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SUMMARY

We previously described that the KDM5B histone H3 lysine 4 demethylase is an oncogene 

in estrogen-receptor-positive breast cancer. Here, we report that KDM5A is amplified and 

overexpressed in basal breast tumors, and KDM5 inhibition (KDM5i) suppresses the growth 

of KDM5-amplified breast cancer cell lines. Using CRISPR knockout screens in a basal breast 

cancer cell line with or without KDM5i, we found that deletion of the ZBTB7A transcription 

factor and core SAGA complex sensitizes cells to KDM5i, whereas deletion of RHO-GTPases 

leads to resistance. Chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing 

(RNA-seq) revealed co-localization of ZBTB7A and KDM5A/B at promoters with high histone 
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H3K4me3 and dependence of KDM5A chromatin binding on ZBTB7A. ZBTB7A knockout 

altered the transcriptional response to KDM5i at NF-κB targets and mitochondrion-related 

pathways. High expression of ZBTB7A in triple-negative breast cancer is significantly associated 

with poor response to neoadjuvant chemotherapy. Our work furthers the understanding of KDM5-

mediated gene regulation and identifies mediators of sensitivity to KDM5i.

Graphical abstract

In brief

DiCiaccio et al. conducted a CRISPR viability screen to characterize mechanisms of response and 

resistance to KDM5 inhibition in basal breast cancer and identified the ZBTB7A transcription 

factor as a key mediator of KDM5A chromatin binding. Deletion of ZBTB7A alters NF-κB and 

mitochondrial signaling following KDM5 inhibition.

INTRODUCTION

Histone modifications regulate chromatin structure and transcription, and abnormalities in 

this process are involved in cancer.1,2 Genes encoding histones and chromatin modifiers 

are frequently mutated in human cancers,1,3 yet the role of these in tumorigenesis 

remains poorly defined. Epigenetic regulators define cell states, and cellular phenotypic 

heterogeneity is a driver of tumor progression and therapeutic resistance.4,5
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The KDM5 family of histone 3 lysine 4 (H3K4) demethylases has been implicated as 

oncogenes in breast cancer. Breast cancer is a heterogeneous disease clinically classified 

based on the presence of estrogen receptors (ERs) and progesterone receptors (PRs) and 

HER2 into ER+, HER2+, and triple-negative (ER−/PR−/HER2−; TNBC) subtypes, while 

gene expression profiling has demonstrated luminal, basal, and mesenchymal molecular 

subtypes.6 We previously identified KDM5B as a luminal lineage-driving oncogene 

frequently amplified in ER+ tumors and associated with endocrine resistance.7 In line with 

this, deletion of Kdm5b in mice delays mammary gland development by perturbing luminal 

epithelial cell differentiation.8 Subsequently, both KDM5A and KDM5B paralogs were 

found to contribute to endocrine therapy resistance, indicating redundancy as oncogenes in 

ER+ breast cancer.9,10 In addition, inhibition of KDM5 catalytic activity decreased cellular 

transcriptomic heterogeneity, overcoming endocrine resistance.10

The role of KDM5 demethylases in TNBC is less clear, with KDM5A and KDM5B 
demonstrating divergent results. KDM5A is significantly associated with metastatic relapse 

in ER− breast cancer patients, and KDM5A knockdown significantly reduced lung 

metastasis in vivo.11 However, studies of KDM5B in TNBC models implicate KDM5B 
as a tumor suppressor.12,13 KDM5B inhibits the expression of CCL14 through interaction 

with the LSD1/NuRD complex, thus suppressing angiogenesis.13 In addition, KDM5B 
overexpression reduced in vitro migration and invasion of TNBC cell lines, depending on 

the interaction between KDM5B’s PHD1 domain and unmethylated H3K4.12 Therefore, the 

function of KDM5 demethylases and their therapeutic potential in TNBC are still unclear.

To investigate the functional relevance of KDM5 in TNBC and basal breast cancer, we 

analyzed genetic alterations in the KDM5 family and found the KDM5A paralog to be 

specifically amplified and overexpressed in basal breast cancer. We next analyzed KDM5 

inhibition (KDM5i) sensitivity in breast cancer cell lines and identified the SUM149 

KDM5A-amplified basal TNBC line with high sensitivity to KDM5i. Using this line and 

its KDM5i-resistant derivative, we performed genome-wide CRISPR screens to identify 

modulators of KDM5 inhibitor sensitivity. We followed up top hits and integrated these 

data with RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing 

(ChIP-seq) to understand the signaling pathways associated with KDM5 activity in basal 

breast cancer.

RESULTS

KDM5A is commonly amplified and overexpressed in basal breast cancer

Both KDM5A and KDM5B were reported to be amplified and overexpressed in breast 

cancer.7,14 However, paralog-specific differences between luminal and basal breast cancer 

have not been analyzed. Thus, we assessed the mutational landscape of KDM5 paralogs in 

luminal A (LumA) and basal breast tumors in the TCGA cohort. We previously reported 

that KDM5B is specifically amplified in LumA breast cancer (Figure S1A).7,10 However, 

KDM5A was specifically amplified in basal breast cancer to a similar degree (Figures 

S1A and S1B), and KDM5A expression was also the highest in the basal subtype (Figure 

S1C).15 Although KDM5A had been reported in the 12p13.3 amplicon detected in ~15% 

of breast cancers,14,15 we demonstrate that this amplification is basal subtype specific, with 
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KDM5A being amplified in over 50% of basal breast cancers (Figure S1B). Given that basal 

breast cancers tend to be ER−, this could explain why KDM5A expression correlates with 

metastatic progression only in ER− tumors.11

To address if KDM5A and KDM5B are co-amplified passenger genes and not drivers of 

their amplicons, we assessed all regions of chromosomes 1 (KDM5B amplicon) and 12 

(KDM5A amplicon), respectively, to identify the most frequent amplifications (Figures S1D 

and S1E). Amplification of chromosome 1q (KDM5B locus) is frequent in LumA breast 

cancer (Figure S1D), while chromosome 12p13.33 (KDM5A locus) gain is frequent in basal 

tumors (Figure S1E). In addition, among all genes on chromosome 12, KDM5A is the 

second most frequently amplified gene next to ETV6. However, the oncoPrint plot shows 

that KDM5A amplification commonly occurs in the absence of ETV6 amplification (Figure 

S1F), indicating it is not a passenger associated with ETV6.

The effect of the C70 KDM5 inhibitor on breast cancer cell lines

To determine subtype-specific difference in response to KDM5i, we tested the sensitivity 

of breast cancer cell lines to the pan-KDM5 inhibitor C70.16 HER2+ and some TNBC cell 

lines (MDA-MB-436 mesenchymal and SUM149 basal) were the most sensitive (Figures 

S2A and S2B). Sensitivity to C70 did not significantly correlate with the expression levels 

of KDM5 family members (Figure S2C), potentially due to small sample size. While high 

sensitivity of HER2+ breast cancer has been shown before,17 similar sensitivity in a subset of 

TNBC lines has not been described. Thus, we chose the SUM149 basal KDM5A-amplified 

TNBC cell line for further studies.

To study mechanisms of acquired resistance to KDM5i, we generated C70-resistant 

derivatives of SUM149 cells, SUM149CR, by prolonged culture with 10 μM C70 (Figure 

1A). We then performed RNA-seq and gene set enrichment analysis (GSEA) on untreated 

SUM149 and SUM149CR cells. GSEA of differentially expressed genes (DEGs) revealed 

oxidative phosphorylation as the top enriched pathway in SUM149CR, while inflammatory 

response and interleukin-10 (IL-10) and nuclear factor κB (NF-κB) signaling were enriched 

in SUM149 (Figure 1B; Table S1). To test potential differences in mitochondrial function 

between SUM149 and SUM149CR cells, we performed the Mito Stress Test ± 10 μM C70. 

SUM149CR showed significantly higher basal respiration compared to SUM149, validating 

the RNA-seq data, while C70 treatment decreased respiration in both cell lines (Figure 1C).

To identify C70 resistance-associated gene expression changes, we performed RNA-seq 

on SUM149 and SUM149CR cells ± 10 μM C70 for 2 or 7 days. SUM149CR had a 

delayed transcriptional response to C70, indicated by a smaller shift in RNA-seq principal-

component analysis (PCA) coordinates at 2 days, but this difference diminished by 7 days of 

treatment (Figure S2E). Quantification using Euclidian distances confirmed this observation 

(Figure S2F). In line with this, SUM149CR cells had attenuated enrichment of signaling 

pathways after C70 treatment (Figure 1D). In SUM149 cells, we found enrichment for 

tumor necrosis factor α (TNF-α) signaling via NF-κB and inflammatory response upon 

C70 treatment (Figure 1D). However, in SUM149CR, these pathways were either delayed 

(TNF-α signaling via NF-κB) or absent (inflammatory response). Quantitative histone mass 

spectrometry demonstrated muted response of SUM149CR cells to C70 after 2 days of 
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treatment compared to SUM149 based on changes in H3K4me3 (Figures 1E and 1F; Table 

S2).

To explore resistance and response to C70 at the single-cell level, we performed single-cell 

RNA-seq (scRNA-seq) on SUM149 and SUM149CR cell lines ± C70 for 7 days. Both 

SUM149 and SUM149CR cells tended to occupy different regions of Uniform Manifold 

Approximation and Projection (UMAP) space (Figure 1G). To determine if these cell states 

are acquired or pre-existing, we next generated cell state signatures from DEGs between 

SUM149, SUM149CR, and C70-treated SUM149 + C70 from bulk RNA-seq and classified 

each individual cell into these states. The resistant state was present in a subset of SUM49 

cells prior to treatment, while the C70 state was quite distinct, and very few cells occupied 

this state (Figure 1H). The transition to this C70 state after 7 days of treatment was similar 

between SUM149 and SUM149CR, indicating that SUM149CR maintains a similar, yet 

delayed, transcriptional response to C70 treatment.

Previously, we found that C70 treatment reduced cellular transcriptomic heterogeneity of 

luminal ER+ cell lines but had the opposite effect in the SUM159 TNBC cell line.10 

To explore C70 effects in SUM149 and SUM149CR lines, we calculated cell-to-cell 

transcriptomic distances ± C70 treatment. We found that C70 treatment increased cell-to-

cell transcriptomic distances in both SUM149 and SUM149CR cells and that SUM149CR 

cells had higher baseline heterogeneity compared to SUM149 (Figure 1I). To investigate 

transcriptomic heterogeneity changes, we performed GSEA on genes with increasing Gini 

index after C70 treatment or resistance (i.e., more heterogeneously expressed genes). 

Pathways related to oxidative phosphorylation and reactive oxygen species (ROS) were top 

enriched in both cell lines after C70 treatment, while proliferation-related pathways were 

enriched in SUM149CR compared to SUM149 (Figure 1J).

These results imply that C70 has the largest impact on genes related to mitochondrial 

function and proliferation.

CRISPR viability screen to identify modulators of KDM5 inhibitor sensitivity

To identify synthetic lethal targets and mechanisms of resistance to C70 in basal breast 

cancer, we performed a genome-wide CRISPR-Cas9 knockout (KO) viability screen ± 

C70 in SUM149 and SUM149CR. In SUM149 we identified 69 and 138 genes that when 

deleted made cells more sensitive or resistant to C70, respectively (p < 0.001) (Figure 

2A; Table S3). Although KDM5A was a resistance hit (Figure 2A), it had a low robust 

rank aggregation (RRA) score, and KDM5A and KDM5B KO cell lines did not reveal 

significant differences in C70 response in cell growth or histone H3K4me3 levels (Figures 

S2G–S2I). SUM149CR produced fewer hits (24 resistance and 39 sensitizers; p < 0.001) and 

displayed limited overlap with SUM149 cells (Figures 2A and 2B; Table S3). Only three 

targets increased sensitivity to C70 in both the SUM149 and the SUM149CR cells: XPR1 
(retrovirus receptor), TADA2B (transcriptional adaptor), and MTCH2 (mitochondrial carrier 

homolog) (Figure 2B; Table S2). We also integrated our RNA-seq data with the CRISPR 

hits. SOX7, IL7, KIAA1257, MUC6, and DLG5 were differentially enriched in the SUM149 

CRISPR screen (p < 0.001) and differentially expressed (padj < 0.05 and abs(log2(FC)) 
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> 1) between SUM149CR and SUM149, while ROS1 and FUT3 were CRISPR hits and 

differentially expressed between C70- and DMSO-treated SUM149 cells (Table S3).

Among the most significantly depleted hits in C70-treated SUM149 was the transcription 

factor ZBTB7A (Figure 2A; Table S3).18 ZBTB7A is thought to act as a transcriptional 

repressor and associates with DNA-repressive complexes (e.g., NuRD, Sin3a, and 

NCoR).19,20 Among the most significantly enriched hits in C70-treated SUM149 were 

members of the RHOA/RAC1 GTPase cycle (Figures 2A, S2J, and S2K; Table S3). Four of 

the top six resistance hits included the RHOA and RAC1 GTPases in addition to the RHOA-

effector proteins PKN2 and ILK (integrin-linked kinase). Because ILK and RHO/RAC 

regulate extracellular matrix attachment and cell shape,21 their identification as top C70 

resistance hits implies that cell shape might influence response to KDM5i.

We then performed GSEA for Hallmark, KEGG, and Reactome gene sets and CORUM 

protein complexes within the differentially enriched CRISPR screen hits. Within SUM149, 

loss of MYC targets was associated with increased resistance (Figure 2C), consistent 

with prior reports identifying KDM5A required for MYC-driven transcription in multiple 

myeloma.22 In addition, the RAC1-RHOA-VANGL2 and the SAGA complex were 

significantly enriched among gRNA targets associated with resistance (Figure 2D). The 

SAGA complex is a transcriptional co-activator with both histone acetyltransferase (H3K9ac 

and H3K14ac) and deubiquitinase (H2BK120ub) enzymatic activity.23 Four of the eight 

SAGA subunits were hits in the SUM149 screen (TADA1, SUPT7L, SPT20H, and TAF5L), 

and one member of the SAGA histone acetyltransferase (TADA2B) was a hit in both 

SUM149 and SUM149CR screens (Figures 2A and 2B). This implies that a decrease in 

SAGA complex activity may increase sensitivity to KDM5i.

