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FFLUX is a multipolar machine-learned force field that uses Gaussian process

regression models trained on data from quantum chemical topology calcula-

tions. It offers an efficient way of predicting both lattice and free energies of

polymorphs, allowing their stability to be assessed at finite temperatures. Here

the Ih, II and XV phases of ice are studied, building on previous work on

formamide crystals and liquid water. A Gaussian process regression model of

the water monomer was trained, achieving sub-kJ mol� 1 accuracy. The model

was then employed in simulations with a Lennard-Jones potential to represent

intermolecular repulsion and dispersion. Lattice constants of the FFLUX-

optimized crystal structures were comparable with those calculated by PBE+D3,

with FFLUX calculations estimated to be 103–105 times faster. Lattice dynamics

calculations were performed on each phase, with ices Ih and XV found to be

dynamically stable through phonon dispersion curves. However, ice II was

incorrectly identified as unstable due to the non-bonded potential used, with a

new phase (labelled here as II0 and to our knowledge not found experimentally)

identified as more stable. This new phase was also found to be dynamically

stable using density functional theory but, unlike in FFLUX calculations, II

remained the more stable phase. Finally, Gibbs free energies were accessed

through the quasi-harmonic approximation for the first time using FFLUX,

allowing thermodynamic stability to be assessed at different temperatures and

pressures through the construction of a phase diagram.

1. Introduction

Polymorphs are different crystalline structures of the same

molecule, often varying in their physical properties and

behaviour. The variation in properties means that in many

industries (e.g. pharmaceuticals) it is crucial to avoid the

formation of any unexpected polymorphs that could alter the

properties of a product, such as an active pharmaceutical

ingredient (Bauer et al., 2001; Bučar et al., 2015). Since

experimental solid-form screening comes with a high cost, the

use of computational crystal structure prediction (CSP) is

becoming more prevalent. In these studies, between 105 and

107 potential structures are generated and optimized using

cheap, low-accuracy methods. Around 102–103 of the lowest-

energy structures are then taken forward to dispersion-

corrected periodic density functional theory (DFT+D) calcu-

lations. DFT+D has been shown to significantly outperform

traditional force fields (FFs) when it comes to finding

experimentally observed structures in CSP studies (Reilly et

al., 2016; Day et al., 2009; Hunnisett et al., 2024), but it comes

with a significant increase in computational cost, making state-

of-the-art methods inefficient.

In CSP studies the relative stability of potential crystal

structures is usually determined through lattice energies, with

the most stable structure(s) assumed to be the one(s) with the
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lowest lattice energy. This approach neglects thermal contri-

butions to the stability, which can be large enough to affect the

energy ranking of phases as the relative energies of poly-

morphs can differ by as little as a few kJ mol� 1 (Nyman &

Day, 2015). Thermodynamic factors can be accounted for by

calculating free energies using methods such as lattice

dynamics (Pallikara & Skelton, 2021) or molecular dynamics

(MD) (Hellman et al., 2013), increasing computational costs

even further.

To include free energies in CSP studies, we therefore

require an efficient method that can reach quantum mechan-

ical accuracy. One such method is the next-generation

machine-learned force field FFLUX (Popelier, 2015; Symons

et al., 2021). FFLUX utilizes Gaussian process regression

(GPR) models to predict the atomic energies and multipole

moments of systems using data obtained from quantum

chemical topology (QCT) calculations. Two QCT methods are

important in the training of GPR models for FFLUX. The first

method is the quantum theory of atoms in molecules

(QTAIM) (Bader, 1985) which partitions the electron density

into objects called topological atoms. The second is the

interacting quantum atoms (IQA) energy decomposition

scheme (Blanco et al., 2005), which finds chemically relevant

energy contributions by integrating the one- and two-particle

density matrices over the volumes of topological atoms

defined by QTAIM.

The GPR models in FFLUX are used to predict atomic

energies and multipole moments up to the hexadecapole

moment. Prediction of atomic energies allows for simulations

with flexible molecules, free from the typical harmonic

approximations used in traditional force fields; in turn this

allows for a representation of the potential energy surface

(PES) that lies closer to quantum mechanics. This is a benefit

as other multipolar force fields used in CSP, such as

DMACRYS (Price et al., 2010), typically rely on rigid-body

approximations. These models also allow for multipole

moments that change with the geometry of the system on-the-

fly in MD simulations, which is a feature unique to the FFLUX

force field.

FFLUX has previously been applied successfully to liquid

water (Symons & Popelier, 2022), formamide dimers (Brown

et al., 2023b) and to formamide crystals (Brown et al., 2023a)

with moderate success. In the study of formamide crystals,

lattice dynamics calculations were performed with FFLUX for

the first time, giving access to the Helmholtz free energies of

the � and � polymorphs. These calculations were performed

105 times faster than DFT+D, thereby significantly reducing

the computational cost required for free energy calculations

whilst maintaining a similar accuracy to DFT, but Lennard-

Jones parameters proved insufficient for the � phase.

While liquid water has previously been studied with

FFLUX, ice has not. Ice represents a significant challenge

given its large number of polymorphs, with 19 known phases

making up a complex phase diagram (Gasser et al., 2021).

Indeed, the well used water model TIP4P (Jorgensen et al.,

1983) had to be adapted such that it could more accurately

model ice polymorphs, resulting in the TIP4P/Ice model

(Abascal et al., 2005). Most ice polymorphs form hydrogen

order–disorder pairs where the hydrogens display a fractional

occupancy of their crystallographic positions, while the

oxygens exhibit full occupancy. This phenomenon occurs due

to orientational disorder in water molecules when liquid water

undergoes a transition from a disordered phase to the corre-

sponding ordered phase. This transition can come about with

cooling, sometimes requiring the aid of an acidic or a basic

dopant where the introduction of defects leads to favourable

rearrangement of the hydrogen-bond network (Salzmann et

al., 2006). In all cases, the ice structures satisfy the Bernal–

Fowler ice rules, which state that the molecules are oriented

such that there is only one hydrogen atom between two

adjacent oxygens, and one oxygen is bonded to four hydrogens

via two covalent bonds and two hydrogen bonds (Bernal &

Fowler, 1933).

In this work, we apply FFLUX to ice Ih, II and XV struc-

tures, which are shown in Fig. 1. With the exception of Ih,

these phases were chosen because they are ordered phases

that are closely linked by pressure-based phase transitions.

