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Single-cell lineage tracing (scLT) has emerged as a powerful tool, providing unparalleled resolution to investigate cellular

dynamics, fate determination, and the underlying molecular mechanisms. This review thoroughly examines the latest pro-

spective lineage DNA barcode tracing technologies. It further highlights pivotal studies that leverage single-cell lentiviral

integration barcoding technology to unravel the dynamic nature of cell lineages in both developmental biology and cancer

research. Additionally, the review navigates through critical considerations for successful experimental design in lineage

tracing and addresses challenges inherent in this field, including technical limitations, complexities in data analysis, and

the imperative for standardization. It also outlines current gaps in knowledge and suggests future research directions, con-

tributing to the ongoing advancement of scLT studies.

As the basic structural and functional units of life, deciphering the
lineage and developmental trajectories of individual cells has been
a crucial pursuit in understanding the process of organ and tissue
formation, as well as the progression of diseases. A profound explo-
ration into the molecular mechanisms dictating cell differentia-
tion, organization, fate, and function has long been the focus
point within the fields of developmental biology and pathological
processes (Wagner and Klein 2020).

In the context of diseases, particularly in conditions like can-
cer, it is imperative to elucidate the origin of the disease process,
identifying, and isolating the rare subset of cells resilient to treat-
ment, thereby giving rise to therapeutic resistance. This endeavor
is critical in developing innovative preventive and therapeutic
strategies in disease treatment and management. Conventional
cell identification heavily relies on specific cell surface biomarkers
or their combinations. However, the scarcity of comprehensive
biomarkers and the nonspecific nature of many biomarkers pose
challenges. Cells identified through this method frequently com-
prise a heterogeneous mix, introducing uncertainty and ambigui-
ty. This limitation not only increases the risk of missing the
identification of cells of interest but also introduces the potential
of misidentifying the correct cell groups. These inaccuracies intro-
duce biases into the depiction of the complexity of biological pro-
cesses, impeding an accurate understanding of the molecular
mechanisms involved (Kester and van Oudenaarden 2018).

The recent breakthrough in single-cell RNA sequencing
(scRNA-seq) has revolutionized our ability to profile tens of thou-
sands of individual cells across various differentiation stages con-
currently. This technological advancement provides unparalleled
resolution, unveiling novel cell types, and shedding light on previ-
ously undiscovered mechanisms (Grun et al. 2015; Zeisel et al.
2015; Cannoodt et al. 2016; Kester and van Oudenaarden 2018).
Computational algorithms like Monocle and RNA velocity have
emerged to predict cell lineage differentiation trajectories based

on transcriptomic similarity and pseudo-temporal ordering (La
Manno et al. 2018; Cao et al. 2019). However, while scRNA-seq
data offer insights into the transcriptomic landscape, it cannot es-
tablish direct long-term dynamic relationships between cells and
their progeny or among different individual cells (Wagner and
Klein 2020). In addition, trajectory descriptions derived frompseu-
dotimemethodsmaynot represent the true lineage differentiation
path of a progenitor population without ground truth evidence
support. In recent years, the incorporation of inheritable cell-
specific DNA barcodes in lineage tracing, followed by barcode se-
quencing, has emerged as a powerful approach. This technique
allows the prospective tracking of millions of individual cells
simultaneously, providing a unique opportunity to trace cellular
lineages over time (Wagner and Klein 2020). The integration of
single-cell lineage tracing (scLT) and single-cell transcriptomics
presents a significant opportunity to explore clonal complexity.
This integration allows for the connection of cells from the present
to their historical lineage. Additionally, the refinement of clonal
dynamics is achieved by leveraging transcriptome-derived differ-
entiation trajectories and assessing gene expression changes over
time (Kester and vanOudenaarden 2018). In contrast to intention-
ally introducing heritable tracers (DNA barcodes) for prospective
lineage tracing, naturally occurring somatic mutations that accu-
mulate throughout an organism’s lifetime have been used for ret-
rospective lineage tracing to study development, especially with
the advancement of sequencing technologies (Dou et al. 2018;
Wu et al. 2019). However, the relative infrequency of somatic mu-
tation produces phylogenies of limited resolution (VanHorn and
Morris 2021).

As a cutting-edge technology, the current scLTmethod seam-
lessly integrates scLT with transcriptomics, enabling simultaneous
detection of cell state transition, clonal relationship, and elucida-
tion of the molecular mechanisms in cell fate determination
(Chen et al. 2022). While there has been extensive discussions
on the fundamental concepts, computational tools, and
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applications of scLT (Kester and vanOudenaarden 2018;McKenna
and Gagnon 2019; Wagner and Klein 2020; VanHorn and Morris
2021; Chen et al. 2022), there remains a notable gap in detailed
discussions regarding the technical considerations and caveats in-
herent in performing scLT experiments. In this review, wewill first
explore the current landscape of prospective lineage tracing tech-
nologies featuring inheritable genetic features. Next, we will high-
light their applications and power across various biological
research fields, with a specific emphasis on scLT utilizing viral
integration DNA barcodes. Following this, we will discuss the ex-
perimental details and challenges encountered in practical appli-
cations. Finally, we will briefly speculate the future directions
that this evolving field may take, providing insights into the po-
tential avenues of exploration.

Lineage tracing—the past and the present

Lineage tracing serves as the gold standard in developmental
biology, allowing for the inference of relationships between pro-
genitors and their offspring. Figure 1A illustrates the overall con-
cept of lineage tracing, which can be either permanent, diluted
out, or accumulative in tracking cells over time. This technique
involves tracking the descendants of single cells to define the
developmental trajectory of cell lineages (VanHorn and Morris
2021; Chen et al. 2022). It was initially performed to track cells
over time through visualization (Deppe et al. 1978) by utilizing

different strategies including creating chimeric embryos (Mintz
1967), engrafting cells from one species to another (Le Douarin
and Teillet 1973), injecting vital dyes into a single founder cell
of transparent organisms like Caenorhabditis elegans and zebrafish
(Lawson et al. 1986; Pedersen et al. 1986; Stern and Fraser 2001),
or later through the introduction of reporter genes (Turner and
Cepko 1987; Frank and Sanes 1991). With the development of
fluorescence-activated cell sorting (FACS) and corresponding sin-
gle-cell isolation and cell transplantation technique, the intro-
duction of reporter transgenes such as β-galactosidase or green
fluorescence protein (GFP) into cells has become a powerful
tool to assess cell proliferation and differential potential (Osawa
et al. 1996; Quintana et al. 2008). Through virus transfection,
transgenes integrate into the host genome; therefore, the descen-
dants of these cells will inherit the transgenes and express a fluo-
rescent protein, which can be easily visualized by microscopy. In
this way, the offspring of the parental cells are labeled and traced
allowing fate determination of their progenies (Kester and van
Oudenaarden 2018). However, the expression of the fluorescence
protein is normally controlled by site-specific recombinases such
as Cre under the control of cell-type-specific promotors; there-
fore, its expression is confined into a group of cells instead of a
single cell (Chen et al. 2022). This strategy often leads to sparsely
distributed clones across a sample, making it challenging to
distinguish clones from one another (Kester and van
Oudenaarden 2018).
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Figure 1. Prospective DNA barcoding strategies. (A) Conceptual illustration of lineage tracing: Cells can be permanently labeled and inherited by off-
spring cells, markers on labeled cells become increasingly diluted with subsequent divisions, or cells can be cumulatively labeled and recorded over
time. (B) Lentivirus integration barcoding: The DNA barcode sequence is inserted into the 3′ UTR of the GFP reporter gene and packaged into a lentiviral
vector. Cells of interest are transduced and labeled with a unique DNA sequence through either one-time labeling (left) or continuous labeling over time
(right). (C ) Cre-recombinase-based barcoding: Cre recombinase recognizes the LoxP site on the introduced gene, then recombination results in inversion or
deletion of the DNA sequence of the LoxP site depending on the orientation of these sites. (D) CRISPR–Cas9-based barcoding: During cell differentiation,
Cas9 induces double-strand breaks, and incomplete nonhomologous end joining (NHEJ) repair leads to the generation of barcode insertions and deletions
over time, serving as a valuable tool for lineage tracing.
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In response to the limitation of single fluorescence protein la-
beling, multicolor labeling methods such as Brainbow (Livet et al.
2007) and Confetti (Snippert et al. 2010) were developed. These
methods introduce multiple fluorescent proteins to differentiate
cells with various color combinations. However, despite the ad-
vancements provided by multicolor labeling, there are still chal-
lenges associated with this approach. The limited number of
available fluorescent colors constrains the number of cells that
can be confidently tracked. This limitation becomes particularly
pronounced when dealing with the complex combinations of
dose and labeling time during the initial testing phase.
Moreover, the multicolor labeling method faces difficulty in dis-
tinguishing between primary cells and their progenies. This chal-
lenge can complicate the accurate tracking and interpretation of
cell lineages over time. Despite these challenges, the development
of multicolor labeling techniques has significantly improved the
ability to trace cell lineages, offering valuable insights into the dy-
namics of cellular populations (Liu et al. 2020; Chen et al. 2022).

