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SUMMARY

Human brain size changes dynamically through early development, peaks in adolescence, and 

varies up to 2-fold among adults. However, the molecular genetic underpinnings of interindividual 

variation in brain size remain unknown. Here, we leveraged postmortem brain RNA sequencing 

and measurements of brain weight (BW) in 2,531 individuals across three independent datasets 

to identify 928 genome-wide significant associations with BW. Genes associated with higher 

or lower BW showed distinct neurodevelopmental trajectories and spatial patterns that mapped 

onto functional and cellular axes of brain organization. Expression of BW genes was predictive 

of interspecies differences in brain size, and bioinformatic annotation revealed enrichment for 

neurogenesis and cell-cell communication. Genome-wide, transcriptome-wide, and phenome-wide 

association analyses linked BW gene sets to neuroimaging measurements of brain size and brain-

related clinical traits. Cumulatively, these results represent a major step toward delineating the 

molecular pathways underlying human brain size variation in health and disease.
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Graphical abstract

In brief

Seidlitz et al. identify genes differentially expressed in individuals with larger or smaller brains 

that are enriched in growth signaling pathways and are highly expressed in cell types critical for 

human development and primate evolution. Translational results in a “real world” clinical biobank 

demonstrate promise for more informed polygenic scoring.

INTRODUCTION

The size of the cerebral cortex varies approximately 100-fold across primate species1,2 

and 2-fold across adult humans.3 While metrics of total brain size have historically 

been assessed postmortem using tissue weight or volume, highly correlated measurements 

including volume and surface area (SA) are readily quantifiable with modern non-invasive 

neuroimaging methods. Distinct from head circumference, which plateaus around 5–7 years, 

total brain volume peaks during adolescence at around 13–15 years. This growth in absolute 

brain size is accompanied by an increase in the variability of brain size among humans that 

also peaks in adolescence, and arises from differential contributions of underlying tissue 

types with discrete growth trajectories.4 Many studies have demonstrated high twin-based 

and single-nucleotide polymorphism (SNP) heritability of brain morphology, with many 

global brain size indices reaching above 50% (twin) and 25% (SNP) of interindividual 

variance explained by genetic factors.4–7 Brain size has also been implicated in multiple 
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clinically relevant contexts, including case-control differences in both neuropsychiatric and 

neurodegenerative diseases, as well as dimensional associations with anthropometric and 

cognitive traits.4,8

Large-scale neuroimaging genetic studies have begun to determine the polygenic 

architecture of specific components of human brain size, such as total volume and 

cortical SA, which are highly genetically correlated.6,7,9,10 Collectively, these studies 

have implicated genes that are involved in critical developmental signaling pathways 

(e.g., Wnt, PI3K-AKT), are highly expressed during the prenatal period, and are related 

to neuropsychiatric and neurodegenerative disorders as well as polygenic traits (e.g., 

cognition). In addition to neuroimaging genetics, progress toward identifying candidate gene 

sets and related molecular processes underlying brain size has stemmed from convergent 

evidence across a diverse body of work, including transcriptome-wide association studies 

(TWAS) of neuroimaging phenotypes in humans,11 blood transcriptomic signatures of 

neuroimaging-derived brain size metrics in humans,12,13 and in vitro brain size-related 

effects in rare neurogenetic and cephalic disorders.14–16 In parallel, recent postmortem brain 

RNA sequencing data aggregation efforts across tissue banks, such as the PsychENCODE 

(PEC) project,17 have led to the discovery of major transcriptomic signatures of brain 

evolution and development.18,19 Although not direct examinations of brain size, the 

phylogenetic and ontogenetic dynamics investigated by these studies are intertwined with 

pronounced changes in brain size across primate species and developmental epochs. In light 

of these informative prior results, we aimed to directly investigate the functional molecular 

correlates of interindividual variation in human brain size.

The current study capitalizes on the fact that a direct and accurate measure of brain size—ex 
vivo brain weight (BW)—is commonly quantified during postmortem autopsy across tissue 

banks. We leverage reported BW and associated transcriptomic data to perform a genome-

wide analysis of transcriptomic associations with BW, in a sample of 2,531 individuals 

across multiple widely accessed postmortem brain transcriptomic datasets (PEC discovery n 

= 1,670, GTEx and ROSMAP replication total n = 861). We discover replicable associations 

across independent datasets, identifying 928 genes reaching genome-wide significance that 

are upregulated in individuals with higher BW (BW positive or BW+; n = 442 genes) 

or upregulated in individuals with lower BW (BW negative or BW−; n = 486 genes). 

These distinct gene sets show distinct spatiotemporal and relative expression effects (directly 

comparing expression of BW+ genes versus BW− genes; STAR Methods) across non-

human primates, cell types, and neuropsychiatric disease. Moreover, using an integrative 

multiscale approach, we pinpoint genetic regulatory mechanisms that link transcriptomic 

signatures to phenotypic variation in both neuroimaging-derived and brain-related traits. Our 

comprehensive study represents a significant advance in elucidating the molecular landscape 

underlying variability in human brain size.

RESULTS

Brain size is associated with differential brain gene expression across datasets

We first confirmed the validity of postmortem BW as a proxy for brain size. Using 

comprehensive lifespan neuroimaging models of total cerebrum volume (TCV)4 and 
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previous measurements of average brain density,20 we found a robust relationship for 

predicted versus measured BW aggregated across datasets (n = 3,689, Pearson’s r = 0.92, p 

< 0.0001; Figure S1; STAR Methods). We saw an almost identical relationship using total 

cortical SA in lieu of TCV to predict BW measurements (r = 0.92, p < 0.0001). In line 

with many previous studies on brain morphology, we also observed a significant difference 

in BW between sexes across datasets (males > females, t = 25.772, Cohen’s d = 0.76, p < 

0.0001).

Next, we performed a transcriptome-wide differential expression (DE) analysis of 

interindividual variation in human BW (STAR Methods). Multiple linear regression was 

used to model the relationship between BW and gene expression (n = 25,774 genes) 

from RNA sequencing in postmortem brain tissue (sampled from the frontal cortex; STAR 

Methods). In the discovery dataset (PEC, n = 1,670 subjects), 928 genes showed significant 

genome-wide DE (pBonferroni < 0.05, i.e., 0.05/25,774, p < 1.94e–6; partial r range = 0.16–

0.18, absolute partial r range = 0.05–0.18; Figures 1A and S1; Table S1; STAR Methods). 

Of these genes, 442 exhibited a positive association with BW (i.e., gene expression tended to 

be greater in individuals with higher BWs), while 486 genes exhibited a negative association 

with BW (i.e., gene expression tended to be greater in individuals with lower BWs). These 

prioritized genes are henceforth referred to as BW+ and BW− genes, respectively. The large 

majority of both BW+ (n = 379, 86%) and BW− (n = 467, 96%) gene sets had higher 

than average expression across individuals (Figure S4), with a small percentage of BW 

genes showing the opposite pattern—BW+ and BW− genes having lower expression across 

individuals with higher or lower BW (n = 69, 14% and n = 19, 4%, respectively). Restricting 

our analyses to the top expressed genes across subjects (n = 15,634 genes CPM > 1) 

also showed consistent results (786 [85%] of significant genes overlapping). Overall, these 

results suggest that the DE reflected by the BW+ and BW− gene sets can be interpreted as 

opposing effects of actively expressed genes.

We performed multiple sensitivity analyses across the PEC dataset, showing highly 

convergent results (Figure S4). First, using a Freedman-Lane permutation test21 to assess 

robustness to a nonparametric hypothesis test where transcriptomic data were permuted 

across individuals, all 928 BW genes remained significant (all pBonferroni < 0.05, 25,000 

permutations). In addition, the total number of significant BW genes was greater than the 

number of BW genes under the null hypothesis (p < 2e–6, 25,000 permutations). Next, 

using a cell-type deconvolution approach with combined reference single-cell sequencing 

datasets,22 we found that interindividual variability in the proportion of neurons (which 

approximates neuron density) was not significantly related to BW (t = −1.54, p = 0.12). 

In addition, when including principal-component scores based on genotype (to account 

for possible ancestry effects) in the BW gene models in the PEC sample, 619 of the 

BW genes remained significant (pBonferroni < 0.05), with a high correlation to original 

model coefficients (r = 0.92, p < 0.0001; Figure S2). Furthermore, there are known inter-

relationships between brain size and anthropometrics,23 which we observed in our data 

between BW and height, as well as between BW and body weight (n = 1,206; partial r2 

from regression model = 0.09 and 0.03, respectively; both p < 0.0001). Consistent with 

these significant but relatively low effect sizes, BW models including height and weight as 

covariates (available only in a subset of individuals) were highly correlated to the original 
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models (cross-gene correlation, r = 0.89, p < 0.0001; Figure S2). Comparing genes with 

significant associations (pBonferroni < 0.05) across BW and anthropometrics supported the 

existence of specific associations with BW—507 of 928 genes were not significant for 

height or weight (Figure S2).

To further examine the role of age in the BW expression results in the PEC dataset (age 

range = 0–90 years, median = 53 years, standard deviation = 21.2 years), we performed a 

post hoc association analysis to examine the interaction between BW and age on expression 

for each gene. An additional 222 genes showed significant (pBonferroni < 0.05) BW-by-age 

interaction effects (linear or quadratic age terms). There were 130 genes with positive 

coefficients denoting the effect of BW on expression increasing with age, and 92 genes with 

negative coefficients denoting the effect of BW on expression decreasing with age (Figure 

S3). In contrast to the defined BW gene sets, whose expression shows positive (BW+) or 

negative (BW−) associations with BW across the lifespan, these gene sets identified for 

having significant age interaction effects show an opposite effect in early life. Specifically, 

genes with positive interactions initially show a negative relationship between expression 

and BW in early life, and then positive relationships across older age bins; whereas genes 

with negative interactions initially show a positive relationship between expression and BW 

in early life, and then negative relationships across older age bins. Thus, we find genes 

whose changing expression patterns are differentially related to BW across the lifespan. 

