
ratio. The model was constructed using the training group 
and validated using the test group. Throughout the model-
building process, the chosen feature parameters reduced 
as λ increased, whereas the absolute values of the coef-
ficients increased (Fig. 7a and b). Through the process of 
simulation and careful selection, we identified a set of 18 
feature genes, namely, RPL4, RBM14, HSP90AA1, RPLP1, 
HNRNPM, RPL38, CCT3, PABPN1, RPL13A, ELAVL1, 
RPL12, FUS, AHR, STUB1, TLR4, RPL3, BNIP3, and 
MYC. ROC curves were plotted for both datasets and the 
area under the curve (AUC) was computed to validate 
the model. The AUC values of the risk model for both 
training and test groups were 0.905 and 0.889, respec-
tively (Fig. 7c). We analyzed the differences between the 
characteristic genes of the AIS group and control groups 
and identified nine genes with statistically significant 
differences (p < 0.05), including RPL4, RBM14, CCT3, 
PABPN1, RPL13A, ELAVL1, RPL12, AHR, and TLR4. 
Boxplots are shown in Fig. 7d. Next, the expression dif-
ferences between the two groups were verified by dataset 
GSE58294. We used the Wilcoxon rank sum test to ana-
lyze the expression differences of the six hub genes (TLR4, 
RBM14, RPL12, ELAVL1, AHR, PABPN1). The results of 
expression differences were shown by the group compari-
son graph (Fig. 7e). The results showed that the expres-
sion levels of TLR4, RBM14, and RPL12 were significantly 
different and the expression trends remained consistent in 
both test and validation datasets.

Two Distinct Modes of Necroptosis Identified 
by Signature Genes

Consensus clustering of the nine necroptosis-related genes 
was carried out, and a consensus clustering diagram was 
drawn when k = 2 (Fig. 8a). Furthermore, we observed vari-
ations in the area under the cumulative distribution function 
(CDF) curve in relation to k = 2–9 (Fig. 8b). Additionally, 
we plotted the CDF of the consistent clustering (Fig. 8c) and 
the tracking plot (Fig. 8d).

Immune Infiltration Analysis

To analyze disparities in the extent of immune infiltration of 
immune infiltration between patients with AIS and the control 
group, variations in the abundance of 22 immune cell infiltrates 
between the two groups were explored using the CIBERSORT 
algorithm in the GSE_combine dataset (Fig. 9a). Through the 
use of the Wilcoxon signed-rank test algorithm, a total of nine 
types of immune cells in the GSE_combine dataset were found 
to be significantly different between patients with AIS and the 
Control group (Fig. 9b): plasma cell, regulatory T cell (Treg), 
CD8 + T cell, activated NK cell, γδ T cell, M0 macrophage, 
M2 macrophage, neutrophil, and activated mast cell. Next, 
the correlations between the nine NRDEGs and 22 types of 
immune cells were analyzed. In the GSE_combine dataset, sig-
nificant correlations were found between RPL4 and activated 
CD4 + memory T cell; RBM14 and activated dendritic cell; 
CCT3 and naïve B cell and activated mast cell; RPL13A and 
plasma cell, Treg, M1 macrophage, activated mast cell, and 
activated dendritic cell; AHR and naïve CD4 + T cell and mono-
cyte; and TLR4 and monocyte and M2 macrophage (Fig. 9c).

Network for the Interactions Among Hub‑mRNA, 
Hub‑miRNA, and Hub‑lncRNA

We constructed an lncRNA-miRNA-mRNA interaction net-
work, which contained three genes related to necroptosis, 
namely, TLR4, AHR, and ELAVL1. We then employed the 
miRTarBase and TarBase databases to predict miRNAs that 

Table 4  GSEA enrichment analysis

ID NES pvalue p.adjust qvalues

REACTOME_NEUTROPHIL_DEGRANULATION 1.909562 0.001148 0.039119 0.028251
REACTOME_GPCR_LIGAND_BINDING 1.98536 0.001155 0.039119 0.028251
REACTOME_SIGNALING_BY_INTERLEUKINS 1.587387 0.001156 0.039119 0.028251
REACTOME_G_ALPHA_I_SIGNALLING_EVENTS 1.742828 0.001168 0.039119 0.028251
REACTOME_NEURONAL_SYSTEM 2.001512 0.001188 0.039119 0.028251
REACTOME_CLASS_A_1_RHODOPSIN_LIKE_RECEPTORS_ 1.958376 0.001208 0.039119 0.028251
NABA_SECRETED_FACTORS 2.126348 0.001209 0.039119 0.028251
WP_NUCLEAR_RECEPTORS_METAPATHWAY 1.900179 0.00122 0.039119 0.028251
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could interact with the necroptosis-related genes. A total of 
42 sets of interactions were obtained from the intersection set 
(Fig. 10a), and seven sets of interactions supported by experi-
mental evidence were identified. The lncRNAs that potentially 
bind to miRNAs were predicted using the starBase database, 
and the lncRNA-miRNA-mRNA network was established 
using both Sankey (Fig. 10b) and network (Fig. 10c) diagrams.