The emergence of DNA lineage barcoding technology repre-
sents a paradigm shift in cell lineage tracing. This method utilizes
unique DNA sequences to prospectively label individual cells by
inserting barcodes into the genome of host cells. These barcodes
are inherited by offspring cells through cell division, allowing
for precise lineage tracking. The number of potential barcodes in-
creases exponentially with the increased length and multiplicity
of the random nucleotide sequence, providing a vast array of
unique labels. When combined with current single-cell sequenc-
ing techniques, DNA lineage barcoding offers unlimited potential
to study cell behavior and fate over space and time. This powerful
combination allows researchers to track the dynamics and behav-
ior of individual cells and their progeny comprehensively. The in-
heritable nature of this method enables the long-term tracking of
cell lineages, offering a detailed view of developmental processes
and responses to environmental cues (Wagner and Klein 2020;
Chen et al. 2022). As a result, DNA lineage barcoding has been
widely used in studies focused on cell differentiation and evolu-
tion (Naik et al. 2014; Biddy et al. 2018; Rodriguez-Fraticelli
et al. 2018; Weinreb et al. 2020), cell heterogeneity and cell fate
during drug resistance (Nguyen et al. 2014b; Bhang et al. 2015;
Lan et al. 2017; Emert et al. 2021), tumor-initiating cells (Wang
et al. 2021), and metastasis in cancer (Merino et al. 2019). Here,
we describe the three major types of exogenous barcode delivery
systems (Wagner and Klein 2020; Morgan et al. 2021; VanHorn
and Morris 2021; Chen et al. 2022) that are used for DNA barcode
lineage tracing as illustrated in Figure 1.

Integration barcodes

This method uses lentivirus/retrovirus, transposon, or episome-
based delivery system to integrate a short exogenous DNA se-
quence to the genomics of cells (Fig. 1B; Chen et al. 2022;
Shlyakhtina et al. 2023). The DNA segment can be synthesized
to include consecutive random sequences named as type I bar-
codes or random nucleotides interspersed with fixed nucleotides
as type II barcodes (Lu et al. 2011; Levy et al. 2015; Kebschull
et al. 2016; Rodriguez-Fraticelli et al. 2018; Bramlett et al. 2020).
The synthetic DNA sequences are embedded within a viral con-
struct or flank the integration sites of transposons that can be eas-
ily quantified by high-throughput sequencing (Bramlett et al.
2020). In addition, the DNA segments are typically inserted in
the 3′ UTR after the coding region of fluorescent proteins, which
allows for convenient FACS sorting to retrieve the barcoded cells.

Each cell is tagged with a specific barcode sequence of a given
length, such that the number of barcodes is equivalent to 4N,
whereN is the length of theDNAbarcode sequence. The vast diver-
sity of barcode sequences provides the potential to track millions
of cells at the same time, making it possible to study complex cel-
lular populations and dynamic processes (Wang et al. 2021).
Integration barcodes are usually used as static (invariable) barcodes
to label a pool of cells, allowing for revealing clonal potency such
as self-renewal and multipotent properties directly by identifying
cell types that share the same barcodes (Chen et al. 2022). It can
also be used as cumulative barcodes with continuous delivery of
barcodes during a developmental process to record the history of
mitotic divisions as demonstrated in the somatic reprogramming
study (Fig. 1B; Biddy et al. 2018). In this case, a multilayer clonal
tree can be reconstructed, and the subclonal relationships fromdif-
ferent cell types can be revealed by analyzing the clonal trees based
on the number of barcodes (Chen et al. 2022).

Since its first publication (Lu et al. 2011), numerous studies
have been performed to adapt or improve the integration barcod-
ing system for lineage tracing in different organisms. Transposon
integration has been applied to study the native fate of hematopoi-
etic stem cells (HSCs) and multipotent progenitor cells using in
vivo studies (Sun et al. 2014; Rodriguez-Fraticelli et al. 2018).
Additionally, in the “TracerSeq” study (Wagner et al. 2018), it
was employed in the reconstruction of single-cell lineage histories
in zebrafish, leveraging gene expression landscapes. Recently, epi-
somes were used for cell transfection and genomic integration in
the Barcode decay Lineage Tracing-Seq (BdLT-Seq) study to inves-
tigate lineage-linked transcriptome plasticity (Shlyakhtina et al.
2023). Compared to other integration methods, the viral barcod-
ing system, utilizing lentivirus for integration, has been used ex-
tensively in recent years (Eirew et al. 2015; Zeisel et al. 2015;
Biddy et al. 2018; Kester and van Oudenaarden 2018; Cao et al.
2019; Guo et al. 2019; Merino et al. 2019; Bramlett et al. 2020;
Weinreb et al. 2020; Emert et al. 2021; Ratz et al. 2022; Umeki
et al. 2022; Wei et al. 2022).

The surge in high-throughput sequencing technology and re-
duced cost, particularly with the advent of scRNA-seq, aligns well
with the high-throughput capabilities of viral DNA barcoding
technology. Novel barcode libraries have been evolved to express
DNA barcodes as RNA-transcripts that can be captured by scRNA-
seq, such as LARRY (Weinreb et al. 2020), CellTagging (Biddy
et al. 2018), Watermelon (Oren et al. 2021), BdLT (Shlyakhtina
et al. 2023), ClonMapper (Gutierrez et al. 2021), Rewind (Emert
et al. 2021), and others (Table 1). These methods typically involve
the insertion of barcodes within the 3′ UTR of a fluorescence re-
porter gene. The expression of the fluorescence gene is governed
by a constitutive promoter, ensuring consistent and predictable
barcode capture. This design facilitates the simultaneous profiling
of barcodes and single-cell transcriptomics through scRNA-seq, al-
lowing for the labeling of individual cells and the construction of
their fates at a single-cell resolution (VanHorn and Morris 2021).
This synergy enables the simultaneous comparison of numerous
individual cells, providing a direct and comprehensive assessment
of cellular heterogeneity. This feature shows great advantage in ex
vivo labeling, commonly applied to label millions of HSCs and
cancer cells at the initiation of lineage tracing. Subsequently, their
clonal dynamics are evaluated using scRNA-seq, demonstrating
the potential for thorough and parallel exploration of cellular
behavior (Chen et al. 2022). However, its applicability is con-
strained when it comes to in vivo labeling of tissues, organs, or or-
ganisms. This limitation arises from the difficulty in selecting
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appropriate time windows, tissue dissociations, and the challenge
of controlling the number of barcodes per cell and the number of
cells to be labeled (Kebschull and Zador 2018).