To validate the role of ZBTB7A, RHOA, and PKN2 deletion in KDM5i sensitivity, we 

generated SUM149 cell lines expressing constitutive Cas9 and individual gRNAs (Figure 

S2L). ZBTB7A deletion reduced growth in the presence of C70, but not DMSO, compared 

to control guides targeting the ROSA26 locus as well as a non-targeting control guide, 

confirming the screen results (Figures 2E and 2F). For RHOA and PKN2, only one guide per 

gene induced a sufficient decrease in protein levels (RHOA-g1 and PKN2-g1, Figure S2L). 

Consequently, only these effective guides led to increased growth in the presence of C70 

compared to controls (Figures 2E and 2F). In addition, RHOA/PKN2 KO had a larger effect 

on growth in C70 than in DMSO, in agreement with our CRISPR screen.

To investigate how RHO-GTPase signaling could alter sensitivity to KDM5i, we assessed 

if cell density affects C70-mediated growth arrest and performed RHOA/RAC1-GTP pull-

down assays. We found that cells plated at higher densities had diminished sensitivity 

to C70 (Figure S2M). Pull-downs for GTP-bound RHOA and RAC1 ± C70 showed that 

under sparse conditions, KDM5i led to a reduction in GTP-bound RHOA (Figure S2N). 

Therefore, RHO-GTPase signaling might modify KDM5i and vice versa, but delineating 

these interactions requires further studies.

Because our eventual goal is to evaluate the therapeutic potential of KDM5 inhibitors in 

breast cancer, we focused on sensitizing hits. We selected ZBTB7A for further studies as 
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it was a top hit sensitizing cells to C70 and the ZBTB7A DNA binding motif was the 

second most enriched motif in our prior KDM5B ChIP-seq data,7 implying that ZBTB7A 

and KDM5 family members may interact at common loci.

ZBTB7A, KDM5A/B, repressive chromatin complexes, and response to KDM5i

ZBTB7A and KDM5s are considered repressive factors that associate with multiple histone 

deacetylase (HDAC)-containing complexes.24,25 Cross-referencing the BioGrid database, 

we found that ZBTB7A shared 15 interactors with KDM5A and/or KDM5B, 7 within the 

SWI/SNF, NuRD, and core HDAC chromatin complexes (Figure S3A).26,27 The STRING 

database of protein-protein interaction networks also predicted functional interactions with 

chromatin-repressive complexes, in which KDM5A associates with SIN3B and ZBTB7A 

with NuRD and nuclear co-repressor NCOR1 (Figure S3B).28 Guides targeting the 

MTA2 and MBD2 subunits of NuRD were significantly depleted upon C70 treatment in 

SUM149 and SUM149CR CRISPR screens, respectively (Figures 2A and 2B). Therefore, 

perturbation of the NuRD complex may also sensitize SUM149 cells to KDM5i.13,29,30

To delineate these protein interaction complexes we performed qPLEX-RIME (quantitative 

multiplexed rapid immunoprecipitation mass spectrometry)31 for KDM5B in luminal ER+ 

(MCF-7 and T47D) and TNBC (SUM149 and SUM159) cell lines (Table S4). Components 

of the NuRD, SWI/SNF, and other chromatin complexes were detected in both the luminal 

and the basal cell lines (Figure S3C). Immunoprecipitation of KDM5B revealed association 

with many of the core NuRD subunits, MTA1, MTA2, MBD2, MBD3, CHD3, and 

CHD4, while ZBTB7A pull-downs showed only weak bands for CHD4 and MTA1 (Figure 

S3D). These data imply that ZBTB7A may sensitize to C70 treatment by modulating the 

interaction of KDM5A and KDM5B with repressive chromatin complexes.

The STRING database also predicted functional interactions between KDM5A/KDM5B and 

members of the mitochondrial ATP synthase complex V based on co-expression (Figure 

S3E) corresponding to C70-resistant cells having higher expression of genes related to 

oxidative phosphorylation, many of which are subunits of the mitochondrial respiratory 

chain complexes I–IV or enzymes within the tricarboxylic acid cycle (TCA) cycle (Figures 

1B and S3E) and imply that KDM5A/B may regulate mitochondrial activity.

ZBTB7A and KDM5A/B interact and co-localize on chromatin with high H3K4me3 levels

In our previous KDM5B ChIP-seq data ZBTB7A was among the most enriched DNA 

binding motifs.7 To test if ZBTB7A and KDM5A/B are in the same protein complexes, 

we performed immunoprecipitation followed by immunoblot using H3K4me3 and CCND1 

as positive and negative controls, respectively. We detected ZBTB7A in both KDM5A 

and KDM5B immunoprecipitants, and both KDM5 family members were present in 

ZBTB7A pull-downs (Figure 3A). Furthermore, both KDM5A and KDM5B were detected 

in ZBTB7A immunoprecipitants in both SUM149 and SUM149CR cells regardless of C70 

treatment (Figure S3F), indicating that C70 does not disrupt these protein complexes.

To assess if ZBTB7A and KDM5A/B co-localize at the same chromatin regions, we 

performed ChIP-seq for each protein. We found a significant overlap between ZBTB7A, 

KDM5A, and KDM5B peaks, especially at sites with high levels of H3K4me3 (Figures 
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3B–3D and S3G; Table S4). We clustered the peaks based on overlap and found that 47% of 

all high-confidence peaks (i.e., peaks called across replicates) are co-occupied by ZBTB7A, 

KDM5A, and KDM5B and coincide with high levels of H3K4me3 (12,504 of 26,332) 

(Figures 3B, 3C, and S3G). Interestingly, KDM5A primarily bound promoter regions with 

high H3K4me3 signal, while ZBTB7A and KDM5B were found at both promoter and 

non-promoter regions (Figures 3E and S3H). This suggests that KDM5A and KDM5B may 

have distinct preference for genomic loci and thus functions, although differences due to 

antibodies used for ChIP cannot be excluded.

To determine correlations of each peak cluster with other chromatin binding factors, we 

explored overlap with public ChIP-seq data using Cistrome DB’s toolkit33 and compared 

the top 10 factors identified for each cluster based on the maximum GIGGLE score 

(−log10(padj) * odds ratio from Fisher’s exact test)34 (Figure S3I). ZBTB7A binding in 

non-promoter regions (clusters 3 and 4) had specific overlap for SWI/SNF (SMARCC1 and 

SMARCA4) and NuRD (MBD3) chromatin complexes. It was also enriched for STAT3, 

which regulates the NF-κB signaling pathway.35 The KDM5B-specific cluster 7 overlapped 

with factors related to the cohesin/CTCF complex (STAG1, SMC3, SMC1A, RAD21, 

ESCO2, and CTCF), in line with our prior data demonstrating that KDM5B physically 

interacts and co-localizes with CTCF.7 Factors enriched across KDM5A-containing clusters 

were mostly associated with active promoters (e.g., H3K4me3, H3K9ac, and POLR2A), in 

agreement with KDM5A being mainly restricted to promoter regions. Enrichment analysis 

of the ZBTB7A consensus sequence (GACCC)36 showed significant enrichment only in 

overall ZBTB7A peaks and in clusters where ZBTB7A and KDM5A peaks overlapped 

(Figure S3J), strengthening the importance of the ZBTB7A/KDM5A interactions.

To gain functional insights into each cluster, we assessed overlap of their predicted 

target genes with Hallmark gene signatures (Figure S3K) using the top 500 predicted 

target genes based on regulatory potential scores (Table S5).32 Cluster 1 (co-bound by 

KDM5A, KDM5B, and ZBTB7A) was significantly enriched for Hedgehog signaling, G2M 

checkpoint, glycolysis, and hypoxia. Clusters 3 and 4 (mostly intergenic regions bound by 

ZBTB7A) showed enrichment for apical junction and coagulation. Finally, cluster 7 (mostly 

intergenic KDM5B peaks) was significantly enriched for downregulated genes in response 

to UV. There is little overlap between the top 500 target genes of each cluster (Figure S3L), 

implying both shared and unique functions for each of the three proteins.

ZBTB7A KO reduces chromatin-bound KDM5A

To test if the co-localization of ZBTB7A, KDM5A, and KDM5B is due to direct recruitment 

mechanisms, we performed ChIP-seq in SUM149 ROSA26g control and in each of the three 

individual KO cells. ZBTB7A binding was not affected by deletion of KDM5A and KDM5B 

or by C70 treatment (Figure 3F). However, deletion of ZBTB7A led to decreased KDM5A 

signal in 43% of KDM5A peaks with no effect on KDM5B binding (Figure 3F). Since total 

KDM5A protein levels were not reduced in the ZBTB7A KO (Figure S2L), ZBTB7A may 

help recruit and/or stabilize KDM5A but not KDM5B at specific loci. KDM5A peaks were 

also decreased in the KDM5B KO, and conversely, we observed diminished KDM5B peak 

intensities in the KDM5A KO, implying mutual stabilization of KDM5A and KDM5B at 
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a subset of binding sites (Figures 3F and S4A). However, potential cross-reactivity of the 

KDM5A and KDM5B antibodies used for ChIP cannot be excluded.

Next, we assessed whether KDM5A peaks that were decreased in ZBTB7A KO cells were 

associated with changes in H3K4me3. We found that 53% of these peaks were associated 

with an increase in H3K4me3 (Figures 3G and S4B). To determine whether the increase 

in H3K4me3 signal at these loci is a consequence of diminished KDM5A binding, we 

analyzed H3K4me3 at these loci in KDM5A KO cells and found that 95% of these peaks 

also had increased H3K4me3 upon KDM5A KO (Figures 3G and S4B). Therefore, loss of 

ZBTB7A likely leads to a decrease in KDM5A chromatin binding and a subsequent increase 

in H3K4me3.

To identify differences between changed and unchanged KDM5A peaks in ZBTB7A 
KO cells, we first identified the top 500 predicted gene targets based on regulatory 

potential scores (Table S5) and quantified overlap with Hallmark gene sets. Genes 

associated with diminished KDM5A peaks had stronger enrichment for mTORC1 signaling 

and glycolysis, whereas those associated with unchanged KDM5A peaks had stronger 

enrichment with myogenesis (Figure 3H). Second, overlap with consensus transcription 

factor targets from ENCODE/ChEA and promoter motifs from TRANSFAC/JASPAR 

identified nuclear respiratory factor 1 (NRF1) transcription factor as consistently enriched 

among KDM5A down-target genes (Figures 3I and 3J). NRF1 is a regulator of nuclear genes 

encoding mitochondrial respiratory complex subunits and the transcription and replication 

of mitochondrial DNA.37 We also saw enrichment for ZBTB7A among the KDM5A 

down-target genes (Figure 3I), supporting that these are ZBTB7A-specific peaks. Finally, 

we assessed the entire KDM5A decreased and unchanged peak sets for overlap with 

public ChIP-seq data in CISTROME.38 Again, NRF1 was significantly enriched among 

the KDM5A peaks diminished in the ZBTB7A KO cells, implicating its importance as a 

putative downstream target of ZBTB7A and KDM5A in basal breast cancer (Figure 3K). To 

test if the enrichment in NRF1 binding sites in KDM5A peaks lost in ZBTB7A KO cells 

is due to differences in NRF1 expression or nuclear localization, we performed immunoblot 

analysis for NRF1 in fractionated cell lysates from wild-type (WT) and KDM5A or 

ZBTB7A KO cell lines but found no differences (Figure S4C). Thus, the enrichment for 

NRF1 targets might indicate overlap between the downstream targets of NRF1 and the 

KDM5A-ZBTB7A complex rather than its direct activation.

ZBTB7A activation/repressive regulatory function depends on the chromatin context

We next investigated gene expression changes induced by KDM5A, KDM5B, or ZBTB7A 
KO. Overall, KDM5A and KDM5B KOs had minimal impact on gene expression compared 

to the ZBTB7A KO at the high stringency we used as cut off (padj < 0.05 and |log2(FC)| 

> 1) (Figures 4A and 4B; Table S1). A possible explanation is the redundancy of KDM5A 

and KDM5B, and the deletion of only one is not sufficient to cause major transcriptomic 

changes. Supporting this idea is the observation that C70 treatment that inhibits all KDM5s 

led to significant changes in gene expression in both WT and KO cells (Figure 4A; Table 

S1). It is also possible that the acute deletion of the gene has an effect, but this is diminished 

by the time the cells are expanded due to compensatory mechanisms. However, we do see 
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significant changes in the expression of mitochondria-encoded genes in the KDM5A KO 

cells; 11 of the 13 most downregulated genes (padj < 0.001) in the KDM5A KO were 

mitochondrial encoded (Figure 4C; Table S1), which was not observed in KDM5B KO cells 

(Figure S4D). This result is consistent with our findings of ZBTB7A-dependent KDM5A 

peaks being enriched in targets of the mitochondrial biogenesis transcription factor NRF1.

We next integrated RNA-seq from the ZBTB7A KO with our ChIP-seq data to determine 

if ZBTB7A binding was significantly associated with changes in gene expression. Based on 

binding and expression target analysis (BETA),32 we found that ZBTB7A peaks overlapping 

with KDM5A/B, which are enriched at promoters, were associated with decreased gene 

expression in the ZBTB7A KO (p = 2.16e−15 for BETA downregulated) (Figure 4D). 

Conversely, ZBTB7A-unique sites, which are enriched in intronic/intergenic regions, were 

associated with increased gene expression in the ZBTB7A KO cells (p = 3.48−08 for BETA 

upregulated) (Figure 4D). Therefore, non-promoter ZBTB7A may be acting as a canonical 

repressor, whereas promoter-bound ZBTB7A may be acting as a transcriptional activator.

We next investigated if changes in chromatin were associated with differential gene 

expression. As expected, increased H3K4me3 signal was associated with increased gene 

expression (p = 3.48e−07 for BETA upregulated) (Figure S4E). Surprisingly, sites with 

increased H3K4me3 that coincide with decreased KDM5A binding had no correlation with 

gene expression (Figure S4E). In fact, diminished KDM5A signal intensity was significantly 

associated with a decrease in gene expression (Figures 4C and 4E, p = 4.45e−05 for BETA 

downregulated), implying that the KDM5A-ZBTB7A complex is a positive regulator of 

gene expression.