Validation of the Identified mRNAs

Oxygen–glucose deprivation/re-oxygenation (OGD/R) 
was used to mimic neural injury. When compared with 
the normal control group, the mRNA expression levels of 
PAPBN1 (p < 0.01), CCT3 (p < 0.01) in the model group 
were significantly downregulated while the mRNA expres-
sion levels of AHR (p < 0.01), RPL12 (p < 0.05), and TLR4 
(p < 0.01) were significantly upregulate (Fig. 11). To further 
verify the expression of the identified genes, we collected 
whole blood samples from patients with AIS and healthy 
controls, extracted RNA, and performed qPCR. Compared 
with the normal control group, the mRNA expression level 
of PAPBN1 (p < 0.05) was significantly downregulated, 
while the mRNA expression level of TLR4 (p < 0.001) was 
significantly upregulated in the AIS group (Fig. 12).

Discussion

AIS is one of the main causes of human death and is one 
of the most prevalent leading to disability worldwide. The 
death of neurons can occur through various pathways, 
including apoptosis, necroptosis, autophagy, ferroptosis, and 
pyroptosis. Necroptosis is believed to be a type of necrotic 
cell death that occurs after cerebral infarction and I/R injury. 
Several studies have shown that necroptosis occurs within 
one hour after reperfusion in a brain injury model of I/R, pri-
marily affecting neurons in the hippocampus (Li et al. 2020c; 
Naito et al. 2020). Moreover, necroptosis is associated with 
the size of the infarct and the extent of neurological impair-
ment (Nikseresht et al. 2019; Han et al. 2019). The inhibi-
tion of RIPK1, genetically or pharmacologically, can allevi-
ate ischemic brain injury (Naito et al. 2020), and a specific 
inhibitor, known as Nec-1, can target necroptosis. Hence, 
to identify effective biomarkers for diagnosing and treating 
AIS through necroptosis, 1945 DEGs were retrieved from 
the combined dataset of GSE16561 and GSE22255. From 
GeneCards, 630 genes related to necroptosis were obtained, 
and 76 genes were found to be both DEGs and NRDEGs. 
GO, KEGG, and GSEA were utilized to enrich the DEGs in 
the TNF pathway, TLR pathway, and other pathways associ-
ated with necroptosis. However, relying solely on differen-
tially expressed genes does not necessarily capture the full 
range of interrelationships and regulatory networks between 

genes. Therefore, we further used the WGCNA method, 
which aims to gain a deeper understanding of the regula-
tory mechanisms of genes by identifying gene co-expression 
modules. In Fig. 4 and subsequent analysis, we performed 
WGCNA analysis on the GSE16561 and GSE22255 data-
sets, respectively, and identified co-expressed gene mod-
ules that were significantly associated with cerebral infarc-
tion. We believe that the genes in these modules may have 
important biological functions through their co-expression 
patterns. We then further intersected these co-expressed 
gene modules with necroptosis-related genes to produce 
69 genes. PPI analysis resulted in the identification of 20 
hub genes. Using LASSO regression, a diagnostic model 
for STROKE was constructed, determining 18 characteristic 
genes. Through consensus clustering, two distinct patterns 
of necroptosis were identified based on the signature genes. 
However, the precise mechanism underlying the role of 
necroptosis in ischemic stroke remains unclear, necessitat-
ing further research. Although RIPK1, RIPK3, and MLKL 
were not directly analyzed, we can indirectly infer that the 
hub genes may be associated with the necroptotic pathways 
by systematically analyzing the genes and protein networks 
associated with acute ischemic infarction. Some hub genes 
in our PPI network are involved in signaling pathways or 
molecular processes related to RIPK1, RIPK3, and MLKL, 
and regulate the expression and activity of these key pro-
teins, such as FAS (CD95) that is involved in the activation 
of RIPK1, CASP8 (Caspase-8) that may also be involved in 
necroptosis under the regulation of RIPK1 and RIPK3, and 
TNFRSF10A/B that may be involved in the regulation of 
RIPK1. In addition, we found that differentially expressed 
genes were mainly related to biological processes such as 
immune response and cell death, which may be related to 
the regulation of the activity of RIPK1, RIPK3, and MLKL. 
Therefore, our aim was to systematically study NRDEGs, 
providing a better framework for exploring diagnostic bio-
markers and making predictions regarding targeted therapy 
associated with necroptosis for the treatment of AIS.