Cre recombinase-based DNA barcodes

This method relies on the Polylox rearrangement with the Cre-
LoxP recombination system to create barcodes. Cre recombinase
recognizes the specific DNA sequence called LoxP site on the intro-
duced gene, allowing the sequence to be manipulated through
LoxP site excision or inversion upon recombination (Fig. 1C). In
a recent study, a large-size synthetic gene (2.1 kb) with 10 LoxP

sites was integrated into themouse genome to study HSC differen-
tiation (Pei et al. 2019). Recombination with the Cre recombinase
resulted in random deletion, inversion, or translocation of the flox
sites from the DNA sequence, generating cell-specific genetic la-
bels. In combination with sequencing technology, these specific
barcodes were identified to evaluate cell differentiation (Pei et al.
2017, 2019; Wang et al. 2021). Although this system is frequently
implemented in model systems to study tissue/cell dynamics and
tissue maintenance in a tissue and time-specific manner, the lim-
itation of this system is due to the Cre-LoxP properties (Kester and
van Oudenaarden 2018;Wang et al. 2021). First, the Cre-LoxP sys-
tem is prone to excision than inversion, leading to the reduced size

Table 1. Summary of prospective single-cell lineage tracing studies using viral DNA barcoding

Study
Editing
system Method Read out Barcode type MOI

In vitro or
in vivo

(species) Sequencing Reference

Zebrafish embryo lineage
development

Transposon TracerSeq scRNA-seq GFP +20 bp ∼54% of
cells with
barcode

Zebrafish InDrops
Illumina

Wagner et al.
(2018)

Lineage-linked cancer
transcriptome plasticity

Episome BdLT-Seq scRNA-seq GFP +12 bp 0.05 In vitro 10×3′ Shlyakhtina
et al. (2023)

Mouse embryonic
fibroblast (MEF)
reprogramming

Lentivirus CellTag scRNA-seq GFP +8 bp 3–4 In vitro Drop-seq,
10× 3′

Biddy et al.
(2018)

Multiple samples with
species mixing for sample
multiplexing

Lentivirus CellTag scRNA-seq
snRNA-
seq

GFP +8 bp 0.5% of
cells with
barcode

In vitro and
mouse

10×3′ Guo et al.
(2019)

Nature protocol from
Morris

Lentivirus CellTag scRNA-seq GFP +8 bp 3–4 In vitro 10×3′ Kong et al.
(2020)

Fate-specific gene
regulatory changes in
MEF to endoderm
transition

Lentivirus CellTag-multi scRNA-
seq/
scATAC-
seq

GFP + read 1N+
28 bp+ read 2N+
RT priming site

∼2.25 In vitro 10x
multiome

Jindal et al.
(2023)

Mouse hematopoietic
differentiation

Lentivirus LARRY scRNA-seq GFP +28 bp 98% of
cells with
GFP signal

In vitro and
mouse

InDrops
Illumina

Weinreb
et al. (2020)

Mouse brain
developmental
neurogenesis

Lentivirus TREX/Space-
TREX

scRNA-
seq/STa

EGFP +30 bp NA Mouse 10×3′ Ratz et al.
(2022)

Stem cell hierarchies in
rhabdomyosarcoma

Lentivirus LARRY scRNA-seq GFP +28 bp 0.3 In vitro 10×3′ Wei et al.
(2022)

Clonal dynamics in tumor
evolution and treatment
(CLL)

Lentivirus ClonMapper scRNA-seq
CROP-seq

sgRNA barcodes
with BFP + 20 bp

0.1 In vitro 10×3′ Gutierrez
et al. (2021)

Cell fate in melanoma
drug resistance

Lentivirus Rewind RNA FISH GFP +gDNA (100
bp)

<0.5 In vitro Targeted
DNA-seq

Emert et al.
(2021)

Cycling persister cells in
lung cancer drug
resistance

Lentivirus Watermelon scRNA-seq
live cell
imaging

mNeonGFP+90
bp (semirandom
seq)

0.3 In vitro 10×3′ Oren et al.
(2021)

Clonal diversity in TNBC
primary and metastatic
tumors

Lentivirus Viral
barcoding

scRNA-seq GFP +98 bp
(semirandom seq)

0.1–0.2 Mouse 10×3′ Merino et al.
(2019)

Malignant clonal fitness
in AML

Lentivirus SPLINTR scRNA-seq GFP, BFP or
mCherry + 60 bp
(semirandom seq)

0.02–0.1 In vitro and
mouse

10×3′ Fennell et al.
(2022)

Mathematical framework
to predict cancer
therapeutic resistance

Lentivirus COLBERT scRNA-seq BFP + 20 bp gRNA <0.1 In vitro 10×3′ Johnson
et al. (2020)

Rates, routes and drivers
of lung metastasis in
xenografts

Lentivirus Cas9-based
recorder

scRNA-seq BFP + 205 bp
triple-gRNAs

∼0.5 Mouse 10×3′ Quinn et al.
(2021)

a(ST) Spatial transcriptomics.
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of the target array over time and reduced barcode diversity (Wang
et al. 2021). Second, the target array is normally long and repetitive
because of the low diversity of recombinase recognition sites. To
achieve high barcode diversity, the target array needs to contain
multiple fragments that require the barcode to be read by long se-
quencing technology (Wang et al. 2021). Third, the induction of
Polylox rearrangement can only occur once in cells similar to the
viral barcoding, which limits the construction ofmultilevel phylo-
genetic trees (Kester and van Oudenaarden 2018). Lastly, the re-
porter expression used to label cells may be silenced in specific
cell types as seen in retrovirus labeling (Walsh and Cepko 1992),
which can mask genuine lineage relationships (VanHorn and
Morris 2021). Recently, a novel digital, image-readable lineage
recoding system called intMEMOIR (integrase-editable memory
by engineered mutagenesis with optical in situ readout) based on
site-specific serine integrates was developed to allow for simultane-
ous analysis of single-cell clonal history, transcriptional state, and
spatial organization in the same tissue (Li et al. 2023), which can
significantly overcome the limitations presented by the traditional
Cre-LoxP system.

CRISPR–Cas9 editing–based barcodes

This method uses CRISPR–Cas9-directed genome editing technol-
ogy. The binding of Cas9 nuclease to a targeted region often creates
short random insertions or deletions, called indels (Jao et al. 2013).
These DNA marks can be inherited by all the descendent cells as
traceable elements, allowing for later lineage reconstruction (Fig.
1D). This principle was first confirmed by McKenna et al. (2016)
in zebrafish through applying the genome editing of synthetic tar-
get arrays for lineage tracing (GESTALT) system. In this study,
CRISPR–Cas9 and guide RNAs (gRNAs) were injected into one-
cell embryo to allow scarring in the target sequence to study the
lineage contribution of early embryonic cells to adult zebrafish or-
gans (McKenna et al. 2016). Modified CRISPR–Cas9 systems with
increased barcode diversity such as mSCRIBE (mammalian syn-
thetic cell recorder integrating biological events) (Perli et al.
2016) andHomingCRISPR barcode (Kalhor et al. 2018) were devel-
oped later. Several recent studies have integrated the CRISPR–Cas9
barcoding system with scRNA-seq, such as ScarTrace (Junker et al.
2017; Alemany et al. 2018), LINNAEUS (lineage tracing bynuclease-
activated editing of ubiquitous sequences) (Spanjaard et al. 2018),
scGESTALT (Raj et al. 2018), and studies performed by Chan et al.
(2019).More recently, the establishment of CARLIN (Bowling et al.
2020; Wang et al. 2021), a mouse cell line for CRISPR array repair
lineage tracing, and its improved line DARLIN (Li et al. 2023) has
significantly increased lineage-barcoding capacity and recovery ef-
ficiency in the single-cell assay, enabling simultaneous cell lineage
tracing, single-cell transcriptomics, and/or genome-wide methyla-
tion profiling in complex in vivo mammalian systems. The study
with DARLIN found that cellular clonal memory is associated
with genome-wide DNA methylation rather than gene expression
or chromatin accessibility (Li et al. 2023). Additionally, iTracer (He
et al. 2022) and CREST/snapCREST (Xie et al. 2023) were devel-
oped to incorporate both single-cell transcriptomics and spatial
transcriptomics in CRISPR–Cas9-based lineage tracing to study ce-
rebral organoid development and mouse brain development, re-
spectively. Beyond their prevalent applications in developmental
biology, Cas9-induced scarring barcodes have also been applied
to trace cell plasticity and routes of tumor evolution andmetastasis
(macsGESTALT and others) (Morgan et al. 2021; Quinn et al. 2021;
Simeonov et al. 2021; Yang et al. 2022) and studying temporal