We next analyzed the predicted targets of the ZBTB7A and KDM5A/B overlapping, 

ZBTB7A unique, and KDM5A down peaks for enrichment of specific transcription factors 

or pathways. We defined direct targets as genes with a rank product <0.001 from the 

BETA output in Figures 4D and 4E.32 The ZBTB7A transcription factor motif was 

evenly enriched between ZBTB7A unique and ZBTB7A and KDM5A/B overlapping peaks 

(Figure 4F). However, several transcription factors showed a bias toward one peak set. 

For example, NFKB1 was more significantly enriched among the ZBTB7A unique peak 

target genes, whereas HIF1A and E2F1::TFDP2 were more significantly enriched among 

the ZBTB7A and KDM5A/B overlapping target genes (Figure 4F). These observations 

support our analysis of the Hallmark gene set pathways (Figure 4G), in which HIF1A (e.g., 

hypoxia) and E2F-driven (e.g., E2F targets, G2M checkpoint, and mitotic spindle) pathways 

were specifically enriched among the ZBTB7A and KDM5A/B overlapping and KDM5A 

down gene targets, whereas immune pathways (e.g., allograft rejection, coagulation, and 

complement) were specifically enriched in the ZBTB7A unique peaks.

We also created ZBTB7A KOs in additional breast cancer cell lines (Figure S4F). MDA-

MB-436 is another BRCA1-mutant TNBC cell line, like SUM149, with similar sensitivity 

to C70 (Figures S2A and S2B), and MCF7 is an ER+, luminal breast cancer cell line. 

Similar to SUM149, deletion of ZBTB7A predominantly increased transcription in both 

MDA-MB-436 and MCF7 cells (Figure S4G). DEGs between parental and ZBTB7A KO 

cells in the SUM149 line showed similar trends in both MDA-MB-436 and MCF7 cell 
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lines (Figures S4H and S4I). Upregulated DEGs from the SUM149 ZBTB7A KO cells 

were significantly enriched in both MDA-MB-436 (padj = 2.7e–19, GSEA) and MCF7 

(padj = 7.8e–13, GSEA) ZBTB7A KOs (Figure S4J). However, downregulated DEGs from 

SUM149 cells were enriched only in the MDA-MB-436 ZBTB7A KO cells (padj = 5.3e−3, 

GSEA) (Figure S4J).

To determine if ZBTB7A KO alters TNBC subtype-specific transcriptional states, we 

performed GSEA on the TNBC subtypes we previously described.39 Mesenchymal and 

basal-specific genes were upregulated in the luminal MCF7 line, while the MDA-MB-436 

mesenchymal-TNBC line showed upregulation of genes repressed in mesenchymal cells and 

downregulation of mesenchymal genes (Figure S4K). Finally, the basal-TNBC line SUM149 

reactivated genes repressed in the basal state and turned on genes specific to mesenchymal 

and luminal-like TNBC (Figure S4K). Therefore, ZBTB7A may be an important regulator 

of cell state fidelity in breast cancer. Last, the most significantly upregulated pathways by 

C70 in the TNBC lines were related to immunity (e.g., allograft rejection, complement, 

inflammatory response), myogenesis, epithelial-to-mesenchymal transition, and IL-6/JAK/

STAT3 in SUM149 cells and interferon-α response in the MDA-MB-436 cell line (Figure 

S4L).

These data show that ZBTB7A is an important regulator of epithelial cell differentiation-

related processes and that some of its function is via modulation of KDM5A chromatin 

binding.

ZBTB7A and KDM5i co-regulate oxidative phosphorylation and NF-κB targets

To explore how loss of ZBTB7A alters the transcriptional response to KDM5i, we 

performed RNA-seq in WT and ZBTB7A KO cells ± 10 μM C70 for 7 days. We first 

observed that C70 treatment upregulates more DEGs (padj < 0.05, |log2(FC)| > 1) in the 

ZBTB7A KO cells compared to WT controls across all three cell lines (SUM149, MDA-

MB-436, and MCF7) (Figure S5A; Table S1). In addition, ZBTB7A KO did not change 

the gene targets of C70, since there was pronounced overlap in the DEGs induced in both 

WT and KO cells, at least in the two TNBC lines with a more limited overlap in MCF7 

ER+ luminal cells (Figure S5A). Therefore, loss of ZBTB7A may amplify response to C70 

without completely rewiring its target genes in TNBC.

We next examined if C70 treatment modulated different pathways in the ZBTB7A KO cells 

(Figure 5A). GSEA in both SUM149 and MDA-MB-436 cells upon C70 treatment identified 

a reduction in oxidative phosphorylation specifically in the ZBTB7A KO and not in the WT 

cells (Figure 5A). Analysis of mitochondrial respiration in SUM149 WT and ZBTB7A KO 

cells ± 10 μM C70 showed that ZBTB7A KO and C70 diminished basal and maximum 

respiratory potential, and this decrease was saturated with C70 treatment and not further 

augmented by ZBTB7A KO (Figure 5B). Since dysfunctional mitochondria can be a source 

of ROS, we assessed total ROS levels and mitochondrial cardiolipins. We found higher 

ROS levels in both WT and ZBTB7A KO C70-treated cells compared to vehicle controls. 

However, ROS levels were higher within the ZBTB7A KO cells treated with C70 compared 

to WT (Figure 5C). In addition, nonyl acridine orange (NAO) staining to measure the 

abundance and redox status of mitochondrial cardiolipins showed no effect of C70 treatment 
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in the WT cells but a decrease signal in the ZBTB7A KO cells, implying an increase in 

oxidized cardiolipins (Figure 5C).

To more globally analyze how ZBTB7A KO alters transcriptional response to C70, we 

re-clustered all DEGs upon C70 treatment in WT or ZBTB7A KO cells (padj < 0.05) 

(Figure 5D). We then categorized the genes into five clusters, each with unique responses 

to ZBTB7A and/or C70 (Figures 5D, 5E, and S5B). Cluster 1 genes had a muted 

upregulation following C70 treatment in ZBTB7A KO cells compared to WT (Figure 

5D), and they showed enrichment in mitochondrion-encoded genes (Figures S5C and 

S5D). We also assessed if upregulated genes are clustered to particular genomic regions 

potentially reflecting co-regulation due to shared enhancer activity. Only one cluster, cluster 

2, displayed cytogenetic enrichment to a specific genomic region, 1q32 (Figure S5C). 

Among all clusters detected, cluster 3 was particularly prominent because it was enriched in 

genes differentially expressed due to either C70 treatment or ZBTB7A deletion (Figure 5D). 

These genes increased upon loss of ZBTB7A and had a further increase with C70 treatment 

(Figure 5E). When we analyzed each cluster for overlap with MSigDB transcription factor 

targets, cluster 3 was significantly enriched for NF-κB target genes (Figure 5F), which was 

also the transcription factor motif enriched among the predicted targets of ZBTB7A unique 

peaks (Figure 4F). To explore this in more detail, we analyzed changes in the expression 

of NF-κB targets in ZBTB7A KO cells compared to WT and found significantly higher 

expression of NF-κB targets associated with ZBTB7A unique compared to ZBTB7A and 

KDM5 overlapping peaks (Figure 5G).

When comparing each cluster to Hallmark gene sets, we found significant enrichment of 

TNF-α signaling via NF-κB, apoptosis, and IL-6/JAK/STAT3 signaling in both clusters 

2 and 3, both of which show highest gene expression levels in the C70-treated ZBTB7A 
KO cells (Figures 5E, 5H, and S5B). Cluster 2 showed the most significant enrichment 

for TNF-α signaling via NF-κB even though the NF-κB transcription factor targets were 

specifically enriched in cluster 3 (Figures 5F and 5H).

To examine NF-κB activation after KDM5i and ZBTB7A KO, we assessed phospho(S536)-

p65 and nuclear p65 levels and the activity of an NF-κB-driven GFP reporter. C70 increased 

phospho(S536)-p65 as well as marginally increasing nuclear p65 levels, with ZBTB7A KO 

having no observable effect (Figures 5I and S5E). Similarly, C70 induced GFP expression 

driven by a minimal NF-κB promoter, with no additive effect observed for the ZBTB7A 
KO (Figure S5F). However, immunoblot analysis of NF-κB targets selected from the 

overlapping topmost enriched genes in cluster 3 (Figure 5E) and NF-κB targets (Figure 

5F) revealed that the expression of several proteins, including MMP9, MIA, and IL-27-RA, 

was significantly higher in ZBTB7A KO cells and upregulated by C70 (Figure 5J). Taken 

together, our data imply that KDM5i acts upstream and leads to the activation and nuclear 

localization of NF-κB. ZBTB7A, however, acts at the DNA level, in which ZBTB7A unique 

peaks repress a subset of NF-κB direct-target genes (Figure 5K).

In contrast to cluster 3 genes that were the most upregulated by C70 in ZBTB7A KO, 

cluster 5 genes had the largest decrease in expression in C70-treated ZBTB7A KO cells 

(Figures 5D and 5E). This cluster was specifically enriched for proliferative pathways, 
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such as E2F targets, mitotic spindle, and G2M checkpoint (Figure 5G), which were the 

same pathways specifically enriched among KDM5A sites with diminished binding in the 

ZBTB7A KO (Figure 4G). Since these peaks were associated with activator function (Figure 

4E), we hypothesize that ZBTB7A and KDM5A co-bound sites function as transcriptional 

activators of pro-proliferation pathways and that combined ZBTB7A KO and KDM5i leads 

to a stronger downregulation of these target genes.

Last, we reanalyzed our RNA-seq data for differential expression of endogenous 

retroelements with ERVmap because KDM5B was previously reported to derepress 

retroelements.40 We found that KDM5i led to increased expression of endogenous 

retroelements (mostly LINEs [long interspersed nuclear elements] and SINEs [short 

interspersed nuclear elements]) in both the ROSA26-g1 control cells and all three KO 

derivates (Figure S5G; Table S6).41 However, while 4,732 endogenous retroelements were 

significantly differentially expressed between DMSO- and C70-treated parental SUM149 

cells (mostly upregulated), this number was much higher (12,097) in ZBTB7A KO and 

lower in KDM5A and KDM5B KO lines (4,072 and 2,474, respectively). In addition, 

we also noted that, in contrast to the limited changes seen in the expression of protein-

coding genes in KDM5A KO cells, the expression of 2,143 endogenous retroelements was 

significantly different between KO and WT cells, whereas this was not seen in KDM5B KO 

(Table S6). Thus, some of the phenotypic consequences of C70 treatment and deletion of 

KDM5 genes might be via their regulation of endogenous retroelement expression.

ZBTB7A expression alters KDM5-associated phenotypes in patient samples

We next tested if ZBTB7A expression altered KDM5-associated phenotypes in patient 

samples using the TCGA and METABRIC cohorts. Corroborating our findings in cell-line 

models, KDM5A/B expression was significantly positively correlated with proliferation 

(E2F targets, G2M checkpoint, and mitotic spindle) and negatively correlated with NF-κB 

and other inflammation-related pathways (Figure 6A). In addition, these correlations were 

stronger among samples with low ZBTB7A expression. Analysis of TNBC samples from 

the METABRIC cohort also demonstrated that KDM5A/B expression is more strongly 

associated with many of the select pathways in ZBTB7A-low samples, but the differences 

were less prominent (Figure 6B).

Due to the significant inverse association between KDM5A/B expression and inflammation-

related pathways, we also assessed the correlation between KDM5A, KDM5B, or ZBTB7A 
expression with estimated immune infiltration scores among basal breast cancer samples 

in the TCGA cohort. We found that ZBTB7A was significantly positively correlated with 

immune infiltration, KDM5B was negatively correlated, and KDM5A had no association 

(Figure 6C).

Finally, we wanted to determine if ZBTB7A expression modified response to neoadjuvant 

chemotherapy by itself or associated with KDM5 expression. We found that the expression 

of ZBTB7A in TNBC was significantly higher in tumors from patients who did not achieve 

pathologic complete response (pCR) in three independent cohorts (Figure 6D).42–44 The 

association of higher ZBTB7A expression with lack of pCR was significant only in tumors 
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with lower expression of KDM5B, whereas for KDM5A this was less consistent (Figure 

6E).

These analyses of clinical samples validate our findings in the cell-line models and confirm 

the role for ZBTB7A as a transcriptional modulator of NF-κB and inflammation-related 

pathways.

DISCUSSION

Through CRISPR KO viability screens ± C70 KDM5 inhibitor, we identified several 

factors that modulate sensitivity to KDM5i in basal breast cancer, including ZBTB7A. 

We demonstrated that ZBTB7A interacts and co-localizes with KDM5A/B at genomic 

regions with high H3K4me3 levels and that a subset of KDM5A binding might be ZBTB7A 

dependent.

Functional differences between the KDM5 paralogs have been described previously, but 

the underlying mechanism remains unresolved.45 For example, KDM5A and not KDM5B 

was found to promote MYC-driven transcription in multiple myeloma by altering RNA 

polymerase II (RNAPII) promoter-proximal pausing,22 while KDM5B was specifically 

found to suppress endogenous retroelement expression in melanoma by recruiting the 

H3K9 methyltransferase SETDB1.40 Our work provides some mechanistic insight into these 

distinctions, in which we found significant differences in genomic binding between KDM5A 

and KDM5B. Specifically, KDM5A was primarily restricted to promoters, whereas KDM5B 

exhibited extensive binding across both promoter and non-promoter regions. This indicates 

that KDM5A could be a promoter-specific regulator of transcription in agreement with prior 

findings that KDM5A is a key modulator of RNAPII pausing at MYC-driven promoters.22 

In addition, the intergenic binding of KDM5B could explain why this paralog was found 

to regulate endogenous retroelement expression in melanoma,40 supporting our data in 

SUM149 cells. Further investigation into the intergenic KDM5B peaks in our study unveiled 

an association with the cohesin/CTCF complex, indicating a potential role of KDM5B in 

the regulation of chromatin topology. This finding is particularly intriguing in the context of 

previous research from our lab, which demonstrated that KDM5B physically associates with 

CTCF.7 Overall, our results indicate that distinct genomic binding patterns may contribute, 

at least in part, to paralog-specific KDM5 activity, but further work is needed to elucidate 

the underlying mechanisms.