These genes are detailed in Table S1.

Furthermore, a meta-analytic approach examining the 733/928 significant BW genes 

available in two replication datasets (GTEx: n = 227 subjects, n = 1,327 samples across 

12 brain regions, STAR Methods; ROSMAP: n = 634 subjects and samples, all frontal 

cortex) revealed highly similar BW gene sets: 329/733 PEC BW genes were nominally 

significant (uncorrected p < 0.05; weighted Sime’s method24) compared with approximately 

37 genes that would be expected to replicate by chance under the null hypothesis of no 

association.9 In addition, combining the discovery and replication datasets revealed highly 

similar BW gene sets to those identified by the discovery dataset alone (weighted Sime’s 

method: 733/733 overlapping genes, pBonferroni < 0.05), with an additional 116 genes 

meeting significance under the combined framework (pBonferroni < 0.05; Table S1).

We performed additional assessments of replicability in addition to the meta-analytic 

approach for replicating the PEC results in GTEx and ROSMAP. Rank-rank hypergeometric 

overlap25 analysis confirmed significant replication in both datasets: GTEx (n = 227 

subjects; Spearman r = 0.39, p < 0.0001; 417/846 significant overlapping genes) and 

ROSMAP (n = 634 subjects; Spearman r = 0.34, p < 0.0001; 525/847 significant overlapping 

genes).

Brain size-associated genes have distinctive neurodevelopmental and anatomical profiles

Comparing BW+ and BW− genes revealed opposing neurodevelopmental trajectories in 

tissue samples spanning the prenatal period through young adulthood in the BrainSpan 

atlas26 (Figure 1B). Moreover, the BW sets showed striking overlap with previously defined 

gene sets based on developmental trajectory across the perinatal period in an independent 

dataset with dense prenatal sampling (BW+ and “rising” genes, BW− and “falling” genes; 
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Figure S3,27). For example, OPALIN (BW+ gene) was the highest-ranked rising gene based 

on the slope of expression, and SOX11 (BW− gene) was the fourth highest-ranked falling 

gene. The fact that neither BW gene set was relatively highly expressed just after birth, 

at the peak of overall brain growth and during a critical period of constituent tissue class 

differentiation (Figure 1B), is consistent with previously established findings of low overall 

gene expression variation after the late-fetal transition.18

In line with the neurodevelopmental results, BW+ and BW− gene sets revealed opposing 

spatial topographies of average gene expression in densely sampled postmortem adult 

human brain tissue (Figure 1C),28 with BW+ genes showing high expression in association 

cortical regions and BW− genes showing high expression in sensorimotor and paralimbic/

limbic cortical regions. Therefore we computed a map of relative expression differences, 

comparing BW+ versus BW− genes across cortical regions. Out of 177 cortical regions 

with sufficient samples (STAR Methods), 115 (65%) showed significantly greater relative 

expression of either BW+ or BW− gene sets (two-tailed t test per region, pBonferroni 

< 0.05 across regions). Out of 12 subcortical regions, 10 showed significant BW− 

relative expression differences (Table S2). These differences in BW+/−relative expression 

demonstrated extreme regional divergence and were far greater than expected by chance 

given the number of BW+ and BW− genes (ppermutation < 0.0001). Moreover, these 

regions of significant BW+/− relative expression (Figure 1D, left) showed different patterns 

of correspondence with multiple maps of brain organization, function, and disease (all 

pspin < 0.05; Figure 1D, right)—including axes of fine-grained cortical SA expansion,29,30 

aerobic glycolysis,31 myelin-related topography,32 cognitive function,33 tau distribution in 

Alzheimer’s disease (AD) patients,34 and tumor location frequency across patients with 

glioblastoma and low-grade glioma.35 In addition, the BW+/− relative expression map was 

robust to an alternative cortical parcellation (Figure S3), and regions with high relative 

expression of BW genes showed greater morphological effects across diagnostic categories 

and showed differential patterns of neurodevelopmental growth. Specifically, the spatial 

topography of BW+/− relative expression was correlated with regional SA alterations across 

neuropsychiatric disorders (r = 0.52, p = 0.0017, ppermutation < 0.0001, pspin < 0.000136); as 

well as regional variation in the age at peak gray matter volume during neurodevelopment (r 

= −0.47, p = 0.0046, ppermutation < 0.0001, pspin < 0.00014).

Cortical regions with BW+/− relative expression differences were also affiliated with 

specific neurophysiological, functional, and cytoarchitectonic classes. Using available 

spatially comprehensive positron emission tomography (PET) neuroradiography data,37 

areas of high relative expression of BW− genes showed greater densities of dopaminergic 

and serotonergic receptors compared with areas of high BW+ relative expression (Figure 

S4). Moreover, there was an abundance of BW− regions in primary sensory cortices 

containing short distance (<80 mm) white matter fibers as estimated with diffusion MRI, and 

an abundance of BW+ regions in higher-order association cortices with long distance white 

matter fibers (Figures S4 and S5). This aligns with previous neuroimaging genome-wide 

association studies (GWASs) that have identified axon guidance molecules (SEMA3D and 

ROBO3) associated with diffusion MRI phenotypes of the crossing pontine tract9—a nexus 

of both intra-cerebellar long-range corticopontine fibers. Relatedly, a 3D-recon-structed 

Merker-stained postmortem human brain38 revealed a highly diverging laminar architecture 
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of relative cell density, but not relative thickness, in layer IV for BW− regions and layers 

V/VI for BW+ regions,39 a pattern which was also validated using spatial RNA sequencing 

data (Figure S5).40 Collectively, these results are aligned with century-old observations on 

cytoarchitectonic variation across the cerebral cortex,41 demonstrating the convergence of 

BW− regions with the relatively small number of regions in “heterotypic” cortex and BW+ 

regions with the more abundant canonical “homotypic” six-layered cortical regions (Figure 

S5).

Brain size-associated genes show cross-species and cell-type specificity

Genes that are positively associated with variability in brain size among humans may 

also be implicated in brain size on an evolutionary timescale. Using data from a parallel 

cross-species study in humans and non-human primates (http://evolution.psychencode.org/; 

STAR Methods; n = 16 regions; n = 6 humans [H], not included in main analyses; n = 5 

chimpanzees [C]; n = 5 macaques [M]),19 we sought to determine whether phylogenetic 

variability in brain size (PBS+ = H > C > M; PBS− = H < C < M) was associated with DE 

in BW genes across species. Across brain regions, 726 genes showed patterns of interspecies 

DE in accordance with PBS (pBonferroni < 0.05), and over 60% of genes previously 

identified as differentially expressed in humans42 showed specific PBS directional effects 

(STAR Methods). We found a general consistency between overlapping BW and PBS genes 

(n = 366 significant gene-by-region effects, n = 110 unique genes) such that BW+ aligned 

with PBS+ and BW− aligned with PBS-, respectively (73% congruence, ppermutation < 

0.0001; Figure 2A). Considering all homologous genes across species, we found that there 

was a moderate but significant relationship between BW effect size and PBS effect size 

(Spearman r = 0.19, ppermutation < 0.0001). However, it is interesting to note that, in 

macaques, there were no regions with significant BW+ relative expression (Table S2),43 

which is consistent with previous results showing human-specific expansion of association 

cortical regions29 (where BW+ genes show greater relative expression differences in 

humans; Figure 1D).

If the neurodevelopmental trajectories of BW+ and BW− genes differ between humans 

and non-human primates, we would expect to see differences between species in BW+/− 

relative expression. We leveraged established DE statistics between humans and macaques19 

to assess whether there were differences in BW+/− relative expression across brain regions 

and developmental epochs were similar across species. Greater numbers of BW− genes 

were differentially expressed during the prenatal epoch and greater numbers of BW+ genes 

were differentially expressed in the postnatal epochs in humans compared with macaques 

(Figure 2B). Although there were more differentially expressed BW+ genes in the early 

postnatal period in humans (Figure S6), there was a small number of exceptions to the 

general pattern observed in the prenatal period (generally BW− predominant) and the 

adult period (generally BW+ predominant). Specifically, the striatum and thalamus showed 

more BW+ differentially expressed genes prenatally, and the hippocampus showed more 

BW− differentially expressed genes in adult humans. This relative heterochronicity in 

the abundance of BW differentially expressed genes in non-cortical brain regions could 

reflect the protracted neurogenesis of adult hippocampal compared with thalamic neurons.45 

Overall, these results suggest that BW gene sets are enriched for genes that show divergent 

Seidlitz et al. Page 8

Cell Rep. Author manuscript; available in PMC 2025 January 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://evolution.psychencode.org/


expression in humans compared with non-human primates, with BW− and BW+ genes 

showing increased expression in early and late periods, respectively (where each set is most 

highly expressed across human development).

We hypothesized that BW+/− relative expression differences could be related to the 

relative abundance of specific cell types among brain regions and across developmental 

and evolutionary timescales. In single-cell (fetal) and single-nucleus (adult) RNA 

sequencing data18 in macaques http://evolution.psychencode.org/ and humans http://

development.psychencode.org/, there was greater BW− expression compared with BW+ 

expression across most macaque prenatal cell types and all human prenatal cell types, 

including human-specific progenitor cell subtypes (Figures 2C and S6). Overall, in both 

species, there were fewer adult cell types with BW+/− relative expression differences. 