events during development and tumorigenesis (NSC-seq) (Islam
et al. 2023). Furthermore, computational methods such as
LinTIMaT (Zafar et al. 2020), DCLEAR (Gong et al. 2022), Cassiope-
ia (Jones et al. 2020), Startle (Sashittal et al. 2023), LinRace (Pan
et al. 2023), and ConvexML (Prillo et al. 2023) have been devel-
oped for tree inference from lineage barcodes generated with
CRISPR-based editing technology.

The CRISPR–Cas9 system enables the labeling of various tis-
sues and organs across various organisms, generating high diver-
sity in vivo barcodes over time. However, its reliance on the
NHEJ repairing model results in a higher occurrence of deletions
than insertions. Consequently, this tendency leads to the gradual
shortening of CRISPR barcodes over time. Therefore, the practical
diversity of barcodes generated by this system tends to be signifi-
cantly lower than what is theoretically anticipated (Wang et al.
2021). (For further recent references and overviews of CRISPR bar-
codes, see Woodworth et al. [2017], Baron and van Oudenaarden
[2019], Wagner and Klein [2020], and Sommer et al. [2023].)

Viral DNA barcoding in developmental biology

and cancer research

Among the threemajor DNA barcodingmethods, the viral barcod-
ing technique has been widely employed in developmental biol-
ogy to study cell differentiation and heterogeneity (Brewer et al.
2016; Nguyen et al. 2018; Rodriguez-Fraticelli et al. 2018;
Wagner et al. 2018; Lu et al. 2019; Weinreb et al. 2020; Ratz
et al. 2022). Furthermore, this method has gained significant at-
tention for investigating cell behaviors in the context of cancer
(Turner and Cepko 1987; Nguyen et al. 2014b, 2015; Bhang et al.
2015; Eirew et al. 2015; Lan et al. 2017; Woodworth et al. 2017;
Merino et al. 2019; Bramlett et al. 2020; Gutierrez et al. 2021;
Oren et al. 2021; Quinn et al. 2021; Umeki et al. 2022; Wei et al.
2022). Its applications include unveiling the cellular origins of can-
cer genesis, relapse, andmetastasis, as well as exploring the hetero-
geneous responses of cells to drug treatment.

In these studies, a commonmethodology involves the ex vivo
labeling of target cells, which can include cells derived from cell
lines, patient samples, or animalmodels. The labeled cells are then
expanded and divided, with one portion saved as the original con-
trol and other portions subsequently tracked either in in vitro cell
culture or in animal models (Bramlett et al. 2020). The assessment
of cell dynamics and behaviors is then conducted by establishing
connections between present cells and their origins, utilizing re-
sults obtained from high-throughput sequencing technology.

The advent of scLTwith integrativeDNA barcodes has revolu-
tionized the field, offering unprecedented insights into cellular dy-
namics and developmental processes (VanHorn andMorris 2021).
This technique enables:

1. High-throughput analysis with tracking of thousands of cells
simultaneously, providing a comprehensive picture of cellular
dynamics within a tumor.

2. Long-term tracking: DNA barcodes are stably inherited through
cell division, allowing researchers to follow cell fate over ex-
tended periods.

3. Multiplexing: Different barcodes can be used to label and track
distinct cell populations within the same sample, revealing in-
teractions and relationships between them.

In the subsequent sections, we will specifically focus on
single-cell viral DNA barcoding studies, discussing their
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utilization, opportunities, and the technical challenges associat-
ed with them.

Single-cell lineage tracing in developmental biology

With the ability to track the origin and fate of individual cells and
their progeny, lineage tracing has been a cornerstone of develop-
mental biology research for decades. scLT with static DNA bar-
codes has significantly enhanced the resolution in deciphering
the complex cellular dynamics and heterogeneity within develop-
ing tissues. This advancement surpasses traditional lineage tracing
methods, which often provide limited resolution and scalability,
typically label a small number of cell populations, and often are re-
stricted to specific cell types (Kebschull and Zador 2018; Bramlett
et al. 2020; Wagner and Klein 2020; Chen et al. 2022).

Genetic barcoding was first performed by Jordan and
Lemischka (1990), and by Walsh and Cepko (1992), to tag and
trace the development of HSCs and the mammalian cerebral cor-
tex, respectively (Serrano et al. 2022). In these early studies, only
100 different retroviral semirandom DNA sequences were used.
With the emergence of high-throughput sequencing and the de-
velopment of new lentiviral-based libraries containing thousands
to millions of DNA barcodes, lineage tracing with DNA barcoding
has been widely applied in labeling HSCs and tracking their cell
fates simultaneously, which greatly enhance the tracing contents
and resolution (Gerrits et al. 2010; Lu et al. 2011; Naik et al.
2014). More recently, new libraries that are compatible with
scRNA-seq have been developed, which enables systemic evalua-
tion of the relationship between state and fate among millions
of cells (Table 1). All these libraries incorporate lineage informa-
tion within the 3′ UTR of a fluorescence protein transgene to inte-
grate with scRNA-seq.

Weinreb et al. (2020) introduced the LARRY approach to in-
vestigate the fate determination map of HSCs using both in vivo
mousemodels and in vitro cell systems. Employing a “Clone-split-
ting” strategy, they partitioned barcoded progenitor cells into dis-
tinct groups after sufficient expansion and performed scRNA-seq
on samples collected along the differentiation trajectory. Based
on the continuous transcriptomics landscape, this study uncov-
ered states of primed fate potential of HSCs and two routes of
monocyte differentiation leading to mature cells. Additionally,
the teamdeveloped a computationalmethod tomodel the dynam-
ic inference of cell fates from single-cell snapshots. However, the
study suggested that scRNA-seq fails to capture the heritable prop-
erties that guide fate determination, where additional studies such
as chromatin accessibility or proteomics information may help to
identify the hidden information (VanHorn and Morris 2021). The
same research group utilized LARRY in another study to explore
clonal trajectories of adult HSCs during long-term bone marrow
reconstitution (Rodriguez-Fraticelli et al. 2020). Their findings
revealed the existing of an intrinsic molecular signature that char-
acterizes functional long-term repopulating HSCs. Moreover, the
study confirmed that the transcription factor TCF15 is required
and sufficient to drive HSC quiescent and long-term self-renewal.
Beyond exploring the functional aspects of HSCs, this study also
established a benchmark for LARRY by assessing long-term clonal
tracking in terms of library diversity sufficiency, barcode calling ef-
ficiency across various populations, accuracy of single-cell read-
outs, and minimizing barcode silencing (Rodriguez-Fraticelli
et al. 2020). These findings underscored the robustness and reli-
ability of LARRY for studying long-term clonal dynamics in com-
plex biological systems.