ZBTB7A has previously been described as a key regulator of metabolism in leukemias, 

where loss of ZBTB7A increased glycolysis and sensitized to glycolytic inhibition.46–

48 Here, we identified ZBTB7A as a regulator of oxidative phosphorylation in TNBC 

and propose that this may contribute to increased KDM5 inhibitor sensitivity upon loss 

of ZBTB7A. Initially, we found that peaks with decreased KDM5A binding in the 

ZBTB7A KO were significantly enriched for downstream targets of the NRF1 transcription 

factor, a regulator of nuclear genes essential for both respiration and mitochondrial DNA 

transcription.37 Several observations support the hypothesis that reduced mitochondrial 

respiration can sensitize cells to KDM5i. First, our C70-resistant derivative cell line 

significantly upregulated oxidative phosphorylation genes, especially members of the 
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electron transport chain. Second, prior studies found that melanoma cells with high 

KDM5B expression had an increased reliance on mitochondrial respiration.49 Inhibition 

of ATP synthase decreased the emergence of cells with high KDM5B expression 

after treatment with a panel of anti-cancer drugs, and KDM5B overexpression led to 

increased oxygen consumption and mitochondrial ATP production.49 This potential link 

between mitochondrial activity and KDM5 inhibitor sensitivity is interesting given that 

α-ketoglutarate, a key product of the TCA cycle, is a required co-factor for KDM5 

demethylase activity. In addition, since the KDM5 inhibitor C70 is an α-ketoglutarate 

competitor,16 altering α-ketoglutarate levels could alter the effective concentration of C70.

Mitochondrial dysfunction can also contribute to ROS and oxidative stress. We found that 

C70 treatment induced ROS production in both WT and ZBTB7A KO cells. However, 

ROS levels were higher within the ZBTB7A KO treated with C70. This is in line with 

previous observations in which ZBTB7A was found to protect against oxidative stress to 

promote cell survival during viral infection.50 It also agrees with previous work where 

KDM5A was found to mitigate the accumulation of ROS and protect against defects 

in mitochondrial membrane potential in response to cisplatin treatment.51 Interestingly, 

regulation of mitochondrial activity via KDM5s may be evolutionarily conserved, in 

that Drosophila KDM5/Lid was identified as a direct activator of genes required for 

mitochondrial structure/function, and mutant KDM5/Lid led to elevated ROS production.52 

Taken together, these results indicate that both ZBTB7A and KDM5 activity may protect 

against oxidative damage and that loss of both could have a compounding effect on cell 

viability.

Last, we found that both KDM5i and loss of ZBTB7A led to an induction of NF-κB target 

genes and that the NF-κB pathway was depleted in the C70-resistant SUM149CR cell line. 

We hypothesize that KDM5 activity and ZBTB7A may influence NF-κB signaling through 

distinct mechanisms. First, KDM5i may act upstream, since C70 increased phosphorylated 

p65 (Ser536), led to slightly elevated levels of p65 in the nucleus, and induced GFP 

expression driven by a minimal NF-κB binding motif. It is unclear how inhibition of KDM5 

activity activates NF-κB, but previous research implicates the DNA-sensing cGAS-STING 

pathway, an upstream activator of NF-κB signaling.40,53 KDM5B, but not KDM5A KO, 

was found to derepress STING expression and induce interferon signaling in breast cancer 

cell lines with high cytosolic DNA levels.53 Similarly, KDM5B KO was found to increase 

tumor immunogenicity through the derepression of retroelements and subsequent activation 

of cGAS-STING.40 Aligned with these findings, our RNA-seq data revealed a significant 

increase in retroelement expression after C70 treatment. In contrast, we hypothesize that 

ZBTB7A regulates NF-κB at the DNA level, whereby ZBTB7A binding represses nearby 

NF-κB target genes. Supporting this hypothesis, we found that the targets of ZBTB7A 

unique binding sites were significantly enriched for the NFKB1 transcription factor motif.

Given that NF-κB is generally a pro-survival pathway that activates anti-apoptotic factors 

and cell-cycle-promoting genes, it was unexpected to see this pathway diminished and less 

responsive to C70 in the SUM149CR C70-resistant cell line. However, there are several 

reports indicating that NF-κB could both inhibit and promote cell death depending on 

the context and type of stressor placed on the cell.54,55 Most relevantly, NF-κB signaling 
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enhanced oxidative-stress-induced killing with H2O2.54 Therefore, increased NF-κB activity 

could render the cells more sensitive to increased ROS observed with ZBTB7A KO and C70 

treatment. Cells adapt to long-term ROS by upregulating antioxidant defense mechanisms.56 

Thus, the upregulation of MMP9, an NF-κB target that has been shown to protect from ROS 

in some cellular contexts,57 in ZBTB7A KO cells could reflect such a coping mechanism.

Limitations of the study

Our study was performed in human breast cancer cell lines with validation of findings 

in clinical samples. However, we do not know to what degree cell lines and cell culture 

reflect the physiological conditions in human breast cancer, which is especially a concern 

for changes in metabolic pathways. A limitation of the experiments using KO cell lines is 

that the consequences of short-term and long-term deletion of a gene can be different, as we 

have seen previously for KDM5B.10 Thus, while KDM5A deletion in the CRISPR screen 

(relatively short-term assay and assessing more acute loss of KMD5A) may have decreased 

response to C70, this effect is lost in the stable KDM5A KO cell line used for validation.

The KDM5 inhibitor we used blocks the activity of all KDM5 family members. Further 

studies would be required to assess the effects of the specific inhibition of KDM5A or 

KDM5B in human breast tumors.

RESOURCE AVAILABILITY

Lead contact

Requests for further information and resources and reagents should be directed 

to and will be fulfilled by the lead contact, Kornelia Polyak, Dana-Farber 

Cancer Institute, 450 Brookline Avenue, SM1070B, Boston, MA 02215, USA 

(kornelia_polyak@dfci.harvard.edu).

Materials availability

Breast cancer cell line derivatives will be made available upon request and following the 

execution of an MTA.

Data and code availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or 

the supplemental information. All raw genomic data were deposited with GEO under 

accession no. GSE259252. This study did not generate custom code. The raw mass 

spectrometry data have been deposited in the public proteomics repository MassIVE (http://

massive.ucsd.edu) using the identifier MSV000094452. The data should be accessible 

at ftp://massive.ucsd.edu/v07/MSV000094452. Any additional information required to 

reanalyze the data reported in this work paper is available from the lead contact upon 

request.
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STAR★METHODS

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Breast cancer cohort data—TCGA data was downloaded from cBioPortal (https://

www.cbioportal.org/) for the Breast Invasive Carcinoma (TCGA, PanCancer Atlas) dataset 

(ID = brca_tcga_pan_can_atlas_2018).

Breast cancer cell lines and derivation of the C70-resistant model—Breast 

cancer cell lines were obtained from ATCC, or generously provided by Dr. Steve Ethier 

(U. Michigan) and cultured following the provider’s recommendations. The identity of 

the cell lines was confirmed based on STR and exome-seq analyses. Cells were regularly 

tested for mycoplasma. SUM149 and SUM159 were cultured in DMEM/F12 supplemented 

with 5% FBS, 5 μg/mL insulin, and 1 μg/mL hydrocortisone. MCF7 was cultured in 

DMEM/F12 supplemented with 10% FBS, and 10 μg/mL insulin. FCIBC02 was cultured 

in DMEM/F12 supplemented with 10% FBS. MDA-MB-436 was cultured in McCoy’s 

supplemented with 10% FBS, and 10 μg/mL insulin. SKBR3 was cultured in McCoy’s 

supplemented with 10% FBS. MDA-MB-361 was cultured in McCoy’s supplemented with 

20% FBS. T-47D was cultured in RPMI supplemented with 10% FBS and 10 μg/mL insulin. 

BT-474 and HCC1419 were cultured in RPMI supplemented with 10% FBS. All cell lines 

were supplemented with 100 U/mL penicillin and 100 μg/mL streptomycin. All cells were 

cultured at 37°C with 5% CO2. C70 resistant SUM149CR cells were derived by growing the 

cells in the presence of 10 μM C70 and retested IC50 in every 5th passage. It took ~45 days 

to achieve resistance determined based on a significant shift in IC50. Subsequently the cells 

were maintained in 10 μM C70-containing culture media.

CRISPR libraries—Human CRISPR knockout library (H3) was generated by Drs. Xiaole 

Shirley Liu and Myles Brown (Addgene #133914).

METHOD DETAILS

Cellular viability and growth assays—Viability and growth assays were performed in 

96-well plates (N = 6 well per condition). Cells were treated with inhibitors and cultured 

at 37 °C with 5% CO2. The medium was replaced with fresh medium (with or without 

inhibitors) every 2–3 days. Plates were fixed in an ice-cold 3:1 mixture of methanol and 

glacial acetic acid for at least 10 minutes. Fixed cells were washed twice with 1X PBS and 

stained with 1μg/mL DAPI at 37 °C for 20 minutes. The cells were washed twice with 1X 

PBS and the number of DAPI stained cells were acquired using the automated Celigo Image 

Cytometer from Nexcelom.

CRISPR screen and data analyses—Human CRISPR knockout library (H3) was 

generated by Drs. Xiaole Shirley Liu and Myles Brown (Addgene #133914). We followed 

the screen protocol for adherent cells provided by Addgene (Addgene #133914). Briefly, 

200 million SUM149 or SUM149CR cells were infected with the pooled lentiviral CRISPR 

knock-out H3 library at a multiplicity of infection of 0.3 to ensure most cells received only 

one viral construct. This resulted in ~60 million infected cells and 500X library coverage. 

After 5 days of puromycin selection, more than 60 million cells were pelleted and stored 
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as the day 0 control. The remaining cells were split and cultured for 10 doublings with 

0.01% DMSO or 10 μM C70. To limit changes in gRNA distribution due to sampling, 60 

million cells per condition (500X library coverage) were seeded each passage or pelleted 

at the treatment endpoint. Genomic DNA was isolated from the pelleted samples via phenol/

chloroform extraction and PCR was performed to construct each sequencing library (see key 

resources table for primer information). The libraries were sequenced at 30–40 million reads 

per sample to ensure at least 300X library coverage. The libraries were sequenced on an 

Illumina NS500 Single End 75bp with a 10% PhiX spike in.

Generation of single CRISPR/Cas9 knock-out cells—Construction of lenti-

CRISPR/Cas9 vectors targeting ZBTB7A, KDM5A, KDM5B, RHOA, and PKN2 was 

performed following the protocol associated with the backbone vector lentiCRISPR V2 

(Addgene #52961)70 The sgRNA sequences used are listed in key resources table. 

Knockouts were verified by western blot analysis after puromycin selection.

Generation of NFkB reporter cells—A lentiviral vector containing the NF-kB 

reporter (pLV-5xNFkBminiP-d1EGFP) was designed based on the backbone of the 

HypoxCR vector (Addgene #59946) and obtained via fee service from VectorBuilder 

(https://en.vectorbuilder.com/). The vector contained DNA sequences encoding d1EGFP 

and mCherry downstream of the 5xNF-kB response element-minimal promoter and CMV 

promoter, respectively. Cells were transduced with the vector and selected for with 

Blasticidin.

ChIP-seq—SUM149 expressing ROSA26-g1 −/+ 10 μM C70 for 7 days, ZBTB7A-
g1 (ZBTB7A-KO), KDM5A-g1 (KDM5A-KO), and KDM5B-g1(KDM5B-KO) from the 

lentiCRISPR v2 backbone (see key resources table) were cultured in biological duplicates in 

15 cm dishes to about 80% confluence. For ChIP-seq of histone modifications (H3K4me3), 

each dish was washed once with PBS then crosslinked in fixing buffer (50 mM HEPES-

NaOH pH 7.5, 100 mM NaCl, 1 mM EDTA) containing 1% PFA (Electron Microscopy 

Sciences, 15714) for 10 minutes at room temperature. For ChIP-seq of chromatin binding 

proteins (KDM5A, KDM5B, ZBTB7A), each dish was washed once with PBS then 

crosslinked in PBS containing 2 mM DSG (Fisher Scientific 20593) for 30 minutes at 

room temperature. DSG was then removed, and the samples were further crosslinked with 

fixing buffer (50 mM HEPES-NaOH pH 7.5, 100 mM NaCl, 1 mM EDTA) containing 

1% PFA for 10 minutes at 37 °C. After PFA fixation, all samples were quenched with 

glycine at a final concentration of 0.125 M for 5 minutes at room temperature. Cells 

were washed and harvested in ice cold PBS. Nuclei were extracted by first resuspending 

the cells in lysis buffer (1 mL per 5 million cells) for 10 minutes at 4C (50 mM HEPES-

NaOH pH 8, 140 mM NaCl, 1 mM EDTA, 10% Glycerol, 0.5% IGEPAL CA-630, 0.25% 

Triton X-100). Nuclei were pelleted and washed once in wash buffer (10 mM Tris-HCl 

pH 8, 200 mM NaCl, 1 mM EDTA), 1 mL of wash buffer per 10 million cells (histone 

modification ChIP) or 25 million cells (chromatin modification ChIP). The nuclei were 

then pelleted and resuspended in 1 mL of shearing buffer (10 mM Tris-HCl pH 8, 1 

mM EDTA, 0.1% SDS), containing 10 million (histone modification ChIP) or 25 million 

cells (chromatin modification ChIP). Samples were transferred to 1 mL AFA Fiber tubes 
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(Covaris 520130), and sonicated in a Covaris E220 sonicator with the following settings: 

Peak Incident Power 150, Duty Cycles 5%, cycles per Burst 200. Histone modification 