This work builds on the previous liquid water and formamide

crystal studies, developing them further by now accessing the

Gibbs free energies with FFLUX for the first time. These free

energies are accessed through the quasi-harmonic approx-

imation (QHA). The QHA has been used to study many

systems, including determining phase diagrams for tin mono-

chalcogenides from first principles (Pallikara & Skelton, 2021)

as well as ices using the flexible q-TIP4P/F water model

(Ramı́rez et al., 2013) and MB-pol (Bore & Paesani, 2023).

The validity of the QHA to study the free energies of ice

polymorphs has previously been confirmed by comparing

QHA calculations with thermodynamic integration (Vega et

al., 2008) and quantum path integral MD simulations

(Ramı́rez et al., 2012).

2. Methods

2.1. The FFLUX force field

The FFLUX force field is implemented in the DL_FFLUX

code, which is built as a major add-on to DL_POLY 4

(Todorov & Smith, 2018). Unlike the traditional bonded and

electrostatic terms that classical FFs rely on, FFLUX utilizes

GPR models to predict atomic energies and multipole

moments, based on atoms defined via QCT. The theory behind
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Figure 1
Experimental structures of ices Ih (left), II (middle) and XV (right),
studied in this work. Visualized using PyMOL (Schrodinger, 2015).



FFLUX has been discussed extensively (Popelier, 2015;

Symons et al., 2021) but we briefly review it here.

2.1.1. Quantum chemical topology

QCT (Popelier, 2016) is a collection of methods that share

the mathematical language of dynamical systems (e.g.

attractor, basin, separatrix, critical point). QCT methods

partition a quantum mechanical function using its gradient

vector field. In the case of QTAIM, this function is the elec-

tron density. Applying the gradient vector field reveals so-

called gradient paths running from infinity to critical points in

the electron density. Maxima in the electron density are most

often associated with nuclei and a collection of gradient paths

terminating at these maxima form an object called a topolo-

gical atom. A bond critical point (BCP) is a saddle point in the

electron density, being a minimum in the direction of the bond

path and a maximum in the two other directions. Gradient

paths terminating at the BCP form a zero-flux or interatomic

surface (IAS), with points on the surface obeying equation (1):

r� rð Þ � n rð Þ ¼ 0; 8 r 2 IAS; ð1Þ

where r� is the gradient of the electron density and n rð Þ is a

normal vector to a point r on the IAS. Topological atoms are

non-overlapping and space-filling and hence have no gaps

between them. Fig. 2 illustrates the partitioning of a water

monomer.

While QTAIM is limited to stationary points on the PES

due to the atomic virial theorem, the IQA partitioning scheme

enables non-stationary geometries to be studied by calculating

electron–electron potential energy terms independently from

the kinetic energy term. The total energy of a system is then

given by the sum of atomic energy contributions, EA
IQA. This

energy can be partitioned further into intra- and interatomic

energies, respectively, denoted Eintra and Vinter:

EA
IQA ¼ EA

intra þ
1

2

X

B6¼A

VAB
inter: ð2Þ

These intra- and interatomic energies associated with atoms

A and B can be broken down further into chemically relevant

contributions:

EA
intra ¼ TA þ VAA

ne þ VAA
ee ð3Þ

VAB
inter ¼ VAB

nn þ VAB
en þ VAB

ne þ VAB
ee ; ð4Þ

where n and e, respectively, indicate the nucleus or electrons

belonging to atoms A and B depending on the matching

subscript and superscript. The letter V refers to potential

energy and T to kinetic energy (of electrons).

VAB
ee can be further partitioned to give the Coulombic and

exchange-correlation energies: VAB
coul þ VAB

xc . The ‘classical’,

purely electrostatic, terms are then grouped together to yield

VAB
cl , allowing us to express VAB

inter as

VAB
inter ¼ VAB

cl þ VAB
xc : ð5Þ

The Laplace expansion can be used to expand 1/r-type

interactions. By expanding the VAB
cl terms multipole moments

can be generated, which express how the electron density is

distributed. The atomic energies and multipole moments

obtained from the IQA partitioning are used as the training

data for the GPR models FFLUX uses in simulations.

2.1.2. Gaussian process regression

GPR is a non-parametric Bayesian method (Rasmussen &

Williams, 2006) used in FFLUX to predict atomic energies and

multipole moments. The training data generated from IQA

are mapped onto a set of geometries, allowing for flexible

molecules in simulations as well as multipole moments up to

the hexadecapole moment and atomic energies that change

with the geometry, a feature unique to FFLUX.

The training set of the model is made up of input points, X,

containing D features in a set of D-dimensional input vectors.

Each training point is associated with an output, y, collected in

a vector, y. Input features for the GPR models are described

by the atomic local frame (ALF) (Konovalov et al., 2021), a

molecular representation that ensures the translational and

rotational invariance of the models. Each atom, A, being

trained for is the centre of its own local frame, with the

highest-priority atom by Cahn–Ingold–Prelog rules, Ax, used

to define the x axis and the second-highest-priority atom, Axy,

defining the xy plane. The z axis is constructed to form a right-

handed axis system normal to this plane. The remaining atoms

are described in spherical coordinates relative to the ALF.

This means each model has 3N � 6 features, where the first

two features are the A � Ax and A � Axy distances, and the

third feature is the angle enclosed by the ALF atoms. In the

case of terminal atoms, such as the hydrogen atoms in water,

the Ax atom is determined as the only atom bonded to the

atom of interest. The Axy atom is then determined as the

highest-priority atom by the Cahn–Ingold–Prelog rules

bonded to atom Ax (Mills & Popelier, 2014).
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Figure 2
Contour plot of the electron density of the water monomer partitioned
using QTAIM. Gradient paths are shown in blue, black paths represent
the interatomic surfaces and black spheres represent bond critical points.
This figure was made using AIMStudio (Keith, 2019).