Whereas BW− genes did not show any relative expression differences in adult macaques, 

they demonstrated greater relative expression in human endothelial and oligodendrocyte 

progenitor cells, as in their respective prenatal cell type counterparts. In both species, BW+ 

genes showed greatest relative expression in excitatory neurons (primarily supragranular 

layer subtypes) and oligodendrocytes, in contrast to BW− relative expression in those 

prenatal counterparts (Figures 2C and S6). These results are consistent with spatiotemporal 

and laminar findings (Figure 1), as well as the differential trajectories of human gene 

expression across BW+ (low prenatal, high postnatal) and BW− (high prenatal, low 

postnatal) gene sets. This coincides with observed protracted maturation of cortical myelin4 

as well as the relative neuronal density of cortical regions with expanded supragranular 

layers.41

The BW cell-type divergence is further reflected by the predominance of prenatal BW− 

differentially expressed cell types within species versus a predominance of postnatal BW+ 

differentially expressed genes across species. The human-specific neotenic BW− DE in 

inhibitory neurons and astroglial cell types is in line with the abovementioned findings of 

BW− relative expression between species in the adult hippocampus—a structure that not 

only is preferentially enlarged in humans relative to non-human primates46 but is also highly 

connected (via specified GABAergic inhibitory circuits47) to functionally related areas of 

significant BW− relative expression (see Figure 1D). Recent work has also demonstrated the 

convergent roles of inhibitory neuron and astrocyte marker genes (e.g., BW− genes ROBO1 
and AQP4, respectively) on synaptic plasticity in the hippocampus, identifying a potential 

underlying link between brain size and local circuit function.48,49 Independent human fetal 

RNA sequencing across brain regions further suggest greater BW− relative expression 

signatures in the subventricular zone (Figure S7), which is expanded in primates50,51 and 

in line with the BW− enrichment of neuronal precursor subtypes and perseveration of BW− 

enrichment in adult human inhibitory neuron subtypes.52

Brain size-associated genes are implicated in neuropsychiatric and neurodevelopmental 
disorders

Given myriad previous studies showing brain volume abnormalities across a range of 

neuropsychiatric and neurodegenerative disorders, we predicted that BW− expression 

associations would be related to DE statistics from postmortem brain case-control studies 
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of these conditions. Akin to genetic correlation analysis—where overlap between significant 

loci from GWAS does not necessarily imply an overall genetic correlation between two 

traits (or vice versa)—we would expect to observe “transcriptomic correlations” of DE 

statistics across all genes if relative patterns of DE are similar (or opposing) between 

these phenotypes.53 Across shared genes in each condition (n = 4,226 genes), there were 

significant gene-level correlations between PEC BW− expression statistics and DE statistics 

from previous studies on neuropsychiatric53 and neurodegenerative54,55 disorders (Figure 

3A). Specifically, positive correlations were found with alcohol abuse disorder, whereas 

negative correlations were found with Parkinson’s disease, AD, autism spectrum disorder 

(ASD), bipolar disorder (BD), and schizophrenia (SCZ), with no significant correlation 

with inflammatory bowel disease—a non-neural control. The direction of correlation related 

to the proportion of intersecting significant BW and DE genes (both thresholded pFDR < 

0.05) showing either convergent (positive correlation = BW/DE +/+ or −/−) or divergent 

(negative correlation = BW/DE +/− or −/+) effects, with five disorders showing significant 

BW-DE alignment scores (all ppermutation < 0.001; Figure 3B). Moreover, we identified a 

subset of 36 BW-DE genes shared across disorders showing divergent BW-DE alignment 

(AD, ASD, BD, SCZ; Figure 3C). This subset of BW-DE genes was almost perfectly 

separated in terms of the direction of effect, such that BW+ genes were downregulated and 

BW− genes were upregulated in patient tissue (Figure 3C). In supplemental analyses, we 

also derived a cumulative BW transcriptome score, which showed case-control differences 

across diagnostic categories (Figure S7). Consistent with the spatial alignment between the 

map of BW+/− relative expression and tau-PET (Figure 1D), the cumulative transcriptome 

score was also associated with indices of tau and amyloid neuropathology in patients with 

dementia in the independent ROSMAP dataset (supplemental information).

Furthermore, functional gene ontology enrichment analysis of the BW gene sets aligned 

with disease DE signatures. BW+ genes showed significant enrichment for axonal and 

synaptic functions, including ion channel signaling, and BW− genes showed significant 

enrichment for neurogenesis/organogenesis and abnormal developmental physiology 

(Figures 3D and S8; Table S3). Additional analysis using the Synaptic GO (SynGO) 

database57 https://www.syngoportal.org/ yielded specific synapse-related enrichments for 

both gene sets (cellular component [BW+]: postsynaptic cytoskeleton [pFDR = 0.032]; 

cellular component [BW−]: postsynaptic ribosome [pFDR = 4.64e–4], presynaptic ribosome 

[pFDR = 0.021]; biological process [BW+]: synaptic vesicle exocytosis [pFDR = 0.037]; 

biological process [BW−]: translation at postsynapse [pFDR = 0.037], translation and 

presynapse [pFDR = 0.037]).

In addition to the gene ontology analyses, BW genes showed enrichment across multiple 

modules derived from gene co-expression networks in the PEC dataset58 (Figure S9), 

indicating that BW genes are significant components of transcriptional regulatory programs, 

some of which may be cell-type specific. In alignment with the cell-type enrichment 

results described above, we found module-specific enrichments of BW− genes in “geneM3” 

(related to astrocytes) and of BW+ genes in “geneM1” and “geneM2” (related to neuronal/

synaptic signaling and oligodendrocytes, respectively). Using gene co-expression modules 

derived In the ROSMAP cohort,59 we found module-specific enrichments of BW− genes in 

“m107” (related to astrocytes) and of BW+ genes in “m23” (related to neuronal/synaptic 
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signaling) (Figure S9; Table S4; STAR Methods). Moreover, we found enrichment of BW− 

genes in “m109”, which was shown in prior work59 to be linked to cognitive decline and 

multiple indices of neuropathology (Figure S9). Further gene set enrichment analysis using 

independent RNA sequencing data across multiple tissues from the Human Protein Atlas60 

yielded significant enrichment of BW+ genes in the adult cerebral cortex versus enrichment 

of BW− genes in female reproductive tissues (Figure S10), which aligns with the high 

prenatal expression of BW− genes.

To examine the landscape of rare genetic variation in BW gene sets, hypothesized to be 

associated with neurodevelopmental disorders, we leveraged two metrics of mutational 

constraint derived from public databases of whole-exome sequencing and de novo 
mutations.61,62 We found that BW− genes, and not BW+ genes, were significantly 

enriched for intolerance to loss-of-function (protein truncating) variation (Figure S10). 

Using previously defined gene sets of high dosage sensitivity (n = 2,987 haploinsufficient; 

n = 1,559 triplosensitive), we found a significant bidirectional enrichment (χ2 = 6.1534, 

p = 0.0131, ppermutation = 0.0047; Figure S10), with greater overlap in BW− and 

haploinsufficient genes and between BW+ and triplosensitive genes.63 Moreover, BW− 

genes showed greater overlap with documented pathogenic de novo developmental 

mutations (BW− odds ratio [OR] = 1.46, ppermutation = 0.008; BW+ OR = 0.83, ppermutation 

= 0.31), which are associated with abnormalities of brain and cognition, head size, facial, 

gastrointestinal, and reproductive systems (all ppermutation < 0.05; Figure S10).

Brain size-associated transcription is regulated by genetic variants

The genetic regulation of the transcriptome is one factor that could contribute to 

interindividual variability in brain gene expression and brain size. We used multiple 

approaches to distinguish the influence of germline genetic variation on BW transcripts 

from reactive or secondary gene expression changes due to environmental events. First, 

leveraging individual-level transcriptome and genotype data from subjects in PEC as the 

reference dataset, we performed a TWAS of structural neuroimaging phenotypes in the UK 

Biobank (n = 21,936), normalized using BrainChart,4 to assess the degree to which BW 

gene sets overlapped with significant genes across neuroimaging TWAS. In general, BW 

genes significantly overlapped with 29 transcriptome-wide significant global (ppermutation 

< 0.01) and 124 unique transcriptome-wide regional (ppermutation < 0.05) genes associated 

with multimodal neuroimaging phenotypes (using a TWAS threshold of pBonferroni < 0.05 

across regions and phenotypes to establish significant gene sets). Specificity analysis across 

neuroimaging phenotypes did not reveal any significant differences in BW gene set overlap 

or enrichment. For TCV and cortical SA, two of the phenotypes whose models accurately 

predicted BW, 21 genes reached genome-wide significance (pBonferroni < 0.05) with 15 

shared between both phenotypes and an additional 6 significant only for SA. Fourteen 

of these shared genes were not identified in previous TWASs of related phenotypes—

intracranial volume and total brain volume.11,64 Of these 15 significant shared genes, 2 

genes (PRR13, EGFR) overlapped with BW gene sets (OR = 3.07, ppermutation = 0.0053), 

and an additional 7/13 genes (LRP11, INPP5F, ERBB3, EML2, SUOX, GINM1, CCT7P1) 

were members of PEC co-expression modules significantly enriched for BW genes (see 

previous section). Sensitivity analysis (conducted with an uncorrected p < 0.05 for TWAS 
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genes) also demonstrated significant enrichment of TCV and SA genes, with 40 genes 

overlapping with BW gene sets (OR = 9.21, ppermutation < 0.0001). Supplemental analyses 

with a wide range of neuroimaging phenotypes including diffusion MRI measures (Figure 

S11), at both whole-brain and regional scales, also demonstrated significant overlap with 

BW genes (pBonferroni < 0.05; see supplemental information; Table S5).