ChIP samples were sonicated for 900 seconds. Chromatin binding protein ChIP samples 

were sonicated for 1,200 seconds. After sonication, Triton X-100 and NaCl were added 

to a final concentration of 1% Triton X-100 and 150 mM NaCl. The samples were then 

pre-cleared with 50 μL of Dynabeads Protein G (Fisher Scientific, 10004D) for 1 hour at 4 

°C. For histone modification ChIP, primary antibodies were added to 1 mL of pre-cleared 

chromatin from ~10 million cells (H3K4me3 = Diagenode C154100003 at 5 μg/mL) and 

incubated at 4 °C overnight. For chromatin binding protein ChIP, pre-cleared samples were 

aliquoted, and volumes adjusted using shearing buffer containing 1% Triton X-100 and 150 

mM NaCl before adding the appropriate primary antibodies for overnight incubation at 4 

°C. Chromatin binding protein ChIP samples contained 500 μL of pre-cleared chromatin 

from ~5 million cells (ZBTB7A = SantaCruz sc-33683X at 5 μg/mL, KDM5A = Abcam 

ab70892 at 4 μg/mL, KDM5B = Novus/sdix 22260002 at 5 μg/mL). After overnight 

immunoprecipitation, crosslinked complexes were precipitated with Dynabeads G (Fisher 

Scientific, 10004D) for 2 hours at 4°C. The beads were then washed once with low salt wash 

buffer (20 mM Tris-HCl pH 8, 150 mM NaCl, 0.1% SDS, 1% Triton-X 100, 2 mM EDTA) 

for 5 minutes at 4°C, once with high salt wash buffer (20 mM Tris-HCl pH 8, 500 mM Nacl, 

0.1% SDS, 1% Triton-X 100, 2 mM EDTA) for 5 minutes at 4 °C, once with wash buffer 

(10 mM Tris-HCl pH 8, 250 mM LiCl, 1% IGEPAL CA-630, 1% Sodium Deoxycholate, 1 

mM EDTA) for 5 minutes at 4 °C, and once with TE buffer (10 mM Tris-HCl pH8, 1 mM 

EDTA) quickly at room temperature. DNA was eluted from the beads in 1% SDS, 100 mM 

NaHCO3 for 30 minutes at room temperature. Crosslinks were reversed at 65°C overnight. 

RNA and protein were digested with 0.2 mg/mL RNase A for 30 minutes at 37°C followed 

by 0.2 mg/mL Proteinase K for 1 hour at 55 °C. DNA was purified with phenol chloroform 

extraction and ethanol precipitation. Libraries were prepared and sequenced at the Molecular 

Biology Core Facilities (MBCF) at the Dana-Farber Cancer Institute (DFCI). Libraries were 

prepared with the automated Swift 2S ligation chemistry and sequenced to 40M 50 bp reads 

pairs.

RNA-seq—SUM149 and SUM149CR were incubated in biological triplicates for 2 and 7 

days in 0.01% DMSO or 10 μM. SUM149 KOs (ROSA26-g1, KDM5A-g1, KDM5B-g1, 

and ZBTB7A-g1), MCF7 KOs (ROSA26-g1 and ZBTB7A-g1), and MDA-MB-436 KOs 

(ROSA26-g1 and ZBTB7A-g2) were incubated in biological duplicates for 7 days in 0.01% 

DMSO or 10 μM C70. Cells were cultured to ~80% confluence in 10 cm dishes and 

RNA was collected using the RNeasy Mini Kit (Qiagen 74104 or 74106) and submitted 

to the Molecular Biology Core Facilities (MBCF) at the Dana-Farber Cancer Institute for 

library prep and sequencing. RNA underwent polyA enrichment before library prep and was 

sequenced on an Illumina NovaSeq to generate 40M 150bp read pairs (80M reads total) per 

sample.

qPLEX-RIME—SUM149, SUM159, MCF7, and T-47D were cultured to ~80% confluence 

in 4–5 biological replicates in 15 cm dishes. Samples were washed once with PBS then 

crosslinked in PBS containing 2 mM DSG (Fisher Scientific 20593) for 30 minutes at room 

temperature. DSG was then removed, and the samples were further crosslinked with fixing 
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buffer (50 mM HEPES-NaOH pH 7.5, 100 mM NaCl, 1 mM EDTA) containing 1% PFA 

for 10 minutes at 37°C. After PFA fixation, all samples were quenched with glycine at a 

final concentration of 0.125 M for 5 minutes at room temperature. Cells were washed and 

harvested in ice cold PBS, pelleted, and snap frozen.

The nuclear fraction was extracted by first resuspending the pellet in 10ml of LB1 buffer 

(50 mM Hepes–KOH, pH 7.5; 140 mM NaCl; 1 mM EDTA;10% Glycerol; 0.5% NP-40 or 

Igepal CA-630; 0.25% Triton X-100) for 10 min at 4oC. Cells were pelleted, resuspended 

in 10 ml of LB2 buffer (10 mM Tris–HCL, pH8.0; 200 mM NaCl; 1 mM EDTA; 0.5 mM 

EGTA) and mixed at 4oC for 5 minutes. Cells were pelleted and resuspended in 300 ul 

of LB3 buffer (10 mM Tris–HCl, pH 8; 100 mM NaCl; 1 mM EDTA; 0.5 mM EGTA; 

0.1% Na–Deoxycholate; 0.5% N-lauroylsarcosine) and sonicated in a waterbath sonicator 

(Diagenode bioruptor). 30μl of 10% Triton-X was added and the lysate centrifuged for 10 

minutes at 20,000 rcf to separate debris. Samples were incubated with primary antibody at 

4 °C overnight [anti-KDM5B (Novus Biologics 22260002)]. Samples were then precipitated 

with Dynabeads Protein G for 2 hr. The beads were washed 10 times in 1ml of RIPA buffer 

and twice in 100mM ammonium hydrogen carbonate (AMBIC) solution. For the second 

AMBIC wash, the beads were transferred to new tubes.

Samples were digested and purified with the Ultra-Micro C18 Spin Columns (Harvard 

Apparatus) as previously described31 After purification, each sample was dried and 

reconstituted in 100ul 0.1M TEAB (triethylammonium bicarbonate) and labelled with the 

TMT-10plex reagents (Thermo Fisher). The peptide mixture was fractionated with Reversed-

Phase spin columns at high pH (Pierce, #84868) and each fraction was analyzed on a Dionex 

Ultimate 3000 UHPLC system coupled with the LTQ Orbitrap Velos mass spectrometer 

(Thermo Scientific). Mobile phase A was composed of 2% acetonitrile, 0.1% formic acid, 

5% dimethyl sulfoxide (DMSO) and mobile phase B was composed of 80% acetonitrile, 

0.1% formic acid, 5% DMSO. The precursor scans were performed in the Orbitrap in 

the range of 380–1500 m/z at 60K resolution. The MS2 scans were performed in the ion 

trap with CID collision energy 30% and in the Orbitrap with HCD collision energy 40% 

back-to-back for each precursor. The raw data were processed on Proteome Discoverer 

2.1 using the SequestHT search engine. The node for SequestHT included the following 

settings: Precursor Mass Tolerance 20ppm, Fragment Mass Tolerance 0.5Da for the CID 

spectra and 0.05Da for the HCD spectra, Dynamic Modifications were Oxidation of M 

(+15.995Da), Deamidation of N/Q (+0.984Da) and Static Modifications were TMT6plex at 

any N-Terminus/K (+229.163Da).

Antibodies and inhibitors—Full list with catalog numbers available in key resources 

table. Antibodies used for Immunoblotting were anti-beta-Actin (Sigma, A2228), anti-alpha 

Tubulin (Sigma, T5168), anti-ZBTB7A (Invitrogen, 14-3309-82), anti-KDM5A (Abcam, 

ab70892), anti-KDM5B (Sigma, HPA027179), anti-KDM5C (Abcam, ab34718), anti-

H3K4me3 (Abcam, ab8580), anti-H3 (Active Motif, 39763), anti-RHOA (Cell Signaling 

Technology, 2117), anti-PKN2 (Abcam, ab87812), anti-MTA1 (Cell Signaling Technology, 

5647), anti-MTA2 (Cell Signaling Technology, 15793), anti-MBD2 (Abcam, ab188474), 

anti-MBD3 (Cell Signaling Technology, 14540), anti-CHD3 (Cell Signaling Technology, 

4241), anti-CHD4 (Cell Signaling Technology, 11912), anti-phospho-p65 (Ser536) (Cell 
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Signaling Technology, 3033), anti-p65 (Abcam, ab32536), anti-phospho-p50 (Ser337) 

(Invitrogen, PA5–37658), anti-p50 (Invitrogen, MA5–15870), Goat anti-Mouse IgG 

Secondary HRP (Invitrogen, 62–6520), Goat anti-Rabbit IgG Secondary HRP (Invitrogen, 

65–6120), and Goat anti-Armenian Hamster IgG Secondary HRP (Invitrogen, PA1–32045). 

Antibodies used for Immunoprecipitation during Co-IP were anti-ZBTB7A (SantaCruz, 

sc-33683X), anti-ZBTB7A C-terminus (Abcam, ab175918), anti-KDM5A (Active Motif, 

91211), and anti-KDM5B (Cell Signaling Technology, 15327). Additionally, isotype 

controls used were Rabbit IgG (Invitrogen, 31887), Mouse IgG (Invitrogen, 10400C), and 

Armenian Hamster IgG (Invitrogen, 14-4888-81). Antibodies used for Immunoprecipitation 

during ChIP-seq were anti-ZBTB7A (SantaCruz, sc-33683X), anti-KDM5A (Abcam, 

ab70892), anti-KDM5B (Novus Biologicals, 22260002), and anti-H3K4me3 (Diagenode, 

C15410003–50). Antibodies used for qPLEX-RIME were anti-KDM5B (Novus Biologicals, 

22260002). The KDM5-C70 inhibitor was provided by the National Center for Advancing 

Translational Sciences (NCATS) (NCGC ID = NCGC00371443). Previous reports on the 

synthesis of KDM5-C70 are described in Tumber et al. (2017)58 and Hinohara et al. 

(2018)10.

Immunoblotting and immunoprecipitation experiments—For whole-cell lysates, 

cells were lysed in RIPA buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1% NP-40, 0.5% 

sodium deoxycholate, 0.1% SDS, and 5 mM EDTA). To determine the levels of GTP-bound 

RhoA and Rac1, we used the Active Rho Pull-Down and Active Rac1 Pull-Down and 

detection kits from Thermo Scientific (Thermo Scientific, 16116 and 16118). SUM149 cells 

were treated with 0.01% DMSO or 10 μM C70 for 3 days before processing with the 

pull-down kits. The samples were collected at two different confluence levels to assess the 

effect of confluence on active GTPase levels: 50% and 100% confluence. For the Active 

Rho Pull-Down kit, an anti-RhoA specific antibody from Cell Signaling Technology (Cell 

Signaling Technology, 2117) was used for immunoblotting instead of the pan-RhO (RhoA, 

RhoB, RhoC) antibody provided in the kit. For cell fractionation experiments, cells were 

first incubated in hypotonic buffer (10 mM HEPES pH 7.4, 10 mM KCl, 1.5 mM MgCl2, 

0.5% NP-40, and 0.2 mM EDTA) for 10 minutes at 4°C. The samples were then centrifuged 

at 1,800xg for 5 minutes and the supernatant stored as the cytoplasmic fraction. The pelleted 

nuclei were resuspended in nuclear extraction buffer (20 mM HEPES pH 7.4, 420 mM 

NaCl, 1.5 mM MgCl2, 0.5% NP-40, 0.2 mM EDTA), incubated for 10 minutes at 4°C, 

and sonicated in a cup horn sonicator (Qsonica Q500, 5 minutes net sonication time, 75% 

amplitude, 20 seconds On/10 seconds Off cycle). The lysate was then centrifuged at 13,000 

rpm for 10 minutes and the supernatant stored as the nuclear fraction. For NRF1, cellular 

fractionation was performed with the Cell Fractionation Kit (CST, #9038) according to the 

manufacturers protocol. Briefly, different fractions were isolated from cell suspensions via 

specific isolation buffer and separately collected after centrifugation. For experiments only 

cytoplasmic fraction and cytoskeletal/nuclear fraction was used. For co-immunoprecipitation 

experiments, cells were incubated in hypotonic buffer (1 mL per 10 million cells) (10 mM 

HEPES pH 7.4, 10 mM KCl, 1.5 mM MgCl2, 0.5% NP-40) for 10 minutes at 4°C, then 

centrifuged at 1,800xg for 5 minutes and supernatant discarded. The nuclear pellet was then 

resuspended in nuclear extraction buffer (300 μl per 10 million cells) (20 mM HEPES pH 

7.4, 300 mM NaCl, 1.5 mM MgCl2, 0.5% NP-40, 0.2 mM EDTA), incubated for 10 minutes 
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at 4 °C and sonicated in a cup horn sonicator (Qsonica Q500, 5 minutes net sonication 

time, 75% amplitude, 20 seconds On/10 seconds Off cycle). The nuclear lysate was then 

cleared via centrifugation at 13,000 rpm for 10 minutes. Part of the nuclear lysate was stored 

as input, and to the rest 1 volume of CoIP dilution buffer was added (20 mM Tris-HCl 

pH 8.0, 4.5 mM MgCl2, 1.0 mM CaCl2, 0.5% NP-40, 0.2 mM EDTA). Then 1 mg of 

diluted nuclear lysate was moved to a 1.5 ml tube (Eppendorf LoBind Microcentrifuge 

Tubes: Protein, Cat# 13-698-794) and volume adjusted to 1 ml. The sample was pre-cleared 

with 25 μl of Protein A/G Magnetic Beads blocked with 0.5% BSA (Thermo Scientific, 

8803) for 1 hour at 4°C. Pre-cleared samples were then incubated with primary antibodies 

or IgG controls (4 μg/ml) overnight at 4°C. After overnight incubation, protein complexes 

were precipitated with 25 μl of Protein A/G beads blocked with 0.5% BSA for 2 hours at 

4°C. The protein-bead complexes were washed twice with 1 mL of wash buffer (20 mM 

Tris-HCl pH 8.0, 150 mM NaCl, 1.5 mM MgCl2, 0.5% NP-40, 0.2 mM EDTA) and once 

with LoTE (10 mM Tris-HCl pH 8.0, 0.1 mM EDTA). Protein complexes were then eluted 

with 100 μL of sample buffer containing 1X NuPAGE sample reducing agent (Invitrogen 

NP0009) and 1X NuPAGE LDS Sample Buffer (Invitrogen NP0007) in nuclear extraction 

buffer for 10 minutes at room temperature. 20 μL of the eluted sample was used for 

western blotting. For all immunoblots, proteins were denatured with heating at 95°C for 10 

minutes in 1X NuPAGE sample reducing agent (Invitrogen NP0009) and 1X NuPAGE LDS 

Sample Buffer (Invitrogen NP0007). The proteins were then resolved on a 4–12% Bis-Tris 

polyacrylamide gel (Invitrogen WG1402BOX) in MOPS SDS running buffer and transferred 

to PVDF membranes using a wet NuPAGE transfer buffer system. The membranes were 

blocked with 2.5% milk powder in 0.1% Tween20 in TBS (TBS-T) for 1 hour at room 

temperature followed by incubation with primary antibodies in 2.5% milk TBS-T overnight. 