The CellTagging approach (Biddy et al. 2018; Kong et al.
2020) was employed to label and track over 100,000 cells. This
was achieved through sequential lentiviral delivery of DNA bar-
codes at different time points to mouse embryonic fibroblasts
(MEFs), which enabled layered labeling of these cells. By construct-
ing multilevel lineage trees, the study delineated two paths of fate
determination in somatic reprogramming from fibroblasts to
endodermprogenitors. Through the comparison of successfully re-
programmed clones and dead-end clones, the investigation identi-
fied a candidate gene named Tmt1a (also known as Mettl7a1).
Notably, the addition of this gene to the reprogramming cocktail
was found to enhance reprogramming.

By introducing TREX, a system that enables TRacking and
gene EXpression profiling of clonally related cells, and Space-
TREX, Ratz et al. (2022) studied mouse brain development using
in vivo barcode labeling in conjunction with scRNA-seq and spa-
tial transcriptomics. In this groundbreaking study, the team iden-
tified fate-restricted progenitor cells in the mouse hippocampal
neuroepithelium and showed that microglia originate from a lim-
ited number of primitivemyeloid precursors that undergo substan-
tial expansion to generate widely dispersed progeny. This study
marked the first exploration ofmigration patterns of clonally relat-
ed cells at the tissue level, providing insights into understanding
tissue architecture in animals through barcode labeling.

Single-cell lineage tracing in cancer cell origin,

metastasis, and drug resistance

The presence of heterogeneous cell populations within tumors,
each characterized by distinct genetic and molecular profiles, pos-
es a significant challenge in the development of targeted therapies.
This inherent diversity contributes to variations in sensitivity to
treatments, complicating efforts to design effective therapeutic
strategies. Consequently, it becomes imperative to comprehend
and address this heterogeneity for the advancement of cancer
treatments. In recent times, DNA barcoding has emerged as a valu-
able tool in elucidating clonal growth dynamics (Gerrits et al.
2010; Nguyen et al. 2014a, 2015; Porter et al. 2014; Klauke et al.
2015; Belderbos et al. 2017), revealing valuable insights into
clone-specific phenotypic behaviors in response to drugs (Bhang
et al. 2015; Hata et al. 2016; Lan et al. 2017; Bell et al. 2019; Caiado
et al. 2019; Merino et al. 2019; Seth et al. 2019; Feldman et al.
2020), as well as phenomena such as cell plasticity (Lan et al.
2017; Mathis et al. 2017), postsurgery recurrence (Echeverria
et al. 2018; Roh et al. 2018; Merino et al. 2019; Rehman et al.
2021), andmetastatic potential (Wagenblast et al. 2015; Echeverria
et al. 2018; Merino et al. 2019). Besides these studies, the work by
Akimov et al. (2020) addressed a critical gap in lineage tracing stud-
ies by recognizing the lack of benchmarks to validate clonal
dynamics information generated from high-throughput sequenc-
ing. To overcome this limitation, the authors employed mixtures
of DNA-barcoded cell pools, creating a benchmark read count
data set. This data set served as a crucial foundation for statistically
inferring differentially responding clones.

Despite the progress in DNA barcoding studies involving tar-
geted DNA-seq for barcode quantification and bulk RNA-seq for
gene expression analysis, it is essential to acknowledge that con-
ventional barcode libraries, not compatible with single-cell
sequencing platforms, lack the ability to trace clonal diversity at
the individual cell level. scLT has emerged as a revolutionary
tool in cancer research, allowing the capability to track the fate
of individual cells and their progeny over time, and measure the
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transcriptome of each cell for mechanism study in addition to its
clonal identifier (Morgan et al. 2021; Serrano et al. 2022). This ap-
proach provides unprecedented insights into tumor heterogenei-
ty, clonal evolution, and the dynamic processes that drive cancer
progression.

Currently, cancer research using scLT is largely focusing on
heterogeneous cell behaviors in cancer progression, treatment re-
sponse, and metastasis, as summarized in Figure 2. It has been ap-
plied to investigate markers for melanoma drug resistance (Emert
et al. 2021), cancer cell origin and stem cell hierarchies in rhabdo-
myosarcoma (Wei et al. 2022), clonal dynamics and drug resis-
tance in chronic leukemia lymphoma (CLL) (Gutierrez et al.
2021), clonal behavior in patient-derived xenografts of metastatic
triple-negative breast cancer (TNBC) (Merino et al. 2019), cycling
persister cells in lung cancer drug resistance (Oren et al. 2021),
nonheritable genetic determinants in clonal dynamics within
acute myeloid leukemia (AML) (Fennell et al. 2022), and cell plas-
ticity (Table 1; Shlyakhtina et al. 2023).

Emert et al. (2021) introduced Rewind, a novel methodology
that integrates genetic barcoding with RNA FISH (fluorescence in
situ hybridization) to evaluate rare phenotypic cell events. By em-
ploying this approach, they identified ITGA3 as a novel resistance
marker in BRAF600Emutatedmelanoma cells, through tracing the
emergence of vemurafenib-resistant cells back to their naïve coun-
terparts (Emert et al. 2021). Wei et al. (2022) applied the LARRY
barcoding system (Weinreb et al. 2020) to label and trace rhabdo-
myosarcoma cells (multiplicity of infection [MOI] of 0.3). Through
the integration with scRNA-seq, they observed that LARRY bar-
codes were present in 26.4%–47.8% of all scRNA-sequenced
cells, with ∼16% of barcodes being shared between parental and
daughter cells under various conditions. They concluded thatmes-
enchymal-enriched cells exhibit limited proliferation and possess
the capacity to generate cells of diverse states.

Lineage tracing has proven effective in delineating distinct
clonal subpopulations in CLL through the utilization of
ClonMapper (Gutierrez et al. 2021). Thismultifunctional barcod-

ing technology seamlessly combines DNA barcoding with
scRNA-seq through the expression of gRNA barcodes based on a
modified CROP-seq vector and facilitates clonal isolation. This
integrated approach enables the identification and characteriza-
tion of unique clonal subsets based on transcriptomic profiles in
CLL. By directly measuring clonal diversification and capturing
durable transcriptional signatures of subpopulations, this meth-
od retrieved clones from cell cultures before, during, and after
treatment (Gutierrez et al. 2021). The study revealed that clones,
which were enriched following fludarabine-based chemothera-
py, displayed heightened levels of NOTCH, WNT, and CXCR4
signaling in their pretreatment state. In comparison to nonex-
panding clones, these enriched clones exhibited a more rapid re-
covery and enhanced proliferation after the administration of
chemotherapy. This highlights the efficacy of the lineage bar-
code system in tracing developmental dynamics, emphasizing
its capability to distinguish and monitor the response of cell
clones to therapeutic interventions (Gutierrez et al. 2021;
Morgan et al. 2021).

Merino et al. (2019) employed barcoding to unveil complex
clonal behavior in patient-derived xenografts of metastatic
TNBC. Cells from drug-naive TNBC patient-derived xenograft tu-
mors were barcoded with a lentivirus library containing semiran-
dom DNA barcodes of 98 bp and a GFP reporter. The virus
concentrationwas adjusted to achieve 10%–20%GFP+ in all trans-
fected PDX cells (MOI of 0.1–0.2) (Merino et al. 2019). Barcoded
cells were then utilized for clonal assessment both longitudinally,
under different conditions, and across multiple tissue sites in
mouse models. The study suggested that the majority of dissemi-
nated primary tumor cells, “shedder,” lacked the capacity to
“seed” in secondary sites, and cisplatin treatment had a minor im-
pact on clonal diversity in the relapsed tumor.