To further evaluate the genetic influence of BW gene sets on other phenotypes, we leveraged 

>2,300 GWAS summary statistics across micro- and macro-structural neuroimaging 

phenotypes.10 Using established gene set enrichment methods (MAGMA65), competitive 

enrichment analyses of multimodal global neuroimaging phenotypes (averaged or summed 

across regions) revealed a strong and specific link of BW− genes to brain size (cortical 

SA and volume) but not brain composition measured via diffusion MRI (Figure 4A; Table 

S6). Interestingly, we did not find enrichment of BW gene sets with recent large-scale 

GWAS of height,66 body mass index,67 or head size (head circumference and intracranial 

volume),68–70 which could either indicate insufficient statistical power for current head 

size GWAS or suggest a specificity to brain parenchyma size (Table S6). Based on BW− 

gene set enrichment in GWAS of morphological phenotypes (cortical SA and volume), 

post hoc analysis revealed a spatially patterned enrichment of BW− genes in GWAS 

of specific cortical regions (Figure 4A; Table S6). Remarkably, cortical regions showing 

significant BW− gene enrichment in SA GWAS overlapped with regions with high BW− 

relative expression as shown in Figure 1D (OR = 6.17, p = 1.14e–5, pspin < 0.0001), but 

did not overlap with regions with high BW+ relative expression (OR = 0.61, p = 0.14, 

pspin = 0.94). These brain regions with significant BW− gene enrichment in SA GWAS 

also showed significant overlap with established regions of hypo-allometric scaling (OR = 

3.98, pspin < 0.0001; using maps of allometric [non-linear] scaling of regions with total 

brain size across population, evolutionary, and developmental scales). Collectively, these 

results integrate neuroimaging maps of local nonlinear scaling with brain size, the genetic 

regulatory signatures of brain size-related morphology, and the spatial differential gene 

expression underlying brain size variation.

Finally, we used recently published multivariate multiple quantitative trait loci (mmQTLs) 

derived from the same three cohorts71 used in the current study to triangulate genetic 

variants (i.e., SNPs) that may influence brain-related traits via an impact on regulating 

expression of BW genes. Thus, we were able to identify eight BW− genes (EGFR, FARP1, 

HAUS4, ID4, IP6K2, PRMT6, SARM1, TRIOBP) and four BW+ genes (FAM134A, RP11–
660LI6.2, STAT4, THBS4) with mmQTLs associated with brain-related traits including 

educational attainment, impulsivity, and psychotic disorders (Figure 4B). Of these, BW− 

genes ID4, IP6K2, and TRIOBP showed evidence of pleiotropy across multiple brain-

related traits, and expanded analysis across all studied traits showed additional pleiotropic 

associations between both BW gene sets and multiple anthropometric and metabolic 

domains (Table S7).
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A brain size transcriptomic score is associated with disease pathology and clinical 
outcomes in healthcare system data

Inspired by recent work on the integration of transcriptomic data and polygenic indices,72 

and based on the overlap of BW gene sets with differentially expressed genes in patients 

with neuropsychiatric disease, we developed a BW− transcriptome score—calculated for 

each individual as the linear combination of weighted gene expression (i.e., sum of 

expression across genes weighted by the PEC BW model coefficients). Using all available 

genes, this cumulative PEC BW− transcriptome score was predictive of BW in the 

replication samples (GTEx partial r = 0.19, p = 0.0266; ROSMAP partial r = 0.17, p = 

1.44e–5; Figure S7), demonstrating similar out-of-sample prediction as polygenic scores 

derived from GWASs of structural neuroimaging phenotypes in much larger cohorts.73 

Moreover, we found this BW− transcriptome score to have significant group differences 

across neuropsychiatric disorders (PEC), as well as patients with a reported history of 

smoking (GTEx; Figure S12)—a well-documented comorbidity with deleterious effects on 

brain morphology.74 In addition, considering the spatial alignment between the BW+/− 

relative expression and neurodegenerative disease pathology (from tau PET), we found 

significant group differences in the BW transcriptome score in patients with dementia 

(ROSMAP). In ROSMAP, we implemented a linear mixed effects model framework similar 

to the per gene BW models (STAR Methods) with the BW− transcriptome score instead 

as the outcome variable and Braak stage or amyloid as predictor variables in lieu of BW. 

We found significant relationships between interindividual variation in BW− transcriptome 

scores and both postmortem neuro-pathological metrics (all gene BW− transcriptome score: 

Braak stage t = −2.173, p = 0.0171; amyloid t = −4.832, p = 1.71e–6).

To further investigate the clinical correlates of genetic variation influencing BW 

transcription, we conducted a phenome-wide association study of patient medical outcomes 

in the Mass General Brigham Biobank, an independent biorepository from a US healthcare 

system.75 We then used logistic regression models to examine relationships between the 

BW− transcriptome score and 1,482 case-control disease/disorder phenotypes in up to 

37,272 individuals of European ancestry. All models included sex assigned at birth, current 

age, genotyping batch, and the first 10 genetic principal components as covariates.

Overall, we found that 241 phenotypes were associated with the BW− transcriptome score 

at pFDR < 0.05, of which 36 were pBonferroni < 0.05, with odds ratios ranging from 

0.3 to 3.1 per standard deviation increase in the score (Figure 5; Table S8). The most 

notable associations were with neurodegenerative disorders (negative association), general 

mental and behavioral problems (negative), congenital brain abnormalities and neural tube 

defects (negative), and intellectual disability (positive). Individuals with extreme BW− 

transcriptome scores in both directions also showed worse health in many other bodily 

systems. They were more likely to suffer, for example, from infertility or adverse pregnancy 

outcomes. Collectively, this integrative genomic scoring approach, leveraging observed 

BW− expression associations and imputed gene expression data, demonstrates a proof-of-

concept bridge between functional enrichments and bioinformatic annotations of the BW 

gene sets with real-world translational potential.
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DISCUSSION

Human brain size changes dynamically during the lifespan and varies substantially across 

individuals. Using available postmortem brain RNA sequencing and coupled ancillary data 

including BW from over 2,000 human brain samples, we identified hundreds of genes that 

are differentially expressed across the BW continuum. Our results are replicable across 

independent datasets, show evidence of specificity to BW compared with correlated traits 

such as height and weight, and reveal many BW genes that have not been implicated 

previously in imaging-genetic studies of brain size-related phenotypes. Overall, genes 

upregulated in individuals with larger brains (BW+) or upregulated in individuals with 

smaller brains (BW−) showed highly diverging spatiotemporal and cell-type-specific 

patterns of gene expression, and opposing DE patterns across species and in patients 

with neuropsychiatric disorders. These results pinpoint unreported molecular features of 

human brain size variation, and highlight the value of integrating measurements of brain 

morphology with postmortem transcriptomics.

The opposing developmental trajectories of BW gene sets, such that the expression of 

BW+ genes generally increases with age while that of BW− genes decreases with age, 

are highly suggestive of functional differences between these genes and their relationship 

with brain size. The difference in developmental trajectories of BW+ and BW− genes is 

corroborated by the anatomical convergence between the BW+/− relative expression map 

in the Allen Human Brain Atlas (AHBA) and the topography of volumetric growth during 

human development.4 We find that brain areas with higher BW+ relative expression (frontal, 

parietal, temporal cortices) undergo protracted maturation with peak volume occurring later 

in life, while brain areas with higher BW− relative expression (insula, sensory cortices) 

achieve peak volume earlier in development. Moreover, the cross-species relative expression 

patterns in BW gene sets collectively mirror the expression differences observed in humans 

relative to non-human primates,19 with greater differences in the prenatal and late postnatal 

periods. BW− genes showed greater relative expression differences across both brain regions 

and cell types during the prenatal epoch—and these differences showed more pronounced 

expression in humans compared with macaques—which may be explained by BW− genes’ 

significant enrichment for molecular pathways involved in overall organismal growth and 

neurogenesis in particular. Notably, ID4, a BW− gene that functions as a transcriptional 

regulator, was previously implicated as part of a human-specific neural progenitor class 

showing earlier and higher expression in human fetal development compared with mice, 

and Id4-deficient mice also exhibit decreased brain size and mistimed neurogenesis.76,77 

In contrast to BW− genes, BW+ genes showed relative expression differences across 

brain regions and cell types during postnatal periods (differences that were, again, more 

pronounced in humans relative to macaques). Of particular note, the BW+ cell membrane 

protein-encoding gene FREM3 has been shown to have human-specific expression in deep 

cortical layer III glutamatergic neurons and distinct relationships with morphological and 

electrophysiological properties relative to other supragranular genes.78 The functions of 

FREM3 and the BW+ gene MBP, which is critical for myelination of white matter tracts, 

pinpoint a potential role of BW+ genes in the origination of long-range cortical feedforward 

projections that emerge during childhood.79
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The aforementioned spatiotemporal associations demonstrate the critical link between 

BW− genes and brain growth during dynamic periods of human neurodevelopment, well 

before peak brain size is reached. Thus, BW− genes can be interpreted as being both 

highly expressed in individuals with lower BW and when the brain is smallest. As only 

postnatal data were available to initially define the BW gene sets, the limited prevalence 

of high expression of BW− gene transcription in specific cell types later in life suggests 

that overall brain size is heavily influenced by critical periods of neuronal proliferation 

and migration when BW− genes are highly expressed. This hypothesis is in line with 

the finding of BW− relative expression differences in distinct postnatal cell types in 

humans relative to non-human primates, including inhibitory neurons in cortical layer IV. 