The membranes were washed and incubated for 1 hour at room temperature with the 

appropriate secondary antibodies, then washed and developed with Clarity Western ECL 

substrate (Bio-Rad 1705061) or Clarity Max Western ECL substrate (Bio-Rad 1705062).

Mass spectrometry analysis of histone modifications—Cells were treated for 48 

hours with 0.01% DMSO or 10 μM C70 for 48 hours. They were then collected via scraping 

in PBS, pelleted, and snap-frozen in liquid nitrogen. Histones were isolated from cell nuclei 

using acid extraction, biochemically prepared, and analyzed by mass spectrometry against a 

reference of stable isotope-labeled synthetic peptide standards exactly as described (Creech 

et al., 2015).71

scRNA-seq library prep—SUM149 and SUM149CR were seeded in 10 cm dishes and 

treated with 0.01% DMSO or 10 μM C70 for 7 days. The cells were then trypsinized and 

counted. One million cells were pelleted, washed 1 time, and resuspended in 1 mL of ice 

cold 0.04% BSA in PBS. Library construction was performed using the 10X Genomics 3’ 

v3.1 library kit as described and sequenced on an Illumina NovaSeq.

Flow cytometry experiments—SUM149 cells expressing ROSA26-g1 or ZBTB7A-g1 
from the lentiCRISPR v2 vector (see key resources table) were grown in 0.01% DMSO 

or 10 μM C70 for 5 days. Cells were passaged once during treatment and seeded to be 

50% confluent by the 5-day endpoint. For detecting reactive oxygen species, 7 hours of 
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1 mM H2O2 treatment was used as a positive control. Cells were trypsinized, counted, 

and resuspended in 100 μL per million cells with 1X ROS assay reagent in assay buffer 

from the Total Reactive Oxygen Species (ROS) Assay Kit 520 nm (Thermo Fisher, 88–

5930). The samples were then incubated for 1 hour at 37 °C, centrifuged at 200xg for 5 

minutes, and resuspended in 500 μL of ice cold FACS buffer (1% BSA and 2 mM EDTA 

in PBS). For detecting mitochondrial cardiolipins, 2 hours of 1 mM H2O2 treatment was 

used as a positive control. Cells were trypsinized, counted, and resuspended in 1 mL per 

million cells with 0.4 μM Nonyl Acridine Orange (NAO) (Fisher Scientific, A1372) in 

PBS. The samples were then incubated for 20 minutes at 37 °C, centrifuged at 200xg for 5 

minutes, and resuspended in 500 μL of ice cold FACS buffer. All samples were kept on ice, 

and fluorescence intensities were acquired on an LSRFortessa cytometer (BD Biosciences) 

through the FITC channel and analyzed via FlowJo.

Mito-Stress Test—To measure the effect of ZBTB7A-KO and C70 treatment on 

mitochondrial respiration, we used Agilent’s Seahorse XF Cell Mito Stress Test Kit 

(Agilent, 103015–100). SUM149 cells expressing ROSA26-g1 or ZBTB7A-g1 from the 

lentiCRISPR v2 vector (see key resources table) were pre-treated with 0.01% DMSO or 

10 μM C70 for a total of 6 days. The cells were first seeded in 10 cm dishes and treated 

with −/+ 10 μM C70 for 4 days. Afterwards, cells were trypsinized and re-seeded in 

Agilent Seahorse XF24 cell culture microplates (100777–004) for an additional 2 days of 

pre-treatment: 40,000 cells per well in 100 μL of media −/+ 10 μM C70. Cells were seeded 

such that they form a 100% confluent monolayer by the time of the assay. We then followed 

the protocol as described for the Seahorse XF Cell Mito Stress Test Kit (Agilent, 103015–

100). The following final compound concentrations were used during the assay: 1.5 μM 

Oligomycin, 0.75 μM FCCP, and 0.5 μM Rotenone/Antimycin A.

QUANTIFICATION AND STATISTICAL ANALYSIS

Software used in this study—See key resources table. Visualization Pipeline for 

RNA-seq analysis (VIPER), Containerized Bioinformatics workflow for Reproducible 

ChIP/ATAC-seq Analysis (CoBRA), Model-based Analysis of Genome-wide CRISPR-

Cas9 Knockout (MAGeCK) (v 0.5.9), Cell Ranger (v5.0.1), Seurat (v4.3.0), ERVmap 

(v1.1), deepTools2.0, RStudio (v 4.2.0), MAGeCKFlute (v1.14.0), ClusterProfiler 

(v4.2.2), ChIPseeker (v1.30.3), GenomicRanges (v1.46.1), Affinity Designer (v 1.10.4), 

GraphPadPrism (v 9), FlowJo (v 10.8.2).

ChIP-seq data analysis

Peak calling and data analysis: All samples were processed through the computational 

pipeline developed at the Dana-Farber Cancer Institute Center for Functional Cancer 

Epigenetics (CFCE) using primarily open-source programs.60,72 Samples were analyzed 

in duplicates, and each sample was normalized to a 1% input. Sequence tags were aligned 

with Burrows-Wheeler Aligner (BWA)73 to build hg19 and uniquely mapped, non-redundant 

reads were retained. These reads were used to generate binding sites with Model-Based 

Analysis of ChIP-Seq 2 (MACS v2.1.1.20160309), with a q-value (FDR) threshold of 

0.01.74 We evaluated multiple quality control criteria based on alignment information and 

peak quality: (i) sequence quality score; (ii) uniquely mappable reads (reads that can 
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only map to one location in the genome); (iii) uniquely mappable locations (locations 

that can only be mapped by at least one read); (iv) peak overlap with Velcro regions, 

a comprehensive set of locations – also called consensus signal artifact regions – in the 

genome that have anomalous, unstructured high signal or read counts in next-generation 

sequencing experiments independent of cell line and of type of experiment; (v) number of 

total peaks (the minimum required was 10,000); (vi) high-confidence peaks (the number of 

peaks that are tenfold enriched over background); (vii) percentage overlap with known DHS 

sites derived from the ENCODE Project (the minimum required to meet the threshold was 

80%); and (viii) peak conservation (a measure of sequence similarity across species based 

on the hypothesis that conserved sequences are more likely to be functional).

Peak cluster definitions: In Figures 3B and S3G, peak clusters were defined based on 

whether there was overlap in peak calls for ZBTB7A, KDM5A, and/or KDM5B in the 

untreated ROSA26-g1 samples. Peaks were considered present for a given factor if they 

were called in both replicates and absent if there was no peak call in either replicate. 

Heatmaps were created with deepTools2.0 using the computeMatrix and plotHeatmap 

functions on the Glaxy server (https://usegalaxy.org/) using bigwig files from CoBRA60 

and self-defined peak regions as input. Feature annotations and nearest genes for each peak 

were obtained with the annotatePeak function from ChIPseeker (v1.30.3) in R (v4.1.3).

Differential binding analyses: Peaks from all samples were merged to create a union 

set of sites for each transcription factor and histone mark using bedops.75 Sample-sample 

correlation and differential peaks analysis were performed by the CoBRA pipeline.60 Read 

densities were calculated for each peak for each sample and used for the comparison of 

cistromes across samples. Sample similarity was determined by hierarchical clustering using 

the spearman correlation between samples. Differential peaks were identified by DEseq2 

with adjusted P ≤ 0.05. A total number of reads in each sample was applied to the size 

factor in Deseq2, which can normalize the sequencing depth between samples. KDM5A 

unchanged peaks (Figure 3) were defined as regions with KDM5A peak calls across all 

untreated ROSA26-g1 replicates and padj > 0.05 for deseq between ZBTB7A-KO and 

ROSA26-g1.

Target gene identification, GSEA, and motif analysis: To identify target genes using 

only peak information, we used Cistrome-GO (http://go.cistrome.org/), which calculates 

regulatory potential scores for each gene based on both the number and proximity of 

peaks.32 In Figures 3H–3J and S3J, we used the top 500 predicted target genes based on 

regulatory potential score to look for enrichment of certain pathways.

Overlap with Hallmark pathways was calculated using the compute overlap function from 

MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/). Overlap with consensus transcription 

factor target genes from ENCODE/ChEA and overlap with transcription factor motifs from 

TRANSFAC/JASPAR were calculated using enrichr (https://maayanlab.cloud/Enrichr/). To 

assess similarity of our peak sets with published ChIP-seq tracks, we used the Cistrome 

DB toolkit (http://dbtoolkit.cistrome.org/) “What factors have significant overlap with your 

peak set?” with peak number to use set to “All peaks in each sample”. The Giggle scores 

from this analysis (-log1 (padj)*odds ratio from Fisher’s Exact Test, see Layer et al. 2018 
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for more information) are plotted in Figures 3K and S3I.33,34 In Figure S3I, only the 

maximum Giggle scores identified for each factor are plotted. To determine the regulatory 

potential of each peak set, we performed binding and expression target analysis (BETA), 

in which we integrated the peak information with RNA-seq comparing the ZBTB7A KO 

and wild-type SUM149 cells.32 For promoter-enriched peak sets (e.g., KDM5A down 

and ZBTB7A+KDM5A/B), we used a window of 3 kb from each gene’s TSS to select 

peaks, and for non-promoter enriched peak sets (i.e., ZBTB7A unique), we used the default 

parameter of 100 kb. To annotate the genes in the volcano plots with their nearest peaks, 

we used the output from the annotatePeak function in the ChIPseeker (v1.30.3) package. 

The p values in these graphs are from the previously described BETA analyses. Finally, for 

enrichment analyses, we selected high probability target genes for each peak set based on 

a rank product score of less than 0.001 from the BETA output. Enrichment of transcription 

factor motifs from published ChIP-seq across Cistrome was calculated using the epigenetic 

Landscape In Silico deletion Analysis (Lisa) tool (http://lisa.cistrome.org/). Overlap with 

Hallmark pathways was calculated using the compute overlap function from MSigDB 

(https://www.gsea-msigdb.org/gsea/msigdb/). Motif enrichment scores were calculated using 

simple enrichment analysis from MEME-suite (https://meme-suite.org/meme/doc/sea.html) 

for ZBTB7A consensus sequence GACCC. Default shuffled input sequences were used as 

control.

RNA-seq data analysis—RNA-seq data was analyzed using the Visualization Pipeline 

for RNA-seq analysis (VIPER) and aligned to version hg19 of the human genome59 

The following config.yaml parameters were adjusted: RPKM_threshold = 1.0 and 

min_num_samples_expressing_at_threshold = 2. Samples were analyzed in duplicates. 

GSEA was performed by ranking genes based on log2(FC) and using the GSEA function 

from the ClusterProfiler (v4.2.2) package in R. Public gene sets tested in the manuscript 

include MSigDB’s Hallmark (H1) and positional gene sets (C1), KEGG, and Reactome. 

TNBC subtypes used for GSEA in Figure S4K were from our prior publication.39 The 

heatmaps in Figures S2D and 4A are the default output of VIPER, which used the top 1,000 

variable genes for plotting. PCA plots were computed using log2 transformed count data 

of all genes within each sample with the prcomp function form the stats (v4.1.3) package 

in R. The heatmap in Figure 5D was created using all C70-responsive DEGs, which were 

defined as padj < 0.05 when comparing −/+ C70 in either SUM149 ROSA26-g1 or SUM149 

ZBTB7A-g1. The heatmap was generated using row normalized Z-scores of FPKM values 

with the ComplexHeatmap (v2.10.0) function in R. Rows were clustered via k-means with k 

= 5. Enrichment of gene sets within the heatmap clusters was determined using the enricher 

function from the clusterProfiler (v4.2.2) package in R. Transcription factor target gene sets 

were taken from “TFT: transcription factor targets” in MSigDB.

TCGA and METABRIC data analyses: Because these cohorts are bulk RNA-seq, we used 

the ISOpure algorithm to estimate gene expression levels specifically coming from the 

tumor fraction and used these deconvoluted matrices76 for the analyses. First, we assessed 

if KDM5 activity correlated with select Hallmark pathways we found to be influenced by 

KDM5 inhibition in our study. We used average expression of KDM5A and KDM5B as 

a surrogate for KDM5 activity and tested for correlation with pathway enrichment scores 
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(gene set variation analysis, GSVA) across basal TCGA samples.77 Immune scores were 

calculated from bulk RNA-seq via “Estimation of STromal and Immune cells in MAlignant 

Tumours using Expression data” (ESTIMATE).78

Endogenous retroelement expression analysis—Differential expression of 

endogenous retroelements was assessed from bulk RNA-seq data using the ERVmap 

pipeline (v1.1).41

CRISPR screen data analysis

CRISPR data were analyzed by MAGeCK (v0.5.9) essentially as described79–81 Briefly, 

read counts for each sgRNA were obtained from fastq files with mageck count.61 To obtain 

significantly enriched and depleted sgRNAs in the C70 treated versus untreated samples, we 

used the MAGeCK TEST algorithm, in which read counts were normalized to a set of 3,842 

control guides targeting the AAVS1 (3,540), CCR5 (99), and ROSA26 (203) loci. Genes 

with p value less than 0.001 were defined as candidate hits and colored in the rank plots in 

Figure 2. The MageckFlute package (v1.14.0)61 was used to visualize the data.

scRNA-seq data analysis

Raw bcl2 files from the NovaSeq run were converted to fastq using cellranger mkfastq 

(Cell Ranger v5.0.1). Count information was obtained using cellranger count and aligned to 

the GRCh38 reference transcriptome provided by 10X: refdata-gex-GRCh38–2020-A.tar.gz. 