In theWatermelon study (Oren et al. 2021), anmNeonGreen
proteinwas used as a reporter for theDNAbarcode, which is insert-
ed on the 3′ UTR of this protein. Similarly, a MOI of 0.3 was uti-
lized. By tracking cells under drug treatment, the study identified
a unique proliferative persister lineage (cycling persister) that arises
early in the drug treatment process as drug-induced transiently re-
sistant cells. Unlike the majority of persisters (noncycling persist-
ers) in lung cancer cells with EGFR mutation undergoing EGFR
tyrosine kinase inhibitor (Osimertinib) treatment, this rare lineage
not only emerges but also continues to proliferate under drug pres-
sure instead of remaining arrested. scRNA-seq indicated that
cycling andnoncycling persister cells follow distinct transcription-
al trajectories, and cell fate was committed before drug treatment.
These findings were further confirmed in other Watermelonmod-
els (Oren et al. 2021), including HER2-driven breast cancer and
BRAF-driven melanoma and colorectal cell lines.

The SPLINTR (single-cell profiling and lineage tracing) ap-
proach was recently employed to investigate nonheritable genetic
determinants in clonal dynamics within AML, in which the onco-
genic fusions of the MLL1 gene is identified as a key driver of
aggressive malignancy (Fennell et al. 2022). Through the applica-
tion of sequential labeling with expressed DNA barcodes, coupled
with scRNA-seq, the study revealed that the dominance of malig-
nant clones is intrinsically tied to the cell. This heritable property
is facilitated by the repression of antigen presentation and the in-
creased expression of the secretory leukocyte peptidase inhibitor
(Slpi) gene, which was genetically verified in the study. The re-
search further demonstrated that increased transcriptional
heterogeneity plays a crucial role in enabling clonal fitness across
diverse tissues and immune microenvironments, as well as in the

Figure 2. Illustration of tumor heterogeneity summarized based on find-
ings from scLT studies. The primary tumor comprises various cell popula-
tions, including tumor-initiating cells capable of initiating a new tumor
upon transplantation, metastasis-initiating cells (seeder) with the ability to
establish secondary tumors in different sites, drug-resistant cells further clas-
sified into cycling persisters (drug-induced transiently resistant proliferative
cells) and noncycling persisters (preexisting resistant cells), and drug-sensi-
tive cells susceptible to elimination during treatment. Cell fate is influenced
by a combination of genetic and nongenetic information, and it exhibits dy-
namic changes, known as cell plasticity, under specific circumstances. scLT
studies have revealed the existence of “shedder,” “seeder,” “cycling persist-
ers,” and “noncycling persisters.”
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context of clonal competition. These insights into nongenetic
transcriptional processes provide valuable information that may
shape future therapeutic strategies for AML (Fennell et al. 2022).

BdLT-Seq, as employed in a study by Shlyakhtina et al. (2023),
represents a novel approach for studying cell plasticity over ex-
tended periods of cell culture. In contrast to commonly used lenti-
virus DNA barcode libraries, this study introduced a library of
engineered episomes. Each episome carries a unique barcode,
which is encoded in the 3′ UTR of a reporter gene (Shlyakhtina
et al. 2023). These episomes have the advantage of being stably
maintained and expressed within transfected cells, facilitating
both short- and long-term lineage tracing. However, a distinctive
feature of this system is the random inheritance of episomes by
daughter cells during cell division. This random inheritance results
in a decay in the number of uniquely barcoded episomes present in
cells downstream from any given lineage (Shlyakhtina et al. 2023).
This distinctive barcode-based fingerprint offers a valuable tool for
exploring and understanding cell lineage dynamics and plasticity
over extended periods of cell culture. This study revealed insightful
findings, indicating that cell transcriptome states are not only in-
herited but also dynamically reshaped based on constrained rules
encoded within the cell lineage. These were observed under vari-
ous conditions, including basal growth conditions, upon onco-
gene activation, and throughout the process of reversible
resistance to therapeutic cues. Importantly, this dynamic reshap-
ing of cell transcriptomes allows for the adjustment of phenotypic
output, leading to intraclonal nongenetic diversity (Shlyakhtina
et al. 2023).

The development of drug resistance plays a pivotal role in
cancer therapy. To address this challenge, Johnson et al. (2020)
constructed a mathematics framework aimed at predicting the re-
sponsiveness of cells to treatment utilizing snapshots of lineage-
traced scRNA-seq data. Employing the COLBERT (Control of
Lineages by Barcode Enabled Recombinant Transcription) barcod-
ing system (Al’Khafaji et al. 2018) to uniquely tag and longitudi-
nally track the cells, the researchers identified clones that
exhibited significant decreases or enrichments after treatment.
Subsequently, a classifier was developed based on the pretreatment
transcriptomics of these identified cells. This classifier was then
utilized to estimate the phenotypic composition of cells at various
time points during the treatment response. Thismechanisticmod-
el proposed incorporated inputs such as the relative fractions of
different phenotypes and distinct longitudinal measurements of
cell numbers, providing a comprehensive basis for predicting ther-
apeutic responses or resistance. This innovativemethodology con-
tributes to advancing our understanding of cancer treatment
dynamics and holds promise for enhancing the efficacy of thera-
peutic interventions.

In summary, the highlighted scLT studies reveal substantial
heterogeneity among cancer cells, encompassing distinct subtypes
such as tumor-initiating cells, metastasis-initiation cells, drug-sen-
sitive cells, and drug-resistant cells as illustrated in Figure 2. These
insights, which are often not achievable with traditional methods,
underscore the complexity and diversity of cancer cell behaviors
within tumors. Within the drug-resistant category, cells can be
classified as cycling persister cells and noncycling persister cells.
Moreover, cell plasticity allows for dynamic transitions in cell stage
and phenotype in response to different conditions. The determi-
nation of cell fate and behaviors involves a complex interplay of
both genetic and nongenetic information. The intricate interplay
of various cell types and their dynamic responses to therapeutic in-
terventions poses ongoing challenges in fully understanding and

effectively treating cancer. Continued research efforts and ad-
vancements in technologies like scLT are essential for refining
our comprehension of cancer heterogeneity and devising targeted
therapeutic strategies to combat this complex disease.

Single-cell lineage tracing experiments

Experimental design plays a crucial role in scLT experiments as it
directly impacts the accuracy, reliability, and interpretability of
the obtained results. Factors such as the selection of the barcode
system, the method of barcode introduction, and the inclusion
of appropriate controls have a significant impact on the ability
to accurately capture and analyze clonal dynamics. Crucial consid-
erations in barcoding studies encompass barcode library diversity,
the experimental timeline, starting cell numbers, MOI, barcode
stability, cell culture conditions, scRNA-seq techniques, quality
control, filtering, clone calling, and barcode recovery, etc.
Thoughtful attention to these factors ensures the success and accu-
rate interpretation of lineage tracing experiments. Rigorous exper-
imental design is particularly essential when unraveling complex
biological phenomena, including the identification of rare sub-
populations, the assessment of clonal diversity, and the explora-
tion of dynamic cellular behaviors. In the following sections, we
will discuss the key factors contributing to a successful single-cell
viral DNA barcoding experiment. A typical design and workflow
of a single-cell viral DNA barcoding experiment is depicted in Fig-
ure 3.