Notably, the AHBA BW+/− relative expression map and respective bio-annotations—against 

cytoarchitectonic, connectivity, and spatial expression data—further support the relationship 

between BW− genes and cortical layer IV. Previous work has demonstrated the potential role 

of protocadherins in the specification of layer IV identity in mice,80 and eight protocadherin 

family genes were identified within the BW− gene set (and none in the BW+ set). This gene 

superfamily is involved with dendritic arborization and synaptic functioning, with evidence 

of broader developmental roles in programmed cell death and interneuron positioning in the 

cortex,80,81 and has been implicated in a number of neuropsychiatric and neurodegenerative 

diseases.82

There was direct evidence that BW genes are relevant to human disease. Intriguingly 

BW+ genes tended to be downregulated, while BW− genes tended to be upregulated, in 

individuals with SCZ and AD, two disorders that are robustly associated with decreased 

brain size.4 This trend was also seen in BD and ASD, informing long-standing debates 

about the relevance of mechanisms that influence brain size to the pathophysiology of 

neuropsychiatric disorders in light of many shared genetic risk factors.53,83,84 Although 

these BW expression associations were identified in postmortem transcriptomic datasets, 

the translation of the cumulative BW− transcriptome score using imputed expression in 

the Mass General Brigham Biobank yielded associations to diverse clinical phenotypes 

that aligned with the bioinformatic annotations of BW gene sets. Notably, the relationship 

between the BW− transcriptome score and general mental health problems, intellectual 

disability, and neurodegenerative conditions helps validate the translational potential of this 

approach.

Of particular interest were phenotypic relationships with congenital brain-related anomalies, 

which were associated with a negative BW− transcriptome score. While a comprehensive 

examination of the relationship between gene dosage sensitivity and mechanisms that 

influence brain size is outside the scope of the current study, we did observe increased 

loss-of-function intolerance as well as enrichment for known causes of microcephaly in 

BW− (and not BW+) genes. Two of 12 genes (PHC1, CEP135) involved in primary 

microcephaly were within the BW− gene set,85 and recent work has also demonstrated the 

causal role of BW− genes TRIM71 and EGFR in the pathogenesis of hydrocephalus-induced 

and viral-induced microcephaly, respectively.86,87

Despite the myriad results demonstrating a clear distinction between the BW+/− gene 

sets, it is important to note exceptions to this trend. For example, we identified multiple 
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gene groupings from both BW+/− sets that are affiliated with prominent growth signaling 

pathways: IGF2BP2 (BW−) and IGF2BP3 (BW−) versus IGFBP6 (BW+); WNT2 (BW+) 

versus WNT4 (BW−); BMP4 (BW−) versus BMPR1B (BW+); EGF (BW+) versus EGFR 
(BW−). This molecular convergence of genes showing opposing associations with brain 

size points to a possible regulatory model of brain growth whereby BW− genes in these 

mixed BW+/− gene subgroups are negatively regulated by their complement BW+ genes. 

Under this model, BW− genes (enriched for neurogenesis) may promote brain growth during 

early development. Thus, an observed reduction in brain size could result from either (1) 

overexpression of BW+ genes prenatally (when BW− genes are highly expressed, leading to 

brain growth faltering) or (2) overexpression of BW− genes postnatally (when BW+ genes 

are highly expressed, leading to premature degeneration). This simple regulatory model is in 

line with prior evidence on head size in children with ASD harboring distinct rare genetic 

mutations.88

Limitations of the study

Some methodological aspects of the present study deserve further consideration in future 

work. First, most donor samples came from the cerebral cortex (specifically dorsolateral 

prefrontal cortex). The GTEx dataset is an exception, with samples coming from numerous 

cortical and non-cortical regions; however, GTEx contains considerably fewer donors than 

the PEC and ROSMAP datasets. Future work will incorporate additional brain regions to 

assess variability in differential gene expression with respect to variation in BW. Second, 

BW was used as a proxy for brain size in transcriptomic analyses. Although future studies 

could directly measure brain volume in addition to weight, the linear association between 

BW and volume has been clearly established. Third, given the lack of linked brain size 

and transcriptomic data in non-human primate datasets, the cross-species analyses herein 

were restricted to general inter-species differences. Thus, although we found evidence 

of divergence in regional patterning of BW+/− relative expression, it remains possible 

that different genes also control brain size in non-human primates. Future work in other 

non-primate species (e.g., mice) with more comprehensive accompanying phenotypic 

data will be critical to extend this cross-species assessment and experimentally validate 

the molecular pathways, cell-type specificity, and causal roles of identified BW genes 

in humans. Furthermore, given the lack of cell-specific resolution from the bulk tissue 

transcriptomics and, despite our cell type deconvolution results showing an insignificant 

relationship between estimated neuronal proportion and BW across individuals, we cannot 

fully rule out the possible contribution of cell type proportionality and brain size. Further 

analysis in datasets with both single-cell sequencing and brain size estimates from the 

same individuals will be required to validate the cell-specific findings herein. Finally, all 

donors for the transcriptomic analyses were sampled during the postnatal period. Given 

that many of our results highlight the importance of prenatal epochs, future work using 

similar transcriptomic data in fetal tissue will be critical for comparative analysis during 

early periods of neurodevelopment.

Despite these methodological considerations, this study comprehensively outlines the 

transcriptomic underpinnings of human brain size variation and demonstrates the importance 

of postmortem measurement of brain size as a quantitative trait to incorporate into 
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transcriptomic analyses. Examined separately or in contrast to one another, the BW+/

− gene sets define the spatiotemporal extremes of brain gene expression, charting a 

molecular segregation of brain regions and developmental epochs. Our results implicate 

BW genes in the expansion of the human brain relative to non-human primates, as well as 

gene expression differences observed in brain tissue from patients with neuropsychiatric 

and neurodegenerative disorders with established differences in brain size. The BW− 

transcriptome score bridges ex vivo transcriptomics and in vivo genetic risk, highlighting the 

role of BW genes in both primary and non-primary brain conditions. With ever-increasing 

data from open science initiatives, parallel innovations in RNA sequencing technology, and 

widespread utility of clinical genetics, the power of leveraging phenotypic associations from 

readily accessible transcriptomic datasets holds tremendous promise for future translational 

studies across human traits and diseases.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents 

should be directed to and will be fulfilled by the lead contact, Jakob Seidlitz 

(jakob.seidlitz@pennmedicine.upenn.edu; seidlitzj@chop.edu).

Materials availability

• This study did not generate new unique reagents.

Data and code availability

• This paper analyzes existing, publicly available data. These accession numbers 

for the datasets are listed in the key resources table.

• All original code is available in this paper’s supplemental information.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

METHOD DETAILS

Validation of brain weight predictions from lifespan neuroimaging models
—Brain weight data from the three primary transcriptomic datasets (N = 2,531; 

PsychENCODE, GTEx, ROSMAP) was combined with additional brain weight data from 

the literature101 (total N = 3,689). Metrics of brain size (total cerebrum volume and total 

cortical surface area) for each subject were predicted using life-spanning models of the two 

neuroimaging phenotypes.4 Subsequently, brain weights for each subject were converted 

to volumes based on reported estimates of average brain density,20 and correlations were 

computed with predicted brain size.

Brain weight differential gene expression analysis—All transcriptomic datasets 

were downloaded from accessible repositories listed in the table above, with methods 

described previously in the respective source citations. Briefly, the PsychENCODE “freeze 

2” dataset consisted of uniformly processed data from six studies: BipSeq, LIBD_szControl, 
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CMC_HBCC, CommonMind, BrainGVEX and UCLA-ASD.94,102 Post-quality-control 

RNA-seq reads were previously aligned to the hg19 reference genome with STAR 2.4.2a 

and gene-level quantifications were calculated using RSEM v1.2.29. Genes were filtered to 

include those with >0.1 TPM in at least 25% of samples. Similarly, GTEx RNA-seq reads 

were aligned to the hg19 reference genome with STAR 2.4.2a and transcript-level counts 

quantified with RSEM v1.2.22. Samples from non-brain tissues and tissues with different 

sample preparation (cortex and cerebellar hemisphere) were removed. Additionally, samples 

with a history of disease possibly affecting the brain prior to filtering for features with CPM 

>0.1 in at least 25% of samples were also removed. Gene-level counts were then normalized 

using TMM normalization in edgeR and log2-transformed to match PsychENCODE. Each 

brain region was then assessed for outlier samples, defined as those with standardized 

sample network connectivity Z scores < −3, which were removed. For the ROSMAP cohort, 

normalized data from previous publications was downloaded from the link provided in the 

table above based on previous work.90 RNA-seq data was aligned by Tophat v2.0 and 

v2.1 and transcript enrichments were estimated with RSEM. Quality metrics were provided 

by Picard, which was also used to mark duplicate reads. Within-batch normalization was 

conducted through quantile normalization while the between-batches normalization was 

conducted through ComBat.103 Overall, 25,774 genes were included in the PsychENCODE 

analyses after filtering, 21,347 in GTEx (19,481 overlapping with PsychENCODE), and 

15,083 in ROSMAP (all overlapping with PsychENCODE).

For the PsychENCODE and GTEx cohorts, code for performing the transcriptomic 

normalization and differential expression analysis followed a previously published 

approach58,94 with the addition of brain weight as an independent predictor variable 

(https://github.com/gandallab/C4A-network). Per gene linear models were implemented for 

PsychENCODE, and linear mixed effects models using the “lme4” package in R were 

implemented for the GTEx cohort with the addition of a random effect for donor (to account 

for the multiple brain regions per donor). p-values for the linear mixed effects models 

were calculated using the likelihood ratio test, as implemented in the “lmerTest” package 

in R. For ROSMAP, as for the GTEx dataset, per gene linear mixed effects models were 

implemented, including covariates used for the normalization, brain weight, and a random 

effect of study. Cross-cohort meta-analyses were performed at the level of gene-brain weight 

association statistics (beta coefficients) and empirical p-values using the ‘metap’ packing in 

R.