In GPR the similarity between points is assessed using a

covariance function. In the current work a radial basis func-

tion (RBF) kernel is used, modified to account for the periodic

nature of every third feature, which has values ranging from

� � to +�. This kernel is named the RBF-Cyclic kernel, and is

shown in equation (6):

kRBF-Cyclic x; x�ð Þ ¼ exp �
XD

d¼1

�drd xd; x�dð Þ
2

" #

rd xd; x�dð Þ ¼
xd � x�d; d mod 3 6¼ 0

xd � x�d þ �
� �

mod 2�
� �

� �; d mod 3 ¼ 0:

�

ð6Þ

The distance between a feature, d, of training points x and x� is

scaled by a hyperparameter �d, where D is the total number of

features.

Model training involves finding the optimal set of these

hyperparameters, which is done here using the iterative hold-

out cross-validation (IHOCV) approach (Isamura & Popelier,

2023b). This approach avoids drawbacks of the typically used

type-II maximum likelihood approach, which is prone to

propagating numerical errors, leading to inconsistent results

(Isamura & Popelier, 2023a). In the IHOCV protocol the �

values are obtained by minimizing the predictive root-mean-

square error (RMSE) over an internal validation set. The

RMSE cost function is given by equation (7):

RMSE hð Þ ¼
1

m

Xm

i¼1

yi � y
pred
i hð Þ

�
�

�
�2

" #1=2

; ð7Þ

where m is the number of internal validation points, y
pred
i hð Þ is

the predicted value for the ith validation point (dependent on

the model hyperparameters, h) while yi is the true value.

Following training, predictions are made by the GPR

models according to equation (8):

Ŷ
A
¼ �A þ

XNtrain

j¼1

�A
j exp �

XD

d¼1

�drd xA
j;d; xA�

d

� �2

" #

; ð8Þ

where Ŷ
A

is the predicted multipole moment or energy of

atom A, �A denotes the mean of the output over all training

points, and �A
j the ‘weight’ of training point j. The symbol xA

j;d

marks the dth feature of point j and xA�
d is the dth feature of

the point to be predicted.

2.2. Lattice dynamics

While lattice energies are commonly used in the final

ranking of potential polymorphs in CSP studies, more realistic

rankings can be obtained through the calculation of free

energies. One approach for calculation of free energies is

through lattice dynamics calculations, which enable the study

of the vibrations in solids, known as phonons. The computa-

tional cost associated with lattice dynamics calculations means

that they are not routine in CSP studies despite the increased

accuracy they offer (Reilly et al., 2016).

The harmonic approximation (HA) is the fundamental level

at which phonons can be modelled. Within the HA, the

second-order interatomic force constant matrices ��� are

given as

���ðlk; l0k0Þ ¼ �
@F�ðlkÞ

@u�ðl
0k0Þ
¼

@2�

@u�ðlkÞ@u�ðl
0k0Þ

; ð9Þ

where � is the potential energy of the crystal, u lkð Þ is the

displacement of atom k in unit cell l and F� lkð Þ is the restoring

force. The Cartesian directions x, y and z are indicated by

subscripts � and �.

The dynamical matrix D qð Þ is then obtained by applying the

Bloch theorem:

D qð Þ
��
kk0¼

X

l0

1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mkmk0
p ���ð0k; l0k0Þ exp½iq � ðrl0k0 � r0kÞ�; ð10Þ

where rlk is the position of atom k in unit cell l, mk is the mass

of atom k and q is a phonon wavevector in the Brillouin zone.

For a crystal containing na atoms in its unit cell, diagonaliza-

tion of the dynamical matrix yields 3na phonon frequencies,

! q; jð Þ, and corresponding displacement vectors, W q; jð Þ, with

band index j. Phonon frequencies can also be used to compute

phonon dispersion curves, allowing the stability of a structure

to be validated, and phonon density of states (DoS).

The thermodynamic partition function, Q, at a temperature,

T, can be evaluated using the phonon frequencies according to

equation (11):

Q Tð Þ ¼ exp �
�

kBT

� �

�
Y

q;j

exp � h- !ðq; jÞ=2kBT
� �

1 � exp � h- !ðq; jÞ=kBT
� � ; ð11Þ

where kB and h- are the Boltzmann and reduced Planck

constant, respectively. The Helmholtz free energy, F, is

calculated from Q using the bridge relation:

F ¼ � kBT ln Q Tð Þ ¼ �þ UV Tð Þ � TSV Tð Þ; ð12Þ

where UV is the vibrational internal energy and SV the

vibrational entropy. Under the HA, interatomic forces are

treated as purely harmonic and the volume dependence of

phonons is not accounted for. However, this dependence can

be studied using the QHA, which applies harmonic lattice

dynamics calculations to a set of crystal structures with

compressed and expanded volumes. The Gibbs free energy

G T; pð Þ is then obtained as shown in equation (13):

G T; pð Þ ¼ min
V

F T; Vð Þ þ pV½ �: ð13Þ

In practice, Gibbs free energies can be obtained by fitting

the Helmholtz free energy as a function of volume, FðT; VÞ, at

each temperature T to an equation of state such as the Birch–

Murnaghan equation of state (Birch, 1947),

F Vð Þ ¼ F0 þ
9V0B0

16

(
V0

V

� �2=3

� 1

" #3

B00

þ
V0

V

� �2=3

� 1

" #2

6 � 4
V0

V

� �2=3
" #)

; ð14Þ
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where B0 is the bulk modulus, B00 is the derivative of B0 with

respect to pressure, and V0 and F0 are the equilibrium volume

and Helmholtz free energy, respectively.

3. Computational details

3.1. GPR models

For a FFLUX simulation, a GPR model is required for the

energy of each atom in the molecule (or molecules) of interest

as well as each component of its multipole moments (up to the

hexadecapole moment). The dataset for the water monomer

model was generated using our in-house Python pipeline

ICHOR (Burn & Popelier, 2022; Manchev & Burn, 2024), and

model training was performed with our in-house GPR engine

FEREBUS (Di Pasquale et al., 2016; Burn & Popelier, 2023;

Isamura & Popelier, 2023b).

Water geometries were generated in a 1 ns AMBER (Wang

et al., 2004) simulation with 1 fs timestep at 500 K. This

temperature is higher than necessary for ices, but allows a

larger domain space to be modelled which should improve the

stability of the model. From the 1 million point trajectory,

10000 evenly spaced points were sampled and wavefunctions

for each geometry were calculated at the B3LYP/aug-cc-pVTZ

level of theory using GAUSSIAN09 (Frisch et al., 2010). The

IQA partitioning was then carried out using AIMAll (Keith,

2019) to obtain atomic energies and multipole moments. The

10000 points were then filtered by recovery error, Erecov, which

represents the difference between the original wavefunction

energy, Ewfn, and the sum of the atomic energies from IQA,

Erecov ¼ Ewfn �
Xnatoms

A¼1

EA
IQA: ð15Þ

Geometries with an error greater than 1 kJ mol� 1 were

removed, reducing the dataset to 9998 points.