NRDEGs were found to be enriched in the GO CC term 
of the cytoplasmic portion and the myosin complex, which 
aligns with the characteristics of necroptosis, leading to the 
rupture of the plasma membrane (Cai et al. 2014; Nganga 
et al. 2019). Additionally, the NRDEGs showed enrichment 
in the GO MF terms microfilament motor activity and death 
receptor activity. During the progression of necroptosis, the 
assembly of complex “necrosomes” within cells can be trig-
gered by death receptors. Furthermore, KEGG analysis of 
NRDEGs demonstrated that TNF signal transduction was 
the main enriched pathway. TNF plays a pivotal role in the 
cellular events during necroptosis (Chen and Goeddel 2002), 
and the mouse fibroblast L-M cell line is highly suscepti-
ble to TNF-induced necroptosis (Laster et al. 1988). GSEA 
analysis also indicated significant enrichment of interleukin 
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Fig. 6  PPI network. a Venn diagram of the stroke-related genes of the 
datasets GSE16561 (blue circle) and GSE22255 (yellow circle) ana-
lyzed by WGCNA, and the necroptosis-related genes (gray circle). 
The genes at the intersection of the three sets of genes were desig-

nated as NRDEGs. b PPI network of the NRDEGs. c Top 20 genes 
screened by the CytoHubba Screening Maximum Correlation Crite-
rion. d Heat map of correlation coefficient for hub genes

inflammation in dendritic cells due to the deletion of the 
key RIPK3-MLKL necroptosis suppressor caspase-8 (Kang 
et al. 2013). Neutrophils, which are involved in neural plas-
ticity, have been observed to increase after a stroke (Amulic 
et al. 2012). TNF-induced neutrophil necroptosis has been 
reported to depend on RIPK1-RIPK3-MLKL signaling 
(Wicki et al. 2016). Neutrophil degranulation may also acti-
vate the fibrinolytic system in patients with ischemic stroke 
(Wicki et al. 2016). Additionally, necroptosis can be trig-
gered by TNF (Liu et al. 2014). A study demonstrated that 
G alpha (i) could inhibit the effect of TNF. The enrichment 
of G alpha (i) signaling suggests its potential involvement 
in the necroptosis process (Earl et al. 1990). Our research 
results, revealed for the first time, the involvement of G 
alpha (i) signaling in the process of necroptosis in AIS. Nev-
ertheless, further studies are needed to fully understand the 
underlying mechanism.

signaling, neutrophil degranulation, and G alpha (i) signal-
ing among the NRDEGs. It has been suggested that inflam-
mation triggered by necroptosis may be driven by inflam-
masome activation signaling mediated by interleukins 
(ILs). For instance, in an in vivo experiment, necroptosis-
induced IL-1 was found to contribute to necroptosis-driven 

Fig. 5  WGCNA identifies co-expression modules related to cerebral 
infarction. a No outlier specimens were found in the GSE16561 
dataset by cut height. b Selection of the optimal soft threshold of 
the GSE16561 dataset. c The aggregation process of modular genes 
in the GSE16561 dataset. d Association between modular genes and 
cerebral infarction in the GSE16561 dataset. e No outlier specimens 
were found in the GSE22255 dataset by cut height. f Selection of 
the optimal soft threshold of the GSE22255 dataset. g The aggrega-
tion process of modular genes in the GSE22255 dataset. h Associa-
tion between modular genes and cerebral infarction in the GSE22255 
dataset

◂
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Herein, we applied the WGCNA method to construct 
five co-expression modules for the two datasets. Each mod-
ule consisted of a set of genes exhibiting similar expression 
patterns. To assess the correlation between these modules 
and AIS, we examined the expression profiles and group-
ing information of the module genes. Notably, the dark red 
and pink modules, as well as the brown and dark orange 

Fig. 8  Consensus cluster analysis of eigengenes in patients with cerebral infarction. a Consensus clustering diagram (k = 2). b Relative variation 
of area under the CDF curve for k = 2–9. c Consensus clustering CDF. d Tracking plot

Fig. 7  Establishment and validation of LASSO regression diagnos-
tic model. a Obtaining the optimal and parsimonious models through 
LASSO regression. b Association between the selected features and 
the absolute value of the coefficient. c Model validation using both 
the training and test groups. d The characteristic genes of the cere-
bral infarction and control groups were significantly different. e The 
results of differential expression were displayed by group comparison 
plots

◂
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modules, demonstrated the strongest correlations. Subse-
quently, we employed the ischemic stroke-related genes 
within these modules and intersected them with the necrop-
tosis-related genes. The overlapping genes obtained from 
this intersection were subjected to further analysis.