Neuroimaging data—Structural minimally processed (https://biobank.ctsu.ox.ac.uk/

crystal/crystal/docs/brain_mri.pdf) T1 and T2-FLAIR weighted data was downloaded from 

the UK BioBank, and further preprocessed with Freesurfer (v6.0.1)97 using the T2-FLAIR 

weighted image to improve pial surface reconstruction. The ‘recon-all’ reconstruction 

included bias field correction, registration to stereotaxic space, intensity normalization, 

skull-stripping, and white matter segmentation. When no T2-FLAIR image was available, 

Freesurfer reconstruction was done using the T1 weighted image only. Given systematic 

variation related to the inclusion of T2-FLAIR, this was included as a confound 

variable in downstream analyses. Following reconstruction, the Human Connectome Project 

multimodal parcellation “HCP-MMP”104 was aligned to each individual freesurfer average 
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image and parcellated values were extracted. Reconstruction reliability was assessed using 

the Euler index105 and included as a covariate in subsequent analyses.

Structural diffusion weighted imaging was obtained for both datasets. In addition to MD 

and FA, we ran Accelerated Microstructure Imaging via Convex Optimization (AMICO) to 

estimate neurite orientation density and dispersion indices.106 The T1 aligned parcellation 

template was co-registered to the diffusion weighted image using FSL FLIRT and regional 

values for FA, MD and the three NODDI parameters were extracted using AFNI’s 

3dROIstats function. Total sample size of the imaging dataset (to match with imputed 

expression data for the transcriptome-wide association analyses, described below) was 

22,387 subjects.

Neuroimaging transcriptome-wide association studies—To identify genes whose 

cis-regulated expression is associated with global and regional neuroimaging phenotypes in 

the UK Biobank in vivo dataset, we performed a series of transcriptome wide association 

studies (TWAS) leveraging individual-level genotype and postmortem brain expression data 

from PsychENCODE, described previously.58,95 Briefly, TWAS was implemented using 

the FUSION software package (https://github.com/gusevlab/fusion_twas95) with custom 

SNP-brain-expression weights generated using the PsychENCODE dataset of 1321 unique 

individuals with imputed genotypes. Using the AI-REML algorithm107 implemented in 

GCTA108 by the FUSION package, we first identified the subset (N = 14,750) of total 

expressed genes found to have significant cis SNP-heritability in our dataset (cis-h2
g 

uncorrected p < 0.05 within 1 Mb window around the gene body). SNP-expression weights 

were calculated in a 1Mb region around all heritable genes using expression measurements 

adjusted for diagnosis, study, age, age,2 RIN, RIN2, sex, tissue, PMI, 20 ancestry PCs, 

and 100 hidden covariates.58 Accuracy of five expression prediction models were tested 

(best cis-eQTL, best linear unbiased predictor, Bayesian linear mixed model, Elastic-net 

regression, LASSO regression) using the most accurate model for final weight calculations 

as implemented in the FUSION package. TWAS neuroimaging-association statistics were 

computed using these custom weights, LD structure calculated from our PsychENCODE 

samples’ genotypes, and neuroimaging data from UK Biobank as described above. For each 

global and regional neuroimaging phenotype, TWAS association statistics were Bonferroni-

corrected for multiple comparisons (final count N = 13,421 genes). At loci (+/−100 kb) 

with multiple significant associations, joint and conditional association analyses were further 

performed as implemented in the FUSION.post_process.R script. Gene weights are available 

from http://resource.psychencode.org/.

Bioinformatics analyses

Spatiotemporal annotation: Spatially-comprehensive cortical microarray gene expression 

data from the Allen Human Brain Atlas (AHBA) was processed and mapped to the same 

HCP-MMP atlas (N = 180 regions) as the previously described neuroimaging data28,91 for 

the purpose of assessing regional expression and relative expression differences in brain 

weight gene sets. Three regions (“MT”, “a10p”, “RI”) were removed due to inadequate 

sampling across donors and quality control. AHBA data was also mapped to the Desikan-

Killiany atlas (N = 34 regions) depending on the comparative maps used for spatial 
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correlation. Additional multimodal neuroimaging, cytoarchitectonic, and functional maps 

(each projected to the same abovementioned cortical parcellations) can be found in the 

key resources table. Developmental RNA-seq data as well as prenatal laser microdissection 

microarray data from BrainSpan26 was used for mapping age trajectories and assessing early 

regional relative BW expression differences (see also key resources table).

Cross-species effects: To assess relative expression differences in BW across species, 

we leveraged a matched human and non-human primate dataset associated with the 

PsychENCODE project.19 This dataset combines tissue samples from the six adult humans, 

five adult chimpanzee brains and five adult macaque brains. The dataset can be downloaded 

from http://evolution.psychencode.org where it is labeled as “Adult human, chimpanzee, 

macaque data” in the “Processed Data”/”mRNA-seq” tab. The dataset is pre-harmonized 

to include a consistent set of 16 cortical and subcortical brain regions with mRNA 

sequencing performed on 11,346 curated homologous genes. Similarly, to examine species-

by-development effects, we used a second pre-curated dataset, downloadable from the same 

link, labeled “Developmental rhesus and human data”. This dataset includes tissue samples 

from 36 human brains (15 female, ages 8 post-conception weeks to 40 years, mean = 97 

± 147 post-conception months) and 26 macaque brains (8 female, ages 60 post-conception 

days to 11 years, mean = 36 ± 46 post-conception months) across 16 homologous cortical, 

subcortical and cerebellar brain regions. Three transient developmental brain regions were 

excluded (lateral, medial and caudal ganglionic eminence), while other prenatal regions 

were considered equivalent to their most similar adult brain regions (e.g., dorsal thalamus 

to mediodorsal thalamus, upper rhombic lip to cerebellum, etc). This was only relevant for 

two of 62 total brains that possessed these early developmental regions. Each brain region 

had mRNA sequencing for 27,932 genes. Phylogenetic variability in brain size (PBS) was 

assessed for each gene across species, modeled as follows: PBS+ = H > C > M and PBS− 

= H < C < M, with model significance assessed based on likelihood ratio tests for nested 

models and thresholded (PBonferroni < 0.05) to examine overlap with BW gene sets.

Additionally, to assess the consistency of regional BW +/− relative expression differences 

across species, we used an independent postmortem brain gene expression dataset (RNAseq; 

see key resources table) in macaques containing 416 samples from 8 macaques across 52 

cortical and non-cortical brain regions.43 Processed data was available (see key resources 

table), and we included biological (age, sex) and technical (RIN, medTIN) covariates when 

examining BW +/− relative expression differences for each brain region. Each brain region 

had mRNA sequencing for 14,898 genes.

Cell-type relative expression differences: To assess relative expression differences in 

BW across cell types, we leveraged aligned developmental single cell (fetal) and single 

nucleus (adult) RNA-seq datasets in both humans and non-human primates. Macaque data 

was downloaded from http://evolution.psychencode.org, where they are labeled as “Fetal 

expression matrix” and “Adult expression (Rdata)” under the “Processed Data”/“Single cell 

RNA-seq” or “Processed Data”/”Single nucleus RNA-seq” tabs, respectively. These datasets 

contain expression data on ~15k genes across various cell types sampled in the dorsolateral 
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prefrontal cortex (DFC) from two (fetal) and three (adult) macaques. More detailed protocol 

information can be found in previous work.19

Human data were downloaded from http://development.psychencode.org, where they 

are labeled as “scRNA-seq (Rdata)” and “snRNA-seq (Rdata)” under the “Processed 

Data”/”Single cell/nucleus RNA-seq” tab. For over 20k genes, the fetal single cell dataset 

contains expression data sampled across the pallium (labeled as “DFC”) from nine donors, 

and the adult single nucleus dataset contains expression data in the DFC from three donors. 

More detailed protocol information can be found in previous work.18

We performed the cell-type deconvolution analysis using the “dtangle” R package to 

evaluate the relationship between interindividual variation in brain weight and predicted 

cell-type proportions. We chose this approach because it is a top performing algorithm for 

brain gene expression,22 and it has the capacity to combine multiple reference single cell 

datasets for deconvolution of canonical cell-types.

Gene ontology enrichment: Brain weight gene lists were submitted as gene sets to 

ToppGene’s ToppFun enrichment feature (https://toppgene.cchmc.org/enrichment.jsp). The 

following term categories were assessed: GO: Molecular Function, GO: Biological Process, 

GO: Cellular Component, Pathway (all), Mouse Phenotype and Human Phenotype. All other 

settings were left to their defaults. Note that ToppGene databases are continuously updated; 

this ToppGene query was last conducted on October 23rd, 2021.

Functional enrichment: The gene set enrichment analysis further nominated associations 

with brain morphological phenotypes derived from in vivo structural magnetic resonance 

imaging (MRI). To validate this finding, we used an established gene-set analysis method, 

MAGMA,65 to evaluate the enrichment of BW gene sets against genome-wide association 

studies of global and regional neuroimaging phenotypes,10 as well as metrics of head size – 

head circumference and intracranial volume.68–70

Gene co-expression network modules: For the PsychENCODE and ROSMAP datasets, 

modules were derived from gene co-expression network analysis using Weighted Gene 

Co-expression Analysis (WGCNA)58,109 and the SpeakEasy clustering methods,59,110 

respectively. WGCNA module assignments and annotations for PsychENCODE are 

available from http://resource.psychencode.org/) (see also key resources table), and module 

enrichment results for ROSMAP can be found in Table S6.