Stratified random sampling (SRS) (Isamura & Popelier,

2023a) was used to sample the dataset and generate a training

set (200 points), and internal and external validation sets (100

and 1000 points, respectively). The SRS method splits the data

into subpopulations with an equal number of points, here with

the use of the Freedman–Diaconis binning rule (Freedman &

Diaconis, 1981), then points are selected randomly from the

subpopulations. The internal validation set is used on-the-fly

during model training for the optimization of the hyperpara-

meters, while the external validation set is used to test the

models. Hyperparameters were optimized using random

update of the hierarchy ladder grey wolf optimizer (GWO-

RUHL) (Isamura & Popelier, 2023b) and the IHOCV

protocol (Isamura & Popelier, 2023a). Noise was added to the

diagonal of the covariance matrix, with values optimized to

range between 10� 6 and 10� 14.

3.2. Crystal structure optimizations

Due to the monomeric data on which they are trained,

monomeric models cannot predict intermolecular dispersive

and repulsive interactions, although this is possible within the

FFLUX workflow (McDonagh et al., 2018; Brown et al., 2024),

in principle and by proof-of-concept. In the current work, a

straightforward 12–6 Lennard-Jones (LJ) potential was used

to account for these interactions:

Uij rð Þ ¼
Aij

r12
�

Bij

r6
; ð16Þ

where Aij ¼ 4"ij�ij
12 and Bij ¼ 4"ij�ij

6, "ij is the potential well

depth and �ij is the separation at which the potential energy

between atoms i and j is zero.

As suggested by previous work (Brown et al., 2023a), in

order to accurately model different polymorphs each phase

would require a different set of non-bonded parameters.

Given the large variance in the molecular environments of

the different phases, it is expected that intermolecular inter-

actions also significantly differ and therefore the same para-

meters will not be suitable for all phases. Details of how these

parameters were obtained are given in Section S1 of the

supporting information (SI), along with the parameters used

in simulations.

Supercells of experimental structures were generated, with

initial structures obtained from the Inorganic Crystal Struc-

ture Database (ICSD) (Hellenbrandt, 2004), as summarized in

Table 1. Supercell expansions were selected such that elec-

trostatic and van der Waals (vdW) cut-offs of 12 Å could be

applied. The resulting supercell volumes were approximately

253 Å3.

As DL_FFLUX is built as an add-on to DL_POLY, it can

take advantage of several of the subroutines available in

DL_POLY, such as the zero Kelvin (0 K) optimizer. In

simulations using the 0 K optimizer, atoms are moved in the

direction of their computed forces but not allowed to gain a

velocity greater than they would at 10 K, effectively forcing

the simulation into a local minimum. FFLUX optimizations of

the crystal structures were performed using the 0 K optimizer

in three stages. In the first stage an NVT ensemble was used,

where only the atoms were allowed to move with the cell

lengths and angles fixed. The final structure in this optimiza-

tion was then used as a starting point for the second stage,

where an NPT optimization was performed, allowing the cell

lengths to change along with atomic positions. The final

structure from this optimization was used as the initial struc-

ture in the third stage: an NrT optimization, where the stress

tensor and temperature were kept constant, also enabling cell

angles to change.

Each stage had 7000 steps and a 1 fs timestep and was

performed at 1 atm pressure. A Berendsen thermostat and
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Table 1
ICSD codes for ice phases Ih (Hamann, 1997), II (Kamb et al., 1971) and
XV (Salzmann et al., 2009) studied in this work and supercell expansions
used in FFLUX optimizations.

The space groups and the number of molecules in the supercells are also given.

Phase ICSD code Space group Supercell N molecules

Ih 27837 P63/mmc 4 � 4 � 4 768
II 23707 R3 5 � 5 � 5 1500
XV 166447 P1 4 � 4 � 5 800



barostat were used with a 0.2 ps and 0.5 ps relaxation time,

respectively. For all phases, the optimizations were performed

with an electrostatic rank of L0 = 2, where L0 denotes the

highest multipolar rank present in the simulations. In the case

of L0 = 2, electrostatic energies are calculated from the

interactions between all multipole moments up to and

including the quadrupole moment. Smooth particle mesh

Ewald (SPME) (Essmann et al., 1995) parameters were opti-

mized with 10� 8 precision.

Convergence of the optimizations was determined by

looking at five gauges: (i) the maximum force component on

the atoms, (ii) the root-mean-square (RMS) force, (iii) the

maximum displacement component, (iv) the RMS displace-

ment, and (v) the lattice energy. The optimized structure was

determined as the timestep in the NrT simulation, where the

maximum and RMS forces acting on the atoms were below

2.2 kJ mol� 1 Å� 1 and 1.5 kJ mol� 1 Å� 1, respectively, and the

maximum and RMS displacements were below 1.8 � 10� 3 Å

and 1.2 � 10� 3 Å, respectively. Finally, the absolute difference

in lattice energy between steps also had to be below

2 � 10� 5 kJ mol� 1.

3.3. DFT calculations

The unit cells obtained from the ICSD were also used as

initial structures in optimizations using the Vienna Ab initio

Simulation Package (VASP) (Kresse & Hafner, 1993). Elec-

tron exchange and correlation were modelled using the PBE

(Perdew et al., 1996) functional with the D3 (Grimme et al.,

2010) dispersion correction (PBE+D3). Core electrons were

modelled using projector augmented-wave (PAW) pseudo-

potentials (Blöchl, 1994; Kresse & Joubert, 1999) with H 1s

and O 2s/2p electrons in the valence shells. Structures were

optimized to a tolerance of 10� 2 eV Å� 1 on the forces with a

plane-wave cut-off energy of 850 eVand the � -centred k-point

meshes given in Table 2. The plane-wave cut-off and k-point

meshes were chosen such that the absolute total energies and

pressures relative to the largest cut-off and mesh tested were

converged to no more than 1 meV atom� 1 and 1 kbar

(0.1 GPa), respectively. The computational cost of optimiza-

tions using PBE+D3 and FFLUX is compared in Section S2.1

of the SI.