The filtered h5 files output from cellranger count were then loaded and analyzed with 

Seurat (v4.3.0). To remove poor quality cells, cells with less than 1,000 total RNA counts 

or percent mitochondrial counts greater than 3 absolute deviations from the median were 

filtered out. To remove doublets, cells with total RNA greater than 3 absolute deviations 

from the median were also filtered out. The filtered data was then normalized with Seurat’s 

NormalizeData function, which normalized the gene expression for each cell by total 

expression, and then multiplied by a scaling factor of 10,000 and log-transformed the 

results. We identified the top 2,000 most variable features using FindVariableFeatures with 

selection.method = “vst”. The data was then scaled using ScaleData, which makes the mean 

expression across cells 0 and variance 1. The scaled data was then used for clustering and 

visualization via UMAP using the first 30 PC dimensions. Hexagonal plots were created 

as we previously described.10,82 Code to generate the plots was generated by Dr. Hua-Jun 

Wu and can be found on Bitbucket (https://bitbucket.org/mthjwu/hexplot/src/master/). To 

create the hexagonal plots, we first defined cell identity signatures for SUM149, C70 (i.e., 

SUM149 + 10 μM C70 for 7 days), and SUM149CR. For each cell type, we compared its 

bulk RNA-seq (3 replicates) with the other two cell types combined (3 replicates each) and 

obtained DEGs via deseq. We chose the top 66 up- and down-regulated genes based on padj 

values as the up- and down-signatures of each cell type. The top 66 genes were chosen since 

this was the smallest number of DEGs (padj<0.05) identified for a given cell type, and we 

sought to use the same number of genes to define each gene signature. Using these gene 

signatures, we then calculated cell identity scores for each cell within our filtered and scaled 

scRNA-seq data set. The cell identity score was the average scaled expression of the upgene 

signature minus the average scaled expression of the down- gene signature. We randomly 

selected 1,000 sets of up and down signatures, each matching the size of the original true 
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signatures, which allowed us to generate a bootstrap distribution for the cell identity score. 

From this distribution, we calculated the bootstrap p-value. Single cells were then classified 

based on this p-value, using a cutoff of 5%. Cells that didn’t meet the threshold for any 

signature were labeled as unclassified. Hexagonal plots were utilized to visually represent 

the bootstrap classification of single cells within SUM149 and SUM149CR −/+ C70. Cells 

that clearly exhibited identity (i.e., passed the 5% threshold for only 1 of the 3 identities) 

were positioned along the edge of the plot. Cell-to-cell distance were calculated in each 

group using “Embeddings” function of the Seurat package with PCA dimension reduction. 

Gini indexes of all the genes within each group were calculated using “ineq” package.

qPLEX RIME data analysis

Peptide intensities were normalized using median scaling and protein level quantification 

was obtained by the summation of the normalized peptide intensities. A statistical analysis 

of differentially-regulated proteins was carried out using qPLEXanalyzer a Bioconductor 

R-package.31, which internally uses limma R-package from Bioconductor.83 Multiple testing 

correction of p-values was applied using the Benjamini-Hochberg method.84 to control the 

false discovery rate.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Deletion of ZBTB7A transcription factor and core SAGA complex synergizes 

with KDM5 inhibitors

• KDM5A chromatin binding is altered by ZBTB7A deletion

• Loss of ZBTB7A potentiates KDM5 inhibition-induced signaling changes by 

modulating NF-κB

• High ZBTB7A in triple-negative breast cancer with no response to 

neoadjuvant chemotherapy

DiCiaccio et al. Page 33

Cell Rep. Author manuscript; available in PMC 2025 January 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Characterization of the SUM149CR cell line
(A) Viability of SUM149 and SUM149CR cells after 7 days of treatment across C70 

concentrations. p = t test comparing area under the curve. Data are the mean ± standard 

deviation (n = 6).

(B) Gene Set Enrichment Analysis (GSEA) comparing RNA-seq profiles of SUM149CR 

and SUM149 cells.

(C) Oxygen consumption rate (OCR) in SUM149 and SUM149CR cells ± pre-treatment 

with 10 μM C70 for 6 days; plot (left) and bar graph depicting quantification of differences 

(right). Values are the mean ± standard deviation. n = 3 for all conditions. One-way ANOVA 

with multiple comparison within either DMSO- or C70-treated groups for each respiration 

phase test was used.
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(D) GSEA comparing RNA-seq profiles of SUM149 ± 10 μM C70 and SU149CR ± 10 μM 

C70. Top 10 most significant gene sets from each database are shown.

(E) Heatmap of normalized peptide intensities from mass spectrometry analysis of histone 

modifications in SUM149 and SUM149CR ± 10 μM C70 treatment for 48 h. Lysine residues 

that can be methylated are shown. Peptide intensities were normalized to the DMSO control 

within each cell line, in which there were three processing replicates.

(F) Boxplot depicting quantification of H3K4me3 peptide intensities. The p values are based 

on the t test.

(G) Uniform Manifold Approximation and Projection (UMAP) of scRNA-seq in SUM149 

and SUM149CR ± 10 μM C70 for 7 days.

(H) Hexagonal plots showing classification of single cells as parental (black), parental 

C70-treated (C70; teal), or C70-resistant (SUM149CR; red) populations.

(I) Boxplot showing transcriptomic cell-to-cell Euclidean distance from PCA dimension 

reduction in the indicated groups. Mann Whitney U test was used.

(J) Dot plot illustrating the enrichment of hallmark pathways in the top 200 genes with 

increased Gini index in the indicated groups. Pathways with false discovery rate (FDR) < 

0.05 in at least one groups are selected.
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Figure 2. CRISPR screen results and validation
(A) Rank plots of CRISPR KO viability screens in SUM149 and SUM149CR cells after 

10 doublings ± 10 μM C70. Genes are ranked based on the computed RRA score from 

MaGECK RRA, which indicates the essentiality of each gene. Positive RRA scores indicate 

enriched in C70. Negative RRA scores indicate enriched in DMSO. Differentially enriched 

hits (p < 0.001) are marked in blue and red for DMSO-enriched and C70-enriched hits, 

respectively.

(B) Comparison of CRISPR hits with p < 0.001 in either the SUM149 or the SUM149CR 

CRISPR screens ± C70.
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(C and D) GSEA on RRA-ranked CRISPR screen results in SUM149. Top 10 most 

significant gene sets with padj < 0.05 from the indicated databases (C) and CORUM protein 

complexes (D) are shown.

(E) Cell growth assays of SUM149 cells expressing constitutive Cas9 and guide RNAs 

(gRNAs) targeting ZBTB7A, RHOA, PKN2, or non-targeting controls. gRNAs with more 

efficient KO efficiency are marked with an asterisk (see also Figure S2L). Data are the mean 

± standard deviation (n = 4, controls are merged ROSA26 and NonTargeting cells with n = 4 

each).

(F) Bar plot depicting quantification of ratios in viable cell numbers upon DMSO vs. C70 

treatment at day 6. Data are the mean ± standard deviation, one-way ANOVA followed by 

Dunnett’s multiple comparisons test comparing to control group only (n = 4, controls are 

merged ROSA26 and cells expressing non-targeting gRNAs with n = 4 each).

See also Figure S2.
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Figure 3. ZBTB7A and KDM5A/B interact and co-localize on DNA with high H3K4me3 levels
(A) Immunoblot analysis of ZBTB7A, KDM5A, and KDM5B in total cell lysates (input), 

control IgG, and the indicated immunoprecipitants in SUM149 cells.

(B) Heatmap of ChIP-seq for ZBTB7A, KDM5A, KDM5B, and H3K4me3. Peaks are 

clustered based on the intersection of peak calls among the three proteins.

(C) Venn diagram illustrating overlap of ChIP-seq peaks.

(D) Example ChIP-seq bigwig tracks with the hg19 genome as a reference.

(E) Genomic feature distribution of peaks within clusters.

(F) MA plots showing differential peak enrichment for the indicated proteins (columns) after 

the indicated perturbations (rows). Each perturbation is compared to SUM149-ROSA26-g1 

in DMSO. Differential peaks are indicated in red (padj < 0.05; default output from CoBRA 
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(Containerized Bioinformatics Workflow for Reproducible ChIP/ATAC-seq Analysis) using 

the Wald test from DEseq2). The y axis shows log fold change; x axis shows mean of 

normalized counts.

(G) Venn diagrams showing overlap between KDM5A down and H3K4me3 up peaks in 

ZBTB7A KO cells. The intersect of these peaks is then compared with H3K4me3 up peaks 

in KDM5A KO cells.

(H–J) Overlap of the top 500 predicted target genes of KDM5A down/unchanged peaks 

in the ZBTB7A KO with the described gene sets. (H) Hallmark pathways, (I) consensus 

target genes for transcription factors present in ENCODE and ChEA, (J) position weight 

matrices from TRANSFAC and JASPAR at the gene promoters. The top 500 target genes 

were identified via the regulatory potential score from BETA.32

(K) Overlap of the entire set of KDM5A down/unchanged peaks in the ZBTB7A KO with 

public ChIP-seq tracks available on CISTROME.33 The top 10–11 enriched transcription 

factors are shown ranked by GIGGLE score (−log10(p) * odds ratio).34

See also Figure S3.
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Figure 4. Gene expression changes induced by ZBTB7A-KO and its associations with ZBTB7A 
and KDM5A/B peak sets
(A) Heatmap of RNA-seq in SUM149 cells expressing the indicated gRNAs treated with 

DMSO or 10 μM C70 for 7 days. Rows and columns are ordered based on hierarchical 

clustering. Values are row-normalized Z scores.

(B) Number of DEGs for KOs in SUM149 cells compared to the ROSA26-g1 control.

(C) Volcano plot of RNA-seq in the SUM149 KDM5A KO compared to the ROSA26-g1 

control. Dashed gray lines indicate adjusted p value (padj) and fold change (FC) cutoff used 

for (B).

(D) Output from BETA testing for association between the indicated peak sets and the 

up-/downregulated genes upon ZBTB7A KO.32 For promoter-enriched peaks, the distance 

from the transcription start site (TSS) for within which peaks were considered to contribute 
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to the gene regulatory potential score was set to 3 kb. For non-promoter-enriched peak sets, 

the default parameter of 100 kb was used.

(E) Volcano plot comparing DEGs and decreased KDM5A peak enrichment in the ZBTB7A 
KO cells. Only significant DEGs are shown (padj < 0.05 and |log2(FC)| > 1). The p values 

are based on BETA, indicating if the differential peak set is significantly associated with up- 

or downregulated genes. Nearest genes to each peak are annotated.

(F and G) Overlap of the predicted target genes for each peak set with (F) CISTROME LISA 

transcription factor motifs (top 5 motifs per cluster are shown) and (G) Hallmark gene sets. 

Genes with a rank product score <0.001 from the BETA output were used as predicted target 

genes for each peak set.

See also Figure S4.
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Figure 5. Effects of ZBTB7A KO on transcriptional response to KDM5 inhibition
(A) GSEA on genes ranked by log2(FC) for ±10 μM C70 for 7 days. The analysis was 

performed in all three cell lines with wild-type (i.e., ROSA26-g1) or ZBTB7A KO.

(B) Oxygen consumption rate (OCR) in ROSA26-g1 and ZBTB7A KO SUM149 cells ± 

pre-treatment with 10 μM C70 for 6 days. Values are the mean ± standard deviation. N = 5 

for all conditions except ZBTB7A KO + C70, which had one outlier well removed (N = 4).

(C) Ridge plot depicting flow cytometry for total ROS detection with the Total Reactive 

Oxygen Species (ROS) Assay Kit and for mitochondrial cardiolipins with nonyl acridine 

orange (NAO). SUM149 cells were treated with or without 10 μM C70 for 5 days. One 

millimolar H2O2 (7 h for ROS and 2 h for NAO) was used as a positive control.
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(D) Heatmap of DEGs upon C70 treatment in either SUM149 ROSA26-g1 or ZBTB7A-g1 

(padj < 0.05). Genes are ordered based on k-means clustering (k = 5) and samples are 

ordered based on hierarchical clustering.

(E) RNA Z scores of cluster 3 and 5 genes from (D). Box plots represent mean, first and 

third quantile, and min and max values.

(F and G) Overrepresentation analysis for (F) MSigDB transcription factor targets and (G) 

MSigDB Hallmark pathways within each gene cluster specified by (D).

(H) Plot of NF-κB target genes associated with KDM5 + ZBTB7A peaks, ZBTB7A unique 

peaks, or both (KDM5 + ZBTB7A and ZBTB7A unique). Target genes were defined by 

the union of MSigDB transcription factor target gene sets (GGGNNTTTCC_NFKB_Q6_01, 

NFKAPPAB_01, NFKAPPAB65_01, NFKB_C, NFKB_Q6_01, and NFKB_Q6). The p 
value was determined by the t test. Box plots represent mean, first and third quantile, and 

min and max values.

(I) Immunoblot for phospho-NF-κB p65 (Ser536) in SUM149 ROSA26-g1 and ZBTB7A 
KO cells ± 10 μM C70 for 7 days. Cells treated with 20 ng/mL TNF-α for 5 min were used 

as positive control. Image is the left side part of a larger blot with additional lanes.

(J) Immunoblot for NF-κB targets MMP9, MIA, and IL-27-RA in SUM149 ROSA26-g1 or 

ZBTB7A KO cell lines ± 10 μM C70 for 6 days. Tubulin was used as loading control.

(K) Diagram of proposed interaction between ZBTB7A and KDM5 inhibition on NF-κB 

signaling.