LASSO regression models were utilized to screen 
eigengenes and calculate AUC values under the ROC curve 
for constructing a diagnostic model of ischemic stroke. The 
aim was to explore the predictive performance of the risk 
models. Using the 18 NRDEGs selected through LASSO 

Fig. 9  Immune infiltration analysis. a, b Variations in the abundance 
of 22 immune cell infiltrates across samples in the GSE_combine 
dataset. b Variations in the abundance of 22 immune cell infiltrates 
in the GSE_combine dataset. Blue, control group; red, patients with 

cerebral infarction. c Heatmap showing the correlations among the 22 
immune cell infiltrates as well as the correlations between the 22 cell 
infiltrates and hub-mRNA
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Fig. 10  Network for the interactions among hub-mRNA, hub-
miRNA, and hub-lncRNA. a Venn diagram shows the miRNAs pre-
dicted to interact with hub-mRNAs according to the miRTarBase 
and TarBase databases. There are 42 groups of interactions in the 

intersection. b, c lncRNAs interacting with miRNAs were predicted 
using the starBase database. b Sankey and c network diagrams of the 
lncRNA-miRNA-mRNA network were drawn

regression analysis, we successfully constructed a diagnos-
tic model for ischemic stroke, which exhibited promising 
potential for diagnostic prediction. The model’s performance 
was evaluated by plotting ROC curves and calculating the 
AUC values, which resulted in an AUC value of 0.905 for 
the Training group and 0.889 for the test group. Importantly, 
this predictive model based on the 18 NRDEGs displayed 
excellent predictive power, with an AUC value of 0.905 in 
the training group, surpassing the significance observed in 
previous studies. The risk model comprised nine statistically 
significant NRDEGs with diagnostic capabilities, namely, 
RPL4, RBM14, CCT3, PABPN1, RPL13A, ELAVL1, RPL12, 

AHR, and TLR4. After external dataset validation and PCR 
validation, only one gene TLR4 was statistically significant. 
Although only one gene has been shown to be significantly 
different, this may also indicate the importance of this gene 
in the biological process and deserve further study and 
exploration. It is well known that the protein encoded by 
this gene is a member of the Toll-like receptor (TLR) family, 
which plays a fundamental role in innate immune activation.

Functional enrichment analyses performed on the 
NRDEGs revealed an enrichment of GO BP terms related 
to the TRIF-dependent and MyD88-independent TLR 
pathways. Previous research suggests that necroptosis can 
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be induced through TLR4 or TLR3 pathways. TLR3 spe-
cifically relies on TRIF for its activation, participating in 
NF-κB activation and induction of type I IFN (Takeuchi 
and Akira 2010). TLR4 is transmitted through TRIF sig-
nals and MyD88 adaptor (Takeuchi and Akira 2010). Our 
analysis results highlighted TLR4 as a hub gene, with GO 
BP terms primarily enriched in both TRIF-dependent and 

MyD88-independent TLR pathways. Consistent cluster-
ing is a method of exploring the underlying structure of a 
sample and discovering the natural clustering that exists 
in the data. According to Fig. 8A, at k = 2, the consist-
ency matrix diagram shows that the samples are divided 
into two subpopulations (or two patterns) with signifi-
cantly different patterns of agreement, indicating that 

Fig. 11  The relative expression of differentially expressed mRNA in 
HT22. a PABPN1; b CCT3; c AHR; d RPL12; e TLR4; f RBM14; 
g RBL4; h ELAVL1; i RPL13A. The control group reflects the nor-

mal HT22 and the OGE/R group reflects the model group. *p < 0.05, 
**p < 0.01, ***p < 0.001
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Fig. 12  Relative expression of differentially expressed mRNA in 
AIS patients and healthy controls. a PABPN1; b TLR4; c RPL12; d 
CCT3; e AHR。 The control group reflected normal people, and the 

AIS group reflected patients with acute ischemic stroke. *p < 0.05, 
**p < 0.01, ***p < 0.001

they may be substantially different at the level of gene 
expression. Cluster analysis provides an initial pattern 
recognition to help researchers understand the underlying 
structure and organization of data. The expression of the 
TLR4 gene showed gene expression differences in two 
subpopulations divided by consensus cluster analysis, 
and one of the patterns may play a role in innate immune 
modulation in necroptosis of acute ischemic stroke and 
may be a potential therapeutic target. This provides fur-
ther evidence that TLR4 activation may induce these 
signaling pathways, which play a role in the occurrence 
and progression of necroptosis. These findings align with 
our research results, supporting the significant involve-
ment of NRDEGs in the progression of AIS.