3.4. Lattice dynamics

Harmonic lattice dynamics calculations were performed on

the FFLUX- and PBE+D3-optimized structures using the

Phonopy package (Togo & Tanaka, 2015). A series of struc-

tures with single atoms displaced by 5 � 10� 3 Å were gener-

ated from the optimized structures, and single-point force

calculations were performed on each of them. In VASP

calculations, the reduced k-point meshes and supercell

expansions described in Table 2 were used in the single-point

calculations, while FFLUX calculations used the supercell

sizes described in Table 1. Unlike in previous work where the

whole FFLUX-optimized supercell was used to generate

displaced structures (Brown et al., 2023a), here a central unit

cell was extracted, with the displaced supercells constructed

using Phonopy for the force calculations. As up to 6N

displacements may be required for Phonopy calculations,

where N is the number of atoms in the cell provided to

Phonopy, this procedure allows for a significant reduction in

the number of required calculations proportional to the

chosen supercell size. For example, in the case of ice Ih the

4 � 4 � 4 supercell containing 2304 atoms required 13824

single-point calculations. However, using only the unit cell

with 36 atoms meant just 216 calculations were required, a 64

times reduction (4 � 4 � 4 = 64) in the number of required

calculations. The accuracy of extracting the unit cell compared

with providing Phonopy with the FFLUX-optimized supercell

is demonstrated in Section S2.2 of the SI. A comparison of the

computational costs of FFLUX and PBE+D3 single-point

force calculations is also provided in Section S2.3 of the SI.

Phonon dispersions were then generated to assess the

dynamic stability of each phase, and the phonon DoS was

evaluated by interpolating the phonon frequencies onto

regular 16 � 16 � 16 q-point meshes. The relative stability of

phases was then assessed by calculating the Helmholtz free

energies.

The QHA extends on the HA, allowing a volume depen-

dence of free energies to be calculated, therefore affording the

Gibbs free energy. The volumes of optimized ice structures

were compressed and expanded, then optimized with their

volumes constrained to the scaled values. Harmonic phonon

calculations were performed for each of the volume-scaled

structures, the Gibbs free energy was then calculated over a

10–300 K temperature range as described in Section 2.2 using

the Phonopy package.

4. Results and discussion

4.1. GPR model performance

Before applying the trained GPR models in a simulation,

their predictive ability can be assessed. Initially, this can be

done by plotting cumulative distributions of the absolute

prediction error over the external validation set, called S-

curves. The predicted properties of all points in the set are

compared with the true values, organized in ascending order

and then plotted against percentile. S-curves for the IQA

energy and atomic charge are shown in Fig. 3, with S-curves

for the remaining multipole moments provided in Section S3

of the SI (Figs. S2–S25).
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Table 2
Summary of the technical parameters used for the geometry optimiza-
tions and phonon calculations on the studied ice polymorphs.

k-point sampling

Phase Optimization Phonon

Supercell

expansion

No. of
supercell

molecules

Ih 3 � 3 � 2 2 � 2 � 1 2 � 2 � 2 96
II 2 � 2 � 2 1 � 1 � 1 2 � 2 � 2 96
XV 2 � 2 � 3 1 � 1 � 2 2 � 2 � 2 80



The S-curves show that hydrogen energies are predicted

with errors <0.1 kJ mol� 1 across almost the entire test set,

only showing greater errors above the 99% percentile. The

oxygen atom has the largest errors, although these are also

<0.1 kJ mol� 1 for 97% of test points with the maximum error

(at 100%) being just 1.18 kJ mol� 1. This error is well below

the commonly used 1 kcal mol� 1 (4.18 kJ mol� 1) threshold of

chemical accuracy. Further assessment of the accuracy of the

multipole moment models is provided in Section S3 of the SI

(Fig. S26), where atom–atom intermolecular electrostatic

interactions were predicted using the GPR model and

compared with energies obtained from the IQA moments. The

O–O intermolecular interaction is found to contribute most to

the error, with an RMSE of only 0.016 kJ mol� 1 across a

validation set.

Geometry optimizations of the water monomer were

performed using FFLUX to assess how well the minimum on

the PES was reproduced. In the optimizations the 0 K opti-

mizer was used in 5000-step simulations with a 1 fs timestep.

The Berendsen thermostat with a 0.01 ps relaxation time was

used. Fifteen distorted structures were generated by randomly

varying the HOH angle and OH bond lengths of the B3LYP/

aug-cc-pVTZ-optimized geometry. FFLUX consistently

reproduced the optimized geometry of the training level of

theory well, with an RMSE of 2.84 � 10� 4 Å for all optimi-

zations. Of note was that FFLUX was able to optimize an

angle as large as 165� and bond lengths shorter or longer than

equilibrium by 0.16 Å at maximum, with distorted structures

covering an energy range of, at most, 148.7 kJ mol� 1. These

optimizations show that FFLUX is able to reproduce the

minimum geometry with quantum mechanical accuracy.

The energy of the optimized monomer was also captured with

sub-kJ mol� 1 accuracy, with FFLUX predicting an energy of

� 200761.94 kJ mol� 1 compared with � 200762.00 kJ mol� 1

using the training level of theory, differing by only

0.06 kJ mol� 1.

Additionally, the molecular dipole moment was calculated

as 1.847 D with FFLUX, which is within less than 0.4% from

the experimental value of 1.855 D (Clough et al., 1973), and

within 0.05% of the B3LYP-calculated value of 1.848 D. This

demonstrates that the charge distribution in the molecule is

reproduced with high accuracy. Further tests of the water GPR

model are provided in Section S3 of the SI, showing its

stability in MD simulations and its accuracy in vibrational

frequency calculations. The model was found to be stable for

at least 5 ns at multiple temperatures, and vibrational

frequency errors corresponded to sub-0.1 kJ mol� 1 energy

differences from the training level of theory.

4.2. Optimized crystal structures

Following the process described in Section 3.2, the super-

cells of ices Ih, II and XV were optimized with supercell

expansions as shown in Table 1. Lattice constants of the
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Figure 3
S-curves showing the absolute prediction error of (a) IQA energies and (b) charge of the atoms in the water monomer.