See also Figures S4 and S5.
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Figure 6. Associations between ZBTB7A and KDM5 expression and tumor features in patient 
samples
(A and B) Correlation between KDM5A/B expression and select pathways across basal 

tumors from TCGA (A) and TNBC samples from METABRIC (B). Correlation coefficients 

and −log10(p) are plotted. The samples were subset into high and low ZBTB7A expression 

based on upper and lower tertiles.

(C) Correlation between KDM5A, KDM5B, and ZBTB7A expression with estimated 

immune infiltration scores from bulk RNA-seq data. Data are from basal tumors in TCGA. 

Immune scores were calculated from bulk RNA-seq via “Estimation of Stromal and Immune 

cells in Malignant Tumors Using Expression Data” (ESTIMATE).
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(D) Boxplots depicting the expression of ZBTB7A in TNBC from patients with pCR or no 

pCR from the indicated cohorts. Box plots represent mean, first and third quantile, and min 

and max values. Mann-Whitney U test was used.

(E) Boxplots depicting the expression of ZBTB7A in breast tumors from patients with pCR 

or no pCR from the indicated cohorts and divided based on the expression levels of KDM5A 
or KDM5B. Box plots represent mean, first and third quantile, and min and max values. 

Mann-Whitney U test was used.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal anti IL27-RA Cell Signaling Technology Cat# 41220

Rabbit monoclonal anti MMP-9 Cell Signaling Technology Cat# 13667; RRID:AB_2798289

Rabbit polyclonal anti MIA Peprotech Cat# 500-P243; RRID:AB_1268631

Rabbit polyclonal anti p44/42 MAPK Cell Signaling Technology Cat# 9102; RRID:AB_330744

Rabbit monoclonal anti NRF1 abcam Cat# ab175932; RRID:AB_2629496

Rabbit polyclonal anti CTCF abcam Cat# ab70303; RRID:AB_1209546

Rabbit Gamma Globulin Life Technologies Cat# 31887; RRID:AB_2532980

Mouse IgG Isotype Control Life Technologies Cat# 10400C; RRID:AB_2532980

Armenian Hamster IgG Isotype Control (eBio299Arm), 
eBioscience

Life Technologies Cat# 14-4888-81; RRID:AB_470128

Goat anti-Rabbit IgG (H+L) Secondary Antibody, HRP Life Technologies Cat# 65–6120; RRID:AB_2533967

Goat anti-Mouse IgG (H+L) Secondary Antibody, HRP Life Technologies Cat# 62–6520; RRID:AB_2533947

Goat anti-Armenian Hamster IgG (H+L) Secondary Antibody, 
HRP

Life Technologies Cat# PA1–32045; 
RRID:AB_10985178

Mouse monoclonal anti-beta-Actin (AC-74) Sigma Cat# A2228; RRID:AB_476697

Monoclonal Anti-α-Tubulin antibody produced in mouse Sigma Cat# T5168; RRID:AB_477579

Armenian Hamster monoclonal anti-ZBTB7A (13E9) Life Technologies Cat# 14-3309-82; RRID:AB_2043856

Armenian Hamster monoclonal anti-ZBTB7A (13E9) SantaCruz Cat# sc-33683; RRID:AB_668999

Rabbit monoclonal anti-ZBTB7A (EPR13178(B)) Abcam Cat# ab175918

Recombinant monoclonal anti-KDM5A Active Motif Cat# 91211; RRID:AB_2793805

Anti-KDM5A / Jarid1A / RBBP2 antibody (ab70892) abcam ab70892; RRID:AB_2280628

Rabbit polyclonal anti-KDM5B Sigma Cat# HPA027179; RRID:AB_1851987

Rabbit monoclonal anti-KDM5B (E2X6N) Cell Signaling Technology Cat# 15327; RRID:AB_2798737

Rabbit polyclonal anti-KDM5B Novus Biologicals Cat# 22260002; RRID:AB_10004656

Rabbit polyclonal anti-KDM5C Abcam Cat# ab34718; RRID:AB_881090

Rabbit polyclonal anti-H3K4me3 Diagenode Cat# C15410003–50

Anti-Histone H3 (tri methyl K4) antibody - ChIP Grade (ab8580) Abcam Cat# ab8580; RRID:AB_306649

Mouse monoclonal anti-H3 Active Motif Cat# 39763; RRID:AB_265052

RhoA (67B9) Rabbit mAb #2117 Cell Signaling Technology Cat# 2117: RRID:AB_10693922

Anti-PKN2 antibody (ab87812) Abcam Cat# ab87812; RRID:AB_2042690

Rabbit monoclonal anti-MTA1 (D17G10) Cell Signaling Technology Cat# 5647; RRID:AB_10705601

Rabbit polyclonal anti-MTA2 Cell Signaling Technology Cat# 15793

Rabbit monoclonal anti-MBD2 (EPR18361) Abcam Cat# ab188474

Rabbit monoclonal anti-MBD3 (N87) Cell Signaling Technology Cat# 14540; RRID:AB_2798504

Rabbit polyclonal anti-CHD3 Cell Signaling Technology Cat# 4241; RRID:AB_10557102

Rabbit monoclonal anti-CHD4 (D8B12) Cell Signaling Technology Cat# 11912; RRID:AB_2751014

Phospho-NF-κB p65 (Ser536) (93H1) Rabbit mAb #3033 Cell Signaling Technology Cat# 3033; RRID:AB_331284

Recombinant Anti-NF-κB p65 antibody [E379] (ab32536) Abcam Cat# ab32536; RRID:AB_776751

Phospho-NFkB p50 (Ser337) Polyclonal Antibody Life Technologies Cat# PA5-37658; RRID:AB_2554266

NFkB p50 Monoclonal Antibody (5D10D11) Life Technologies C# MA5-15870; RRID:AB_11153885
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

Endura ElectroCompetent Cells Lucigen Cat# 60242-2

One Shot Stbl3 Chemically Competent E. coli Life Technologies Cat# C737303

Chemicals, peptides, and recombinant proteins

KDM5 inhibitor C70 This paper; Johansson et al.16; 
Tumber et al.58; Hinohara et 
al.10

N/A

Nonyl Acridine Orange (Acridine Orange 10-Nonyl Bromide) Life Technologies Cat# A1372

Recombinant Human TNF-alpha Protein R&D Systems Cat# 210-TA

Critical commercial assays

Thermo Scientific Active Rho Pull-Down and 
Detection Kit

Cat# 16116

Thermo Scientific Active Rac1 Pull-Down and 
Detection Kit

Cat# 16118

Seahorse XF Cell Mito Stress Test Kit Agilent Cat# 103015-100

Seahorse FluxPaks Agilent Cat# 102340-100

Seahorse XF DMEM assay medium pack, pH 7.4 Agilent Cat# 103680-100

Total Reactive Oxygen Species (ROS) Assay Kit 520 nm Invitrogen Cat# 88-5930

Deposited data

All raw genomic data GEO GSE259252

Processed CRISPR screen data This paper Table S2

Processed mass spectrometry data (qPLEX-RIME) This paper Table S3

Raw histone mass spectrometry data MassIVE MSV000094452

Experimental models: Cell lines

SUM149 cell line Steve Ethier (University of 
Michigan)

N/A

SUM149 cell line, ROSA26-g1 This paper N/A

SUM149 cell line, ROSA26-g2 This paper N/A

SUM149 cell line, ZBTB7A-g1 This paper N/A

SUM149 cell line, ZBTB7A-g2 This paper N/A

SUM149 cell line, KDM5A-g1 This paper N/A

SUM149 cell line, KDM5A-g2 This paper N/A

SUM149 cell line, KDM5B-g1 This paper N/A

SUM149 cell line, KDM5B-g2 This paper N/A

SUM149 cell line, RHOA-g1 This paper N/A

SUM149 cell line,RHOA-g2 This paper N/A

SUM149 cell line,PKN2-g1 This paper N/A

SUM149 cell line, PKN2-g2 This paper N/A

MDA-MB-436 cell line ATCC HTB-130; RRID:CVCL_0623

MDA-MB-436 cell line, ROSA26-g1 This paper N/A

MDA-MB-436 cell line, ZBTB7A-g2 This paper N/A

MCF7 cell line Marc Lippman (University of 
Michigan)

N/A

MCF7 cell line, ROSA26-g1 This paper N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

MCF7 cell line, ZBTB7A-g1 This paper N/A

SUM159 cell line Steve Ethier (University of 
Michigan)

FCIBC02 cell line Massimo Christofanelli (Fox 
Chase Cancer Center)

T-47D cell line ATCC HTB-133; RRID:CVCL_0553

BT-474 cell line ATCC HTB-20

MDA-MB-361 cell line ATCC HTB-27; RRID:CVCL_0620

HCC1419 cell line ATCC CRL-2326; RRID:CVCL_1251

SKBR3 cell line ATCC HTB-30; RRID:CVCL_0033

Oligonucleotides

ROSA26-g1: GGTGATCTAGTATTTCTTG This paper N/A

ROSA26-g2: TGCGGTCAGGTCACGCCGC This paper N/A

NonTargeting-g1: ACCGGAACGATCTCGCGTA This paper N/A

ZBTB7A-g1: CCGTCAGCACAGCCAACGT This paper N/A

ZBTB7A-g2: TTGAAGTACTGGCTGCAGG This paper N/A

KDM5A-g1: TCCAGAATGCTTAGATGTG This paper N/A

KDM5A-g2: TGTCCTAAATGTGTCGCCG This paper N/A

KDM5B-g1: CACCTTCGCCTAGTCACAC This paper N/A

KDM5B-g2: GACTGGCATCTGTAAGGTG This paper N/A

RHOA-g1: AAACACATCAGTATAACAT This paper N/A

RHOA-g2: CCACTCACCTAAACTATCA This paper N/A

PKN2-g1: TAATGGAATATGCTGCCGG This paper N/A

PKN2-g2: TAGATATCATACTTTGACG This paper N/A

CRISPR PCR round 1 Forward: 
AATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCG

This paper N/A

CRISPR PCR round 1 Reverse: 
TCTACTATTCTTTCCCCTGCACTGTGACTGTGGGCGATGTG
CGCTCTG

This paper N/A

CRISPR PCR round 2 Staggered 1 Forward: 
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACA
CGACGCTCTTCCGATCTtCAAGGTCAtcttgtggaaaggacgaaacacc
g

This paper N/A

CRISPR PCR round 2 Staggered 1 Reverse: 
CAAGCAGAAGACGGCATACGAGATCAAGGTCAGTGACTG
GAGTTCAGACGTGTGCTCTTCCGATCTacgatcgatTCTACTAT
TCTTTCCCCTGCACTGT

This paper N/A

CRISPR PCR round 2 Staggered 2 Forward: 
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACA
CGACGCTCTTCCGATCTatGCATAACTtcttgtggaaaggacgaaacacc
g

This paper N/A

CRISPR PCR round 2 Staggered 2 Reverse: 
CAAGCAGAAGACGGCATACGAGATGCATAACTGTGACTGG
AGTTCAGACGTGTGCTCTTCCGATCTcgatcgatTCTACTATTC
TTTCCCCTGCACTGT

This paper N/A

CRISPR PCR round 2 Staggered 3 Forward: 
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACA
CGACGCTCTTCCGATCTgatCTCTGATTtcttgtggaaaggacgaaacac
cg

This paper N/A

CRISPR PCR round 2 Staggered 3 Reverse: 
CAAGCAGAAGACGGCATACGAGATCTCTGATTGTGACTGG

This paper N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

AGTTCAGACGTGTGCTCTTCCGATCTgatcgatTCTACTATTCT
TTCCCCTGCACTGT

CRISPR PCR round 3 Forward: AATGATACGGCGACCACCGA This paper N/A

CRISPR PCR round 3 Reverse: 
CAAGCAGAAGACGGCATACGA

This paper N/A

Recombinant DNA

Human CRISPR Knockout Library (H3) Addgene Cat# 133914

lentiCRISPR v2 Addgene Cat# #52961

pLV-5xNFkBminiP-d1EGFP This paper Vector builder

Software and algorithms

Visualization Pipeline for RNA-seq analysis (VIPER) Bitbucket; Cornwell et al. 
(2018)59

https://bitbucket.org/cfce/viper/src/
master/

Containerized Bioinformatics workflow for Reproducible ChIP/
ATAC-seq Analysis (CoBRA)

Bitbucket; Qiu et al.60 https://bitbucket.org/cfce/cobra/src/
master/

Model-based Analysis of Genome-wide CRISPR-Cas9 Knockout 
(MAGeCK) (version: 0.5.9)

SourceForge; Li et al.61 https://sourceforge.net/p/mageck/wiki/
Home/

MAGeCKFlute (version 1.14.0) Bioconductor; Wang et al.62 https://www.bioconductor.org/
packages/release/bioc/html/
MAGeCKFlute.html

Cell Ranger (version: 5.0.1) 10X Genomics https://www.10xgenomics.com/
support/software/cell-ranger/latest

Seurat (version 4.3.0) CRAN https://cran.r-project.org/web/
packages/Seurat/index.html

ERVmap (version 1.1) Github; Tokuyama etal. 
(2018)41

https://github.com/mtokuyama/
ERVmap

ClusterProfiler (version: 4.2.2) Bioconductor; Wu et al.; Yu et 
al.63,64

https://bioconductor.org/packages/
release/bioc/html/clusterProfiler.html

Enrichr Ma’ayan Lab (Icahn School of 
Medicine, Mount Sinai)65–67

https://maayanlab.cloud/Enrichr/

Molecular Signatures Database (MSigDB) Compute Overlaps 
Function

Broad Institute, Inc., 
Massachusetts Institute of 
Technology, and Regents 
of the University of 
California68,69

https://www.gsea-msigdb.org/gsea/
msigdb/index.jsp

RStudio (version: 4.2.0) Posit https://posit.co

Affinity Designer (version: 1.10.4) Affinity https://affinity.serif.com/en-us/

GraphPadPrism (version: 9) GraphPad Software Inc. https://www.graphpad.com/updates/
prism-900-release-notes

FlowJo (version: 10.8.2) FlowJo, LLC https://www.flowjo.com/
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