Phenome-wide association study in Mass General Brigham Biobank: Phenome-wide 

association study (PheWAS) analyses were performed in the Mass General Brigham 

(MGB) Biobank, a biorepository from the MGB healthcare system based in the greater 

Boston area with patient data on electronic health record, genetic, and lifestyle variables.75 

Launched in 2010, the MGB Biobank has enrolled 138,042 participants and generated 

genotyping microarray data for more than 65,265 participants to date. To reduce the risk of 

population stratification, we restricted all PheWAS analyses to 37,272 patients of European 

ancestry (22,232 were genotyped using Illumina MEG, MEGA, or MEGA EX arrays and 

the remaining 15,040 were genotyped using the Illumina GSA array). The recruitment 
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strategy, genotyping procedures, and quality control procedures of MGB Biobank have been 

described previously (see key resources table).75 All participants provided written consent 

upon enrollment. MGB Institutional Review Board approval for the present analyses is 

covered under protocols #2009P002312 and #2021P003641.

We used the FUSION package in R, as in the TWAS, to impute individual-level 

gene expression for patients in MGB Biobank, using pre-computed weights from the 

PsychENCODE consortium as the reference transcriptome dataset (gene weights available 

from http://resource.psychencode.org/). We then calculated a cumulative brain weight 

transcriptomic index as a coefficient-weighted sum of imputed gene expression – similar to 

how polygenic indexes are calculated using single nucleotide polymorphism data. This score 

was subsequently standardized and linked to electronic health record data from the MGB 

Biobank participants. Case status for each medical phenotype was assigned using a standard 

“phecode” approach,111 where the presence of at least two International Classification of 

Disease (ICD)-10CM codes was required. PheWAS was then conducted using the PheWAS 

package in R (https://github.com/PheWAS/PheWAS), fitting logistic regression models to 

each of the 1,482 medical outcomes in order to estimate the odds of each diagnosis given 

the brain weight transcriptomic index while accounting for sex assigned at birth, current age, 

genotyping batch, and the first 10 genetic principal components as covariates.

QUANTIFICATION AND STATISTICAL ANALYSIS

For all analyses in this study significance was determined at p < 0.05, after Bonferroni 

correction for multiple comparisons (PBonferonni). For the brain weight discovery analyses 

in PsychENCODE this equated to an uncorrected p < 1.94e−6 threshold. For the TWAS 

analyses, PBonferroni < 0.05 equated to an uncorrected p < 3.73e−6 for global phenotypes, 

uncorrected p < 2.07e−8 for regional surface-based phenotypes, and uncorrected p < 

1.19×10e−8 for regional volume-based phenotypes. False Discovery Rate (FDR) correction 

was used in lieu of Bonferroni correction to determine significant brain weight gene 

sets (PFDR < 0.05) in the intersection analyses with the differential expression results 

across disorders, for consistency with how these data were thresholded in their original 

publications. Additionally, where applicable, we used two different permutation-based 

tests for empirical statistics to complement uncorrected p-values based on context-specific 

robust null models (Ppermutation and Pspin), as implemented previously.112 Ppermutation 

denotes performing gene-level statistical analyses using 10,000 randomly sampled gene 

sets (without replacement) of similar size to the empirical sets, drawn from the entire gene 

list used for the brain weight gene expression analysis in PsychENCODE. Pspin denotes 

performing spatial correlations between two brain maps using 10,000 “spins” (preserving 

spatial autocorrelation) of one map (see also key resources table). We report t-values 

from linear mixed models of brain weight expression association analyses, in addition 

to partial correlation values of brain weight and expression after regression of the same 

covariates used in the linear mixed models. For all BW “relative expression” analyses, we 

used Student t-tests to compare mean expression of BW + genes and BW− genes. Unless 

otherwise noted, all p-values for linear mixed models were calculated using likelihood 

ratio tests as implemented in the “lmerTest” package in R. As this was a retrospective 

study, no statistical methods were used to pre-determine sample sizes, however, collectively, 
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this study makes use of the three largest datasets of postmortem human brain tissue. 

As such, we comprehensively assessed the main brain weight gene expression results 

explicitly in a discovery (PsychENCODE) and in two independent replication datasets 

(GTEx and ROSMAP). Randomization and blinding were not possible due to the study 

being retrospective and observational. Accordingly, subject-level covariates were used to 

account for variation in gene expression as well as to remove unwanted confounding effects. 

Normalized gene expression was assumed to follow normal distribution, but this was not 

formally tested. Additional details for each analysis are provided in relevant sections above.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Transcriptomic analysis of human BW revealed 928 significant genes

• BW genes align with predicted developmental and evolutionary changes in 

brain size

• BW genes are cell-type specific and align with structural neuroimaging 

GWASs and TWASs

• BW genes are differentially expressed in psychiatric and neurodegenerative 

disorders
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Figure 1. Differential expression of genes associated with an increase or decrease in brain weight 
across PsychENCODE subjects
(A) Miami plot showing the relationship between brain weight (BW) and expression across 

all genes (depicting −log10 scaled p values multiplied by the sign of the t value effect), 

ordered by chromosome. Dashed lines represent the genome-wide significance threshold 

(pBonferroni < 0.05). For visualization, the top ten genes are labeled for both BW positive 

(BW+, blue) and BW negative (BW−, red) sets.

(B) Trajectories of median expression of BW− and BW+ gene sets across development, 

using the BrainSpan atlas. Black vertical dashed lines represent neuroimaging-derived 

milestones, highlighting the critical period of gray matter volume (GMV) and white matter 

volume (WMV) differentiation (shaded area). This period delineates the time when GMV 

and WMV are equal until the peak difference between GMV and WMV. The BW-associated 

gene sets show opposing developmental trajectories, intersecting when the rate of total 

cerebrum volume (TCV) growth peaks, around 6 postnatal months. Shaded area around 

trajectories denotes 95% confidence intervals.

(C) Plots of the brain surface showing the differential spatial patterns of the suprathreshold 

genes (from A) in the Allen Human Brain Atlas (AHBA). Colors denote the rank (from 

lowest to highest) of cortical regions in terms of median expression of genome-wide 
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significant genes. AHBA probes were resampled from native coordinates to a cortical 

parcellation (STAR Methods).

(D) Left: cortical map of regions showing significant BW+ versus BW− gene expression 

(pBonferroni < 0.05) in the AHBA, i.e., the statistical comparison of the maps in (B). Right: 

box-violin plots showing the distributions of diverse multimodal neuroimaging maps across 

the significant BW+ and BW− regions (see key resources table and Figure S6). For all 

scaling maps, local/regional surface area was modeled as a function of total cortical surface 

area across species (evolution), human development, and human subjects (population). All 

box-violin plots show median and interquartile range (IQR) with whiskers denoting 1.5 × 

IQR.
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Figure 2. Genes associated with BW show differential effects across species
(A) Grid plot showing BW-associated genes that are also significantly differentially 

expressed in humans relative to chimpanzees and macaques (pBonferroni < 0.05), across 

16 brain regions (11 neocortical areas). These are BW-associated genes that were 

previously defined42 as having higher or lower expression compared with the two species 

collectively, and reanalyzed to assess stepwise interspecies effects that reflect the absolute 

differences in brain size between species (i.e., up-regulated implies gene expression humans 

> chimpanzees > macaques, while downregulated implies gene expression humans < 

chimpanzees < macaques). Triangles represent directions of effects and colors denote the 

respective BW gene set. Genes that are highlighted show congruent directional effects in 

respective BW sets (i.e., BW+ and upregulated in humans, and vice versa).

(B) Brain plots of differences in counts of number of BW+ or BW− genes that were defined 

to be significantly differentially expressed in humans relative to macaques each of three 

developmental epochs—a positive regional difference (blue) indicates that BW+ genes tend 

to be upregulated in humans in that region in a given developmental epoch, while a negative 

difference (red) indicates that BW− genes tend to be upregulated. The same 16 regions from 

(A) are shown anatomically, based on manual assignment using a common human atlas.44
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(C) Differential expression of BW+ versus BW− genes across individual cell types, using 

cell-specific RNA sequencing data in fetal and adult samples from macaques (left) and 

humans (right). BW− relative expression (red) indicates that BW− genes are more highly 

expressed in that cell type compared with BW+, whereas BW+ relative expression (blue) 

indicates the opposite effect. Black outlines denote significant effects (pBonferroni < 0.05). 

Circles are scaled according to Bonferroni-corrected p values. Black rectangles denote 

human-specific effects relative to macaques. V1C, primary visual cortex; M1C, primary 

motor cortex; S1C, primary somatosensory cortex; A1C, primary auditory cortex; ITC, 

inferior temporal cortex; IPC, inferior parietal cortex; STC, superior temporal cortex; 

OFC, orbitofrontal cortex; VFC, ventrolateral frontal cortex; DFC, dorsolateral frontal 

cortex; MFC, medial frontal cortex; STR, striatum; MD, medial dorsal thalamus; AMY, 

amygdala; HIP, hippocampus; CBC, cerebellar cortex. Astro, astrocytes; Endo, endothelial 

cells; ExN, excitatory neurons; InN, inhibitory neurons; NasN, nascent neurons; Oligo, 

oligodendrocytes; OPC, oligodendrocyte precursor cells.
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Figure 3. BW gene sets are differentially enriched across disease and functional domains
(A) Matrix of transcriptomic correlations of differential expression (DE) statistics in 

multiple human diseases and BW statistics in the PsychENCODE dataset. Pairwise 

Pearson’s r coefficients were computed across overlapping genes between datasets (n = 

4,226)—only significant (pBonferroni < 0.05) values are plotted. Autism spectrum disorder 

(ASD), bipolar disorder (BD), schizophrenia (SCZ), major depressive disorder (MDD), 

Parkinson’s disease (PD), alcohol abuse disorder (AAD), Alzheimer’s disease (AD). 