Table 3
Comparison of unit-cell parameters predicted by FFLUX and PBE+D3 with experiment.

Phase a, b, c (Å) �% �, �, � (�) �% V (Å3) �%

Ih

Experiment 7.82, 7.82, 7.36 90.0, 90.0, 120.0 389.78
Ih FFLUX 7.61, 7.63, 7.14 � 2.6, � 2.5, � 2.9 89.8, 90.0, 120.2 � 0.2, 0.0, 0.2 358.53 � 8.0
Ih PBE+D3 7.54, 7.54, 7.08 � 3.6, � 3.6, � 3.8 90.0, 90.0, 120.0 0.0, 0.0, 0.0 348.18 � 10.7

II
Experiment 7.78, 7.78, 7.78 113.1, 113.1, 113.1 304.25
II FFLUX 7.79, 7.79, 7.76 0.2, 0.2, � 0.3 113.0, 112.8, 113.4 � 0.1, � 0.2, 0.3 304.64 0.1

II PBE+D3 7.52, 7.52, 7.52 � 3.3, � 3.3, � 3.3 113.0, 113.0, 113.0 � 0.1, � 0.1, � 0.1 277.30 � 8.9

XV
Experiment 6.23, 6.24, 5.79 90.1, 90.0, 89.9 225.32
XV FFLUX 6.36, 6.29, 5.83 2.0, 0.7, 0.7 92.2, 91.8, 91.0 2.3, 2.0, 1.1 232.79 3.3
XV PBE+D3 6.08, 6.07, 5.67 � 2.4, � 2.7, � 2.1 90.5, 89.6, 90.5 0.5, � 0.4, 0.7 209.27 � 7.1



FFLUX- and PBE+D3-optimized phases are shown along

with the experimental values in Table 3.

FFLUX reproduces all experimental lattice parameters

within 3%, without imposing any symmetry in the optimiza-

tions. These values are comparable with the PBE+D3 para-

meters. The similarity between the two methods is pleasing

given the significantly shorter time required for the FFLUX

optimizations (estimated to be on the order of 104–105 times

faster than PBE+D3 in Section S2.1 of the SI). Moreover, the

volume of Ih is seen to decrease with respect to the experi-

mental structure, consistent with thermal contraction. This

effect can be seen in the optimizations as they are performed

at 0 K and experimental structures are obtained at finite

temperature. However, this is not the case for ices II and XV,

which contract in the PBE+D3 but are seen to expand in the

FFLUX optimizations. This expansion, while opposite to what

is found with DFT, does have a physical basis given that II and

XV are both high-pressure phases, and optimization under

ambient pressure can lead to an expansion in cell volume.

Compared with PBE+D3, FFLUX does struggle to main-

tain the symmetry of the crystal. This difficulty can first be

seen in the cell lengths, where the 1:1 ratio of a:b lattice

parameters in Ih and the 1:1:1 ratio of a:b:c in II are not

maintained. Similar distortions are also seen in the cell angles.

Determining the space group using Phonopy also indicates

FFLUX’s struggle, with the experimental space groups of Ih,

II and XV recovered within 6 � 10� 2, 3 � 10� 1 and

3 � 10� 3 Å in FFLUX-optimized structures. These values

follow the trend of the space-group symmetry, with the

highest-symmetry structure (ice II) having the largest error

and the lowest-symmetry group (ice XV) having the smallest

error. Errors in symmetry were not a problem with PBE+D3

calculations, with all experimental space groups recovered

within 10� 5 Å.

Optimization of potential structures is a key component of

CSP studies, which then typically predict relative stabilities of

structures using lattice energies. The lattice energies, Ulatt, for

the three optimized phases were calculated using

Ulatt ¼
Ucryst

N
� Umon; ð17Þ

where Ucryst is the potential energy of the supercell, N is the

number of molecules in the supercell and Umon is the energy of

an optimized monomer in the gas phase. The lattice energies

are given in Table 4 as calculated by FFLUX and PBE+D3.

FFLUX predicts the lattice energy of phase Ih to be

remarkably close to experiment, differing by only

0.7 kJ mol� 1, in contrast with PBE+D3 which predicts it to be

more stable by 14.2 kJ mol� 1. However, FFLUX calculates

the energies of phases II and XV relative to Ih to be much

higher compared with PBE+D3 and experiment; instead of a

sub-kJ mol� 1 energy difference between Ih and II, FFLUX

predicts a difference of 18.6 kJ mol� 1.

The monomeric model used in simulations was shown to be

capable of sub-kJ mol� 1 accuracy and FFLUX predicts the
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Table 4
Lattice energies (in kJ mol� 1) calculated using FFLUX and PBE+D3.

Experimental energies extrapolated to zero temperature for phases Ih and II
(Whalley, 1984) are also given.

FFLUX
Relative
FFLUX PBE+D3

Relative
PBE+D3 Experiment

Relative
experiment

Ih � 59.6 0.0 � 73.1 0.0 � 58.9 0.0
II � 41.0 18.6 � 70.6 2.5 � 58.8 0.1

XV � 44.0 15.6 � 68.0 5.1 – –

Figure 4
Phonon dispersion curve of (a) phase II, and of (b) phase II0. The unit-cell structure of II is shown at the bottom left, the mapped PES along wavevector
R2 bottom middle and the structure of II0 at the bottom right.



lattice energy of ice Ih within 1 kJ mol� 1 from experiment.

Hence, discrepancies with the other two phases suggest that

the LJ parameters were not suitable for ices II and XV.

Secondly, because the model was trained on a monomer only,

it does not capture intermolecular polarization. To account for

both intermolecular polarization and van der Waals interac-

tions within the FFLUX methodology, GPR models need to

be trained on a cluster rather than on the monomer only, as

done here. This work is already underway in our group

(Brown et al., 2024) but the full implementation is challenging

and thus represents a longer-term goal.

4.3. Harmonic approximation

Phonon frequencies, calculated from the process described

in Section 2.2, were used to obtain phonon dispersion curves.

The presence of imaginary phonon modes in the dispersion of

a structure is indicative of dynamical instability (Pallikara et

al., 2022). Imaginary modes arise when the original structure is

a maximum point on the PES and the displacement of atoms

results in decreased energy. Phases Ih and XV as optimized by

FFLUX are considered dynamically stable, with their phonon

dispersion curves given in Section S4.1 of the SI. However, ice

II contains imaginary modes at high-symmetry points X, Z and

R2, as shown in Fig. 4(a).