DNA barcode library diversity

The most employed DNA barcodes typically consist of a fluores-
cent protein tag such as GFP followed by a DNA segment with
varying numbers of nucleotides. The florescence signal is used to
indicate the presence of barcodes and to evaluate the transduction
efficiency. These barcodes are integrated into lentivirus plasmids
for efficient delivery and expression within target cells (Figs. 1,
3). When designing the DNA sequence, it is crucial to consider a
balance—long enough to ensure a diverse library based on the the-
oretical size of 4N (N=number of nucleotides), but not too long to
surpass sequencing capacity (Bramlett et al. 2020). A longer DNA
segment correlates with a larger diversity of the barcode library,
which enhances the ability to uniquely label a greater number of
cells. However, this increased length can result in higher costs
for library synthesis and pose sequencing challenges, such as ele-
vated sequencing errors and data complexity. Unlike the majority
of DNA barcode tracing studies with random DNA sequences,
which typically employ barcode lengths ranging from ∼20 to 32
bp (Table 1), the CellTagging library utilizes DNA barcodes that
are notably shorter, with a length of only 8 bp (Biddy et al.
2018). Semirandom barcode libraries like SPLINTR (Fennell et al.
2022) typically use longer DNA sequences as shown in Table 1.

Before introducing the lentiviral barcode library into cells of
interest, it is imperative to evaluate viral titer and barcode diversity
in cell lines. This involves transduction, barcode extraction, and
sequencing. The sequencing results establish reference libraries
for downstream bioinformatics analysis (Bramlett et al. 2020).
Library diversity is essential to minimize the likelihood of labeling
more than one cell with the same barcode. Ideally, each barcode
should represent a single-cell clone, and the library’s diversity de-
termines the number of unique clones trackable in a single exper-
iment. Therefore, optimizing the transfection step, including the
starting cell number and viral titer, is crucial for enhancing
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barcode diversity (Bramlett et al. 2020). Bramlett et al. (2020) sug-
gested that a library of 40,000–50,000 barcodes typically allows
tracking of ∼1000 cells with a >95% probability, i.e., >95% of the
barcodes represent single cells. Barcode libraries that are compati-
ble with scRNA-seq, such as LARRY (Weinreb et al. 2020),
ClonMapper (Gutierrez et al. 2021), and Watermelon (Oren et al.
2021) normally contain millions of unique barcodes, allowing
for labeling and tracing thousands even millions of cells simulta-
neously (Morgan et al. 2021; VanHorn and Morris 2021; Serrano
et al. 2022).

Viral barcoding scLT cell culture parameters

In a standard lineage tracing experiment, cells are infected with
lentivirus barcodes (Table 1; Fig. 3). Following infection, typically
after 48–72 h to allow for barcode integration, cells are subjected to
FACS or antibiotic selection processes to isolate barcoded cells. The
choice between these selection methods depends on the specific
requirements of the experiment. While FACS enables the isolation
of cells based on their fluorescence reporter transgene expression,
antibiotic selection provides a convenient and efficient means to
select cells with integrated barcodes. It is worth noting that antibi-
otic selectionmay introduce additional stress to cell growth, and as
a result, the use of a fluorescence reporter transgene is a common

preference, minimizing potential adverse effects on cellular health
during the isolation process.

Most published studies chose a very lowMOI, typically rang-
ing from 0.1 to 0.5. This low MOI ensures that each cell receives
only one unique barcode. This strategic approach enhances the
clarity and unambiguity in identifying and tracing clone relation-
ships within the experimental setup. In contrast, studies using the
CellTagging approach used a highMOI of 3–4 to allow formultiple
barcode combinations (Biddy et al. 2018; VanHorn and Morris
2021). The initially sorted barcoded cells determine the initial bar-
code diversity and sample clonality. This step is crucial for isolat-
ing cells that have successfully incorporated the barcodes,
facilitating the subsequent analysis, and investigation of their
unique characteristics or responses. These cells are then allowed
to proliferate to attain sufficient representation of each individual
cell. Subsequently, the cell pool is divided into multiple samples
using the “Clone-splitting experiment” approach (Serrano et al.
2022), with one portion designated as the parental control to es-
tablish baseline barcode representation. The remaining samples
are used for specific treatments or challenges, such as drug admin-
istration or xenografting. At the conclusion of the experimental
period, the treated cells are harvested and prepared for scRNA-
seq along with the baseline control cells (Fig. 3). The barcodes pre-
sent in these samples play a pivotal role in linking the clones back

Figure 3. Standard workflow of single-cell lentivirus barcoding lineage tracing experiment. Lentivirus barcode labeling: cells of interest are labeled with
DNA barcodes through lentivirus transfection. Cell expansion and splitting: After reaching the required cell numbers, cells are split for drug treatment or
challenges, with one portion saved as a parental control. Single-cell RNA sequencing (10x Genomics): 10x Genomics is employed for scRNA-seq, where
CellTag sequence can be captured from the 3′ UTR of fluorescence gene similar to other genes. This step involves Gel Bead Emulsions, reverse transcription,
amplification, and sequencing. Computational analysis: DNA barcodes are used in computational analysis to connect cell fate after treatment or challenge to
its origin based on clone calling and lineage tree inference. For example, the summarizationmatrix and the lineage tree show that cells A, B, and C have the
same barcodes and they are inferred to have a closer relationship from lineage analysis, so do cells E, F, and G.Molecular mechanism investigation: Single-cell
transcriptomics data are utilized to understand the molecular mechanisms underlying fate determination.
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to their cellular origin. This linkage allows for the establishment of
clonal relationships, thereby enabling the investigation of clonal
differences, heterogeneity, or responses to diverse challenges at a
single-cell resolution.

Presently, the widely adopted scRNA-seq technology is the
10x Chromium 3′ kit (Table 1). However, the sequencing capacity
of this technology is limited to ∼10,000 cells per sample.
Additionally, the high cost associated with scRNA-seq poses a lim-
itation on the number of samples that can be feasibly sequenced to
cover the barcode diversity within a single experiment. This limi-
tation underscores the importance of carefully determining the
initial cell count,MOI, cell cycle, culture duration, and splitting in-
tervals in experimental design. The definition of MOI and expla-
nation of how the number of cells with a positive DNA barcode
is calculated based on the MOI and the initial number of cells is il-
lustrated in Box 1.With the combination of these factors, wewant
to ensure the number of tracked cells is sufficient to capture the
diversity of the population and the dynamics of lineage progres-
sion. If the number is too low, we may miss important cellular
events or rare lineages.

Considering the heterogeneity of cell fates within the popula-
tion, tracking a larger number of cells may be necessary to compre-
hensively understand lineage dynamics. In scenarios involving
rare events, such as the study of tumor-initiating cells or preexist-
ing drug-resistant cells, it becomes crucial to ensure an ample start-
ing cell population. This precaution is necessary to contain a
sufficient number of these rare cells, considering that studies
across various cancer types have reported the percentage of these
rare cells ranging from <1% to ∼20% (Serrano et al. 2022). As illus-
trated in Box 1, if we employ a MOI of 0.1 to infect 50,000 cancer
cells, we can anticipate obtaining ∼4700 cells with unique positive
DNA barcodes after the initial cell sorting.Within this population,
there would be an expected presence of ∼47–940 rare preexisting
drug-resistant cells. To set up three treatment conditions for study-
ing cell responses, a potential strategy involves allowing the initial-
ly labeled cells to proliferate for approximately four generations,
reaching ∼16 cells per clone and a total of ∼75,000 cells.
Subsequently, the cells can be split into four samples (∼19,000
cells per sample and approximately four replicates per clone),
with one sample serving as a baseline control to assess cell states

and barcode diversity using 10x scRNA-seq. 19,000 cells may re-
quire two 10x sequencing runs to cover all the cells adequately.
However, considering potential cell loss during subsequent prepa-
ration steps such as further cell sorting and later droplet encapsu-
lation for sequencing, it is reasonable to conclude that one single
sequencing lane may be sufficient to capture the clonal informa-
tion from the entire cell population. This careful consideration en-
sures cost-effectiveness while maintaining the robustness of the
sequencing results.