The immune infiltration analysis revealed notable 
changes in the infiltration levels of various immune 

cell types in the cerebral infarction group. Specifically, 
activated NK cell, γδ T cell, M0 macrophage, M2 mac-
rophage, neutrophil, and activated mast cell exhibited 
increased infiltration levels, while plasma cell, CD8 + T 
cell, and Treg showed decreased infiltration levels. It is 
known that neutrophils and monocytes/macrophages infil-
trate and accumulate in the microvasculature and ischemic 
brain parenchyma (Garcia et al. 1994). γδ T cells, which 
are a significant population of lymphocytes, reside on 
the epithelial surface and possess innate immune char-
acteristics. They secrete IL-17 and generate chemotaxis 
signals that attract peripheral bone marrow cells, such as 
neutrophils and monocytes, exacerbating ischemic brain 
injury (Shichita et al. 2009; Gelderblom et al. 2012). Treg 
cells have been shown to exert neuroprotective effects by 
suppressing inflammation following ischemic brain injury 
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(Liesz et al. 2015), while CD8 + T cells tend to accumu-
late in the brain after a stroke (Ahnstedt et al. 2020). In 
addition, Selvaraj et al. demonstrated that CD8 + T cells 
contribute to functional recovery in the chronic phase fol-
lowing a stroke (Selvaraj et al. 2021). Interestingly, our 
findings indicate that genes such as RPL4, RBM14, CCT3, 
RPL13A, AHR, and TLR4 are closely associated with the 
abundance of immune cell infiltration. This suggests their 
potential involvement in immune responses related to 
ischemic stroke.

Non-coding RNAs (ncRNAs), especially lncRNAs and 
miRNAs, serve as crucial regulators of gene expression. 
Previous studies have highlighted the involvement of spe-
cific ncRNAs in promoting inflammation and modulating 
the prognosis of AIS. For instance, TUG1 was found to 
promote inflammation by competitively binding to miR-
145, resulting in the upregulation of AQP4 expression 
in OGD/R cell models and McAO rat models (Du et al. 
2021). Another study suggested that the lncRNA NEAT1 
may act as a sponge for miR-124 and miR-125a, negatively 
modulating inflammation and influencing the prognosis of 
AIS (Li et al. 2020a). In our study, we established a poten-
tial ceRNA regulatory network involving three NRDEGs 
(TLR4, ELAVL1, AHR), providing new insights into AIS 
diagnosis and more effective targeted therapies against 
these NRDEGs. Manipulating the expression of these 
necroptosis-related genes, such as TLR4, using miRNAs 
or lncRNA could potentially aid in reducing ischemia–rep-
erfusion injury or the extent of cerebral infarction.

Although our necroptosis-related genes exhibited prom-
ise as accurate diagnostic and therapeutic targets, there are 
still certain limitations that need to be addressed. Firstly, 
subgroup analyses should include the clinical and demo-
graphic characteristics of more patients with AIS to validate 
the generalizability and clinical significance of these pat-
terns. Secondly, the sample size is relatively small, and only 
external datasets and in vitro experiments are used for vali-
dation, which may lead to one-sided results and a high false 
positive rate. Thirdly, given that the relationship between 
necroptosis and cerebral infarction remains unclear, addi-
tional research is needed to elucidate the potential mecha-
nisms involving necroptosis-related genes in the context of 
cerebral infarction.

Conclusions

In summary, our study identified a set of novel necroptosis-
associated gene signatures that hold promise for accurate 
diagnosis and treatment of AIS. These gene signatures not 
only shed light on the underlying biological changes occur-
ring in AIS but also have the potential to serve as valu-
able indicators for clinical decision-making. Among the 

identified genes, RPL4, RBM14, CCT3, PABPN1, RPL13A, 
ELAVL1, RPL12, AHR, and TLR4 emerged as key players 
in necroptosis-related processes. These genes hold consider-
able potential as biomarkers for diagnosing and treating AIS.
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