If imaginary phonon modes are present, the ‘mode-

mapping’ technique can be used to investigate the instability

(Skelton et al., 2016). This process involves distorting the

initial unstable structure along the imaginary mode eigen-

vectors with displacement amplitudes Q, generating a series of

displaced structures. Calculating the energy of each distorted

structure gives a double-well potential where the original

geometry (at Q = 0) is a saddle point. The minimum-energy

structure can then be optimized and tested for dynamical

stability. The application of this approach has led to previously

unknown polymorphs of bismuth stannate (Rahim et al.,

2020).

The ModeMap code (Skelton et al., 2016) was used to

analyse the PES along wavevectors with imaginary phonon

modes (X;Z;R2) of ice II. Full details are given in Section

S4.2 of the SI but the process is summarized in Fig. 4, where

the R2 point was mapped to give a double-well potential.

Optimization of the minimum of this potential resulted in a

new structure that showed no imaginary modes [Fig. 4(b)],

indicating dynamical stability. The arrangement of atoms and

the lattice parameters of this new structure (here labelled II0)

are different from those of the known ice II and, to our

knowledge, from all other experimentally known ices. The unit

cells of ice II and II0 are shown in Fig. 4 along with the mapped

PES at point R2. Further images are given in Section S4.2 of

the SI.

To investigate whether ice II0 was an artefact of the non-

bonded parameters used in the FFLUX calculations, DFT

calculations were performed to optimize the structure and

assess its stability in phonon calculations, as described in

Sections 3.3 and 3.4 above. The phonon dispersion of II0 from

PBE+D3 also shows no imaginary modes [Fig. S28(d)],

confirming the dynamical stability of the structure outside of

FFLUX parametrization. Lattice constants using both

methods are similar, as shown in Table S5, but the II/II0 lattice

energy ordering is different between methods, with PBE+D3

predicting II to be more stable by 1.9 kJ mol� 1. Finally,

PBE+D3 also finds ice II to be dynamically stable, meaning

that no mode-mapping was required.

The previously calculated phonon frequency can also be

used to plot the phonon DoS, shown in Fig. 5 for phases Ih, II,

XV and II0, calculated using PBE+D3 and FFLUX.

The high-frequency peaks corresponding to OH stretching

modes observed in neutron scattering experiments at

approximately 3100 and 3200 cm� 1 (Prask et al., 1972) in ice Ih

are significantly blue-shifted by FFLUX, while PBE+D3

predicts them to be more in-line with experimental data.

These errors are counter to the highly accurate monomer

vibrational frequencies presented in Table S4 of Section S3 of

the SI. Differences between the two methods should be

expected, with the GPR model used in FFLUX simulations

being based on B3LYP/aug-cc-pVTZ calculations and the

DFT calculations being PBE+D3/plane-wave. B3LYP is

known to typically overestimate vibrational frequencies,

requiring scaling factors to better represent experimental data

(Sinha et al., 2004). Furthermore, the monomeric nature of the

model also contributes to the observed differences as inter-

molecular interactions that the GPR model currently cannot

capture are known to red-shift (Dykstra, 1988) or blue-shift

(Fornaro et al., 2015) vibrational frequencies. The use of

oligomeric models has been shown to improve the calculation

of vibrational frequencies (Brown et al., 2024) as they account

for intermolecular interactions. The peak representing

bending modes is observed at 1600 cm� 1 experimentally in ice

Ih. This peak is captured well using FFLUX compared with

PBE+D3 in the case of all four phases, near 1600 cm� 1 by both

methods.
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Figure 5
Phonon DoS of the studied phases calculated by PBE+D3 (black) and
FFLUX (colour).



The lower-frequency regions contribute more to the free

energy. FFLUX predicts these regions closest to PBE+D3 in

the case of phase II0, reproducing the peaks below 500 cm� 1

particularly well. The lowest region for Ih is also predicted

relatively well compared with PBE+D3 but the gap between

the two peaks is significantly smaller. For phases II and XV, no

gap is observed, as opposed to PBE+D3, and the peak is red-

shifted. The errors in these frequencies possibly contribute to

inaccuracies in the calculated Helmholtz free energies of the

phases, shown relative to ice Ih in Fig. 6.

The qualitative ordering of polymorphs with FFLUX is

found to be mostly the same as that of PBE+D3, with ice II

being the main discrepancy. The dynamic instability of II

predicted by FFLUX is likely to be contributing to this

mismatched result. Across the temperature range studied,

both FFLUX and PBE+D3 predict phase Ih to be most stable,

with II0 being predicted as more stable than XV. Given that

the polymorphs are related by pressure transitions, it is also

pleasing to see the Helmholtz energies recover the expected

monotropic behaviour of the polymorphs, meaning that no

transitions are observed between phases across the tempera-

ture range.

Quantitatively, FFLUX predicts the relative energies to be

much larger than those of PBE+D3. Given the accuracy of the

monomeric model, this fact is likely due to the non-bonded

parameters that were used. The transferability of the mono-

meric moments to a molecule in the crystal could also be

contributing to the errors seen, as intermolecular polarization

is not accounted for in the monomeric model.

4.4. Quasi-harmonic approximation

To account for the volume dependence of phonon

frequencies under the QHA, a series of volume compressions

and expansions were introduced to the optimized structures

followed by the application of the HA at each volume. Using

PBE+D3 all structures were compressed and expanded by

10%. Using FFLUX, volume changes for ice Ih were �5%,

and between � 3 and +10% for ice XV. These volumes allowed

for free-energy–volume curves that captured a minimum-

energy structure enabling the QHA to be performed [see

equation (13)]. We obtain Gibbs free energies at constant

pressure, which are a more experimentally relevant way of

comparing the stabilities. The Gibbs free energies calculated

under the QHA can be used to construct a temperature–

pressure phase diagram by adding a pV term to the free

energies. Fig. 7 shows the Ih/XV phase diagram, displaying the

predicted behaviour over a 10–300 K temperature and 0–

10 GPa pressure range using FFLUX and PBE+D3. Phase II

has been omitted as FFLUX finds it to be metastable, as

shown by the Gibbs-pressure plot in Fig. S34 in Section S4.2 of

the SI.