Inflammatory bowel disease (IBD) was included as a non-neural control.

(B) Plot showing the alignment of BW and DE genes within each disorder. Intersecting lists 

of significant BW and DE genes (both pFDR < 0.05) were categorized as “convergent” or 

“divergent” based on the concordance of the directions of effects, then Z scored according 

to a null distribution based on 10,000 resamples of BW gene sets of similar size (gray 
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box-violins). Circles are sized according to the number of DE genes and colored according 

to values in (A). Asterisks denote significant (ppermutation < 0.001) Z scores.

(C) Grid plot showing 36 significant BW and DE genes (DE and BW pFDR < 0.05) in 

patients with AD, BD, SCZ, and ASD. Triangles represent directions of effects (up- or 

downregulated in patients compared with controls) and colors denote the respective BW 

gene set.

(D) Grid plot showing significant (pFDR < 0.05, reduced for visualization, see Table S5) 

Gene ontology enrichment of BW-associated genes for biological processes (circles) and 

cellular components (squares) using ToppGene.56 Shapes are sized and ordered (high-to-

low) according to adjusted negative log-scaled p values.

All box-violin plots show median and IQR with whiskers denoting 1.5 × IQR.
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Figure 4. Functional relevance of genes associated with BW
(A) Left: lollipop plot showing MAGMA65 enrichment statistics for BW gene sets across 

GWASs of 12 multimodal neuroimaging phenotypes we generated in the UK Biobank 

dataset (STAR Methods). Black lines represent varioussignificance thresholds. Black 

outlines denote suprathreshold effects (at least uncorrected p < 0.05). No significant effects 

were observed for the BW+ gene set. Right: enrichment of BW− genes for regional surface 

area and gray matter volume across 180 cortical regions (the same parcellation as in Figure 

1; STAR Methods). Black outlines denote significant areas of enrichment (pFDR < 0.05 

shown for visualization, see Table S10). (B) Alluvial diagrams representing the concordance 

between BW genes (pBonferroni < 0.05) and multi variate multiple quantitative trait loci71 

with genome-wide significant association with brain-related traits. SNP, single-nucleotide 

polymorphism; FDR, false discovery rate.
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Figure 5. Phenome-wide association study of a BW transcriptomic index in the Mass General 
Brigham Biobank
Manhattan plot of the associations between BW transcriptomic index and 1,482 medical 

outcomes defined by “phecodes” in the Mass General Brigham Biobank, estimated with 

logistic regression in up to 37,272 patients. Associations are represented as triangles, where 

an upward-facing triangle denotes a positive relationship, while a downward-facing triangle 

denotes a negative relationship. The x axis refers to the statistical significance of the 

association (plotted as −log10 p values), the y axis refers to the category of disease/disorder, 

and the dashed line denotes the pBonferroni < 0.05 significance threshold (i.e., 0.05/1,482 = 

3.37e−5). Legibility necessitated that some condition labels be omitted from the plot. The 

complete results, including case-control record counts, effect sizes, and standard errors, are 

reported in Table S14.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

PsychENCODE human brain RNAseq Li etal.18 https://psychencode.synapse.org; http://
resource.psychencode.org/

GTEx v8 human brain RNAseq GTEx Consortium89 https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs000424.v8.p2 Accession ID: 
26317

ROSMAP human RNAseq De Jager et al.90 https://www.radc.rush.edu; 
https://adknowledgeportal.synapse.org/Explore/Studies/
DetailsPage/StudyDetails?Study=syn3219045

BrainSpan human brain developmental 
RNAseq

Miller et al.26 https://www.brainspan.org

Allen Human Brain Atlas Hawrylycz et al.28 and 
Arnatkeviciute et al.91

https://figshare.com/articles/dataset/AHBAdata/
6852911

PsychENCODE non-human primate brain 
RNAseq

Zhuetal.19 http://evolution.psychencode.org

Developmental macaque RNA-seq atlas Yin et al.43 GEO: GSE128537

UK Biobank (neuroimaging+genetics) Warrieretal.10 Application 20904

Neuroimaging GWAS summary statistics Warrieretal.10 https://portal.ide-cam.org.uk/overview/483

Neuroimaging lifespan models Bethlehem et al4 https://github.com/brainchart/Lifespan

Evolution, development, and cross-subject 
“population” allometric scaling maps

Hill et al.29 and Reardon et al.30 https://github.com/netneurolab/neuromaps

Neurotransmitter/receptor maps Hansen et al.37 https://github.com/netneurolab/hansen_receptors

Venous density maps (VENAT) Huck et al.92 https://figshare.com/articles/dataset/
VENAT_Probability_map_nii_gz/7205960

Diffusion MRI fiber length profiling Bajada et al.93 https://balsa.wustl.edu/study/1K3l

Cognitive function map Assem et al.33 https://balsa.wustl.edu/study/B4nkg

Alzheimer disease PET maps Vogel et al.34 https://neurovault.org/collections/12296/

ENIGMA cross-disorder cortical thickness 
map

Larivière et al.36 https://enigma-toolbox.readthedocs.io/en/latest/pages/
04.crossdisorder/index.html

Glioblastoma and low grade glioma tumor 
map

Mandal et al.35 https://neurovault.org/images/785830/

BigBrain Amunts et al.38 https://bigbrain.loris.ca/main.php

LiBD Spatial RNA-seq Die cytoarchitektonik der hirnrinde 
des erwachsenen menschen Google 
Books.40

http://research.libd.org/spatialLIBD/

PsychENCODE WGCNA modules Gandal et al.58 http://resource.psychencode.org

Mutational constraint datasets (gnomAD 
v2.1.1)

Chen et al.62 https://gnomad.broadinstitute.org

Mutational constraint datasets (DECIPHER) Firth et al.61, Collins et al.63 https://www.deciphergenomics.org

Meta-analytic multi-ancestry quantitative 
trait loci

Zeng et al.71 https://github.com/jxzb1988/MMQTL

MGB Biobank Zeng et al.75 https://www.massgeneralbrigham.org/en/research-and-
innovation/participate-in-research/biobank

Software and algorithms

RStudio (“Ghost Orchid” for macOS) with R 
(v.4.1.2)

Team, R.S. RStudio: integrated 
development for R

https://www.rstudio.com

Cell Rep. Author manuscript; available in PMC 2025 January 02.

https://psychencode.synapse.org
http://resource.psychencode.org/
http://resource.psychencode.org/
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v8.p2%20Accession%20ID:%2026317
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v8.p2%20Accession%20ID:%2026317
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v8.p2%20Accession%20ID:%2026317
https://www.radc.rush.edu
https://adknowledgeportal.synapse.org/Explore/Studies/DetailsPage/StudyDetails?Study=syn3219045
https://adknowledgeportal.synapse.org/Explore/Studies/DetailsPage/StudyDetails?Study=syn3219045
https://www.brainspan.org
https://figshare.com/articles/dataset/AHBAdata/6852911
https://figshare.com/articles/dataset/AHBAdata/6852911
http://evolution.psychencode.org
https://portal.ide-cam.org.uk/overview/483
https://github.com/brainchart/Lifespan
https://github.com/netneurolab/neuromaps
https://github.com/netneurolab/hansen_receptors
https://figshare.com/articles/dataset/VENAT_Probability_map_nii_gz/7205960
https://figshare.com/articles/dataset/VENAT_Probability_map_nii_gz/7205960
https://balsa.wustl.edu/study/1K3l
https://balsa.wustl.edu/study/B4nkg
https://neurovault.org/collections/12296/
https://enigma-toolbox.readthedocs.io/en/latest/pages/04.crossdisorder/index.html
https://enigma-toolbox.readthedocs.io/en/latest/pages/04.crossdisorder/index.html
https://neurovault.org/images/785830/
https://bigbrain.loris.ca/main.php
http://research.libd.org/spatialLIBD/
http://resource.psychencode.org
https://gnomad.broadinstitute.org/
https://www.deciphergenomics.org
https://github.com/jxzb1988/MMQTL
https://www.massgeneralbrigham.org/en/research-and-innovation/participate-in-research/biobank
https://www.massgeneralbrigham.org/en/research-and-innovation/participate-in-research/biobank
https://www.rstudio.com


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Seidlitz et al. Page 40

REAGENT or RESOURCE SOURCE IDENTIFIER

RNA-seq preprocessing for PsychENCODE 
and GTEx

Kim et al.94 https://github.com/gandallab/C4A-network

ToppGene Chen et al.56 https://toppgene.cchmc.org

MAGMA de Leeuw et al.65 https://ctg.cncr.nl/software/magma

FUSION Gusev et al.95 https://github.com/gusevlab/fusion_twas

Genomic quality control Peterson et al.96 https://github.com/getian107/MGBB-QC; https://
github.com/Annefeng/PBK-QC-pipeline

FreeSurfer (v6.0.1) Fischl et al.97 https://afni.nimh.nih.gov/

AFNI Cox et al.98,99 https://surfer.nmr.mgh.harvard.edu/

ENIGMA toolbox Larivière et al.36 https://enigma-toolbox.readthedocs.io/en/latest/

neuromaps Markello et al.100 https://github.com/netneurolab/neuromaps

Lifespan brain charts Bethlehem et al.4 https://github.com/brainchart/Lifespan
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