Calculation of phase diagrams is a challenging test for any

method (Ramı́rez et al., 2013; Abascal et al., 2005; Bore &

Paesani, 2023), and it has been seen that errors in free energies

as small as 1 kJ mol� 1 can lead to transition temperature

errors of over 200 K (Červinka & Beran, 2018), highlighting

the high accuracy required for such calculations. Here,

FFLUX predicts a pressure transition that is approximately

3.5 times that of PBE+D3, with the DFT calculations better

representing the experimental transition where ice XV

is seen to become stable at �0.8 GPa. Compared with other

water models, FFLUX falls short here, with TIP4P/Ice

showing errors that are of the order of 0.1 GPa (Abascal et al.,

2005). The MB-pol potential also reproduces the phase

diagram closely (Bore & Paesani, 2023). However, it is quite

common for phase diagrams to have large errors, with

prediction being made easier for systems at high pressure,

where thermal expansion effects become less significant

(Beran, 2023).

Errors in the free energies calculated by FFLUX are likely

to be due to the representation of dispersion and repulsion by

a LJ potential. The way to circumvent the implementation of

non-bonded parameters is by training on an oligomeric model,

research papers

Acta Cryst. (2025). A81, 36–48 Alexandra Pák et al. � Study of ice polymorphs using the FFLUX force field 45

Figure 6
Helmholtz free energies of II, II0 and XV are shown relative to Ih. Solid
lines indicate PBE+D3-calculated energies, while dotted lines indicate
calculations performed using FFLUX.

Figure 7
Phase diagram of phases Ih and XV calculated by FFLUX and PBE+D3;
the red dotted line indicates the pressure transition by FFLUX while the
black solid line indicates that by PBE+D3.



although incorporation into systems larger than the one we

trained on is still under development.

5. Related literature

The following references are cited in the supporting infor-

mation: Frisch et al. (2016), Fu et al. (2023), Hédin et al. (2016),

Momma & Izumi (2008).

6. Conclusions

Computational methods with exceptional accuracy are

required for reliable polymorph prediction in crystal structure

prediction (CSP) studies. However, state-of-the-art methods

are associated with large computing costs and typically rely on

lattice energies to determine relative stabilities of polymorphs.

This approach neglects important thermal contributions to the

stability of structures, which can change the relative energy

ranking of polymorphs, as well as provide vital information as

to how predicted phases may behave under different condi-

tions. Free energies therefore provide a more accurate

measure, but are generally neglected in CSP workflows as

their calculation increases the computational cost further.

Therefore, for accurate and efficient polymorph prediction

alternative approaches must be considered.

Here we have used the FFLUX force field to study three

phases of ice (Ih, II and XV), calculating Gibbs free energies

for the first time using quasi-harmonic lattice dynamics

calculations. FFLUX uses Gaussian process regression (GPR)

models to predict an intramolecular potential energy surface

with quantum mechanical accuracy and multipole moments

for electrostatic interactions. These models allow for flexible

molecules where the multipole moments change with

geometry on-the-fly during simulations, features that are not

common in force fields typically used in CSP. While costly with

typical CSP methods, we show that FFLUX can efficiently

perform lattice dynamics calculations to obtain both Helm-

holtz and Gibbs free energies approximately 106–107 times

faster than periodic plane-wave DFT calculations.

Optimization of the crystal structures showed that FFLUX

was able to obtain lattice parameters comparable with those

obtained from PBE+D3 at a significantly reduced computa-

tional cost, with all lattice parameters obtained within 5% of

experimental values. Despite the success in reproducing the

unit cells, the relative lattice energy ranking obtained with

FFLUX did not follow chemical intuition, with ice II being

predicted as less stable than the higher-pressure ice XV. Given

the sub-kJ mol� 1 accuracy of the presented GPR model, these

errors were primarily attributed to the parametrized non-

bonded potential, which is external and hence not part of the

general architecture of FFLUX. However, due to the mono-

meric nature of the GPR model, the lack of intermolecular

polarization effects is also likely to be contributing to the

errors seen in these calculations.

Harmonic phonon calculations allowed the dynamic stabi-

lity of the three ices to be assessed. While PBE+D3 found all

three phases to be stable, FFLUX incorrectly identified ice II

as unstable. Mapping the instability led to the identification of

(to our knowledge) a new phase of ice, labelled here as ice II0.

This phase was also found to be dynamically stable in

PBE+D3 calculations, but less stable than ice II, in contrast to

FFLUX predictions. The discovery of ice II0 is again likely due

to the non-bonded potential used, which artificially stabilized

II0 over ice II. The non-bonded potential also causes relative

Helmholtz free energies to be largely overpredicted compared

with PBE+D3 and experimental data, which is then proble-

matic in the quasi-harmonic calculations. In these calculations,

small free energy errors can lead to large deviations in the

locations of phase transitions (Červinka & Beran, 2018). Here,

the errors present themselves as FFLUX overpredicting the

transition pressure between Ih and XV.

While currently problematic, the issues with non-bonded

potentials are fixable within the FFLUX methodology. This fix

comes in the form of machine-learning models trained to

predict dispersion and repulsion, making non-bonded poten-

tials (and their time-consuming parametrization) redundant.

We have already shown that it is possible to machine-learn

dynamic electron correlation energies, enabling the prediction

of dispersive interactions (McDonagh et al., 2018), as well as

incorporate intermolecular repulsion by training oligomeric

models (Brown et al., 2024). Currently these oligomeric

models can only be used for systems of the size for which they

are trained (i.e. a dimer model may only be used for a dimer

simulation), but work is underway to make extension to larger

systems possible. Once implemented, FFLUX simulations will

be closer to quantum mechanics. Moreover, all information

will be coming from GPR models trained on data coming from

one consistent and general scheme (interacting quantum

atoms), making our method future-proof.
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Bučar, D. K., Lancaster, R. W. & Bernstein, J. (2015). Angew. Chem.

Int. Ed. 54, 6972–6993.
Burn, M. J. & Popelier, P. L. A. (2022). Mater. Adv. 3, 8729–8739.
Burn, M. J. & Popelier, P. L. A. (2023). Digit. Discov. 2, 152–164.
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