Following treatment, an anticipated outcome is a significant
reduction in the number of unique barcodes. This reduction pro-
vides a means to track the clones that have undergone various
treatments back to the baseline control, enabling the identifica-
tion of rare cells that may have sustained different treatment con-
ditions. This approach not only allows for the assessment of
barcode diversity but also facilitates a comprehensive investigation
of cell responses and associated molecular mechanisms under dis-
tinct treatment conditions. By comparing the barcode profiles
posttreatment to the baseline, researchers can gain valuable in-
sights into the behavior and dynamics of rare cell populations in
response to specific challenges as demonstrated in previous studies
(Emert et al. 2021; Fennell et al. 2022; Shlyakhtina et al. 2023).

Clone calling in scLT

In current scLT technologies, the capture of DNAbarcode sequenc-
es typically relies on 3′ end single-cell sequencing. In studies utiliz-
ing LARRY, scRNA-seq is employed with a customized procedure
called inDrops that includes a specific step to amplify barcodes
containing mRNA transcripts (Rodriguez-Fraticelli et al. 2020;
Weinreb et al. 2020). However, other studies (Biddy et al. 2018;
Fennell et al. 2022; Ratz et al. 2022; Shlyakhtina et al. 2023) em-
ploying the 10x Chromium 3′ kit are not compatible with this spe-
cific amplification step in their procedures, as the kit’s design may
not allow for such customization. Unlike in the customized se-
quencing where the enriched barcodes have a higher probability
of being captured, in standard 10x Chromium sequencing, the
probability of capturing the DNA barcode inserted in the 3′ UTR
of the fluorescence gene is similar to that of other genes. This like-
lihood depends on the expression abundance of the fluorescence

Box 1. Definition of MOI and calculation of barcode positive cell numbers

MOI is defined as the ratio of infectious viruses to cells in a cell culture. In the case of DNA barcoding, it indicates the number of unique
barcodes in a specific infected cell. Assuming the number of lentiviruses (barcodes) infecting a cell follows a random distribution, the number of
viruses infecting each cell can be calculated from the Poisson distribution:

P(n) = (mn × e−m)
n!

where P(n) is the probability that a cell will be infected with exactly n viruses, and m is the average number of viruses per cell (i.e., MOI)
(Shabram and Aguilar-Cordova 2000). If we infect 1 million cells at an MOI of 0.1 in DNA barcoding, we would expect that P(0) = e−0.1 = 90.5%
of cells are not infected, P(1) = 0.1 × 0.9 = 9.05% of cells have 1 viral particle, P(>1) = 0.45% of cells have >1 viral particles. Therefore, an MOI of
0.1 enables over 95% of labeled cells having a unique barcode.
Inversely, the number of cells with a positive DNA barcode can be estimated using the following formula:

Kpositive = Ninitial × (1− e−m)

where Kpositive is the number of positively barcoded cells, Ninitial is the initial number of target cells, and m is the MOI.
For instance, if we start with 50,000 cells and use an MOI of 0.1, the expected number of cells with unique positive DNA barcodes can be
calculated as follows:

Kpositive = 50,000× (1− e−0.1) ≈ 50,000× 0.0952 ≈ 4760

Zhang et al.

2156 Genome Research
www.genome.org



genewithin a specific cell. In both the customized sequencing and
10x 3′ Chromium single-cell 3′ scRNA-seq, individual cells are
emulsified with Gel Beads to form GEMs (Gel Beads in
Emulsions) during library preparation (Fig. 3). Each GEM contains
a single cell, a single Gel Bead, and the reverse transcriptase re-
agents. GEMs are generated in parallel within the microfluidic
channels of the chip, allowing for the simultaneous processing
of hundreds to tens of thousands of single cells. Within each
GEM reaction vesicle, a single cell undergoes lysis, the Gel Bead
is dissolved to release identically barcoded reverse transcriptase ol-
igonucleotides into solution, and reverse transcription of polyade-
nylated mRNA occurs. Consequently, all cDNAs from a single cell
will share the same barcode (Cell-BC), facilitating the mapping of
sequencing reads back to their original single cells of origin. In ad-
dition to the cell barcode, molecules in each cell also are tagged
with a unique molecular identifier (UMI). The UMI serves as a
unique tag for individual mRNA molecules, allowing for precise
quantification of gene expression within a specific cell. In addi-
tion, the barcoded cells will have a unique lineage barcode
(Lineage-BC), allowing lineage tracing between offspring and pa-
rental cells.

In published scLT studies, researchers often describe custom-
ized pipelines for the analysis of scRNA-seq data, especially for
clone calling. These customized pipelines are tailored to the specif-
ic experimental design, the characteristics of the data generated,
and the objectives of the study. Figure 4 and Box 2 demonstrate
and explain the general steps in scLT data analysis and clone
calling.

In clone calling for scLT, assigning cells with the exact same
set of barcodes as clones is crucial. This underscores the impor-
tance of ensuring, during the initial infection step, that each cell
receives only one unique barcode. As described by Weinreb
et al., it is essential to discard cell pairs with the same Cell-BC
and Lineage-BC from different sequencing libraries. Additionally,
attention should be paid to clones that exhibit overdominance

within a single sequencing library compared to other sequencing
libraries of the same sample (Rodriguez-Fraticelli et al. 2020;
Weinreb et al. 2020). To quantify clone similarity in clone calling,
various metrics such as Hamming distance (Rodriguez-Fraticelli
et al. 2020; Weinreb et al. 2020; Ratz et al. 2022), Jaccard index
(Biddy et al. 2018;Weng et al. 2024), Pearson’s correlation, or clus-
tering algorithms (Fennell et al. 2022) have been reported. These
metrics help assess the similarity or dissimilarity between clones,
providing a quantitative basis for identifying and characterizing
clonal relationships in scLT studies. During barcode calling, the
background collision rate is an important factor to consider
(McKenna et al. 2016; Weinreb and Klein 2020; Weng et al.
2024). It refers to the probability that two or more distinct cells
will be mistakenly assigned the same DNA barcode purely by
chance, rather than due to a true biological lineage relationship.
This can occur when the diversity of the barcodes is insufficient
to uniquely label each cell, especially when the number of cells ex-
ceeds the number of unique barcodes available. Therefore, barcode
diversity, the number of starting cells, and sequencing depth are
crucial factors to mitigate the risk of collision and ensure accurate
lineage tracing.

The results obtained from computational methods and anal-
yses in lineage studies should be rigorously validated. Validation is
a critical step in confirming the accuracy of lineage tracking results.
This involves benchmarking against known data sets or experi-
mental controls. By comparing the outcomes of the computation-
al methods with established ground truth information or
controlled experimental conditions, researchers can assess the re-
liability of the identified clonal relationships and validate the ef-
fectiveness of their lineage-tracking approach. Validation not
only ensures the accuracy of the results but also enhances the con-
fidence in the interpretation of clonal dynamics and relationships
within the studied biological system. It is an essential component
of the scientific rigor required in scLT studies. However, the novel-
ty of scLT technology indeed poses challenges when it comes

Figure 4. Overall steps in scLT data analysis and barcode calling. Before scRNA-seq library preparation, only cells 1–6were labeled with lineage barcodes.
scLT data can first be analyzed using routine scRNA-seq data analysis steps, such as read alignment, UMI counting and collapsing, filtering, normalization,
and clustering, including cells with and without lineage barcodes. Then, the data can be filtered based on UMI counts and lineage barcode availability to
obtain cells with cell barcodes, UMIs, and lineage barcodes. This filtered data can be further analyzed using regular scRNA-seq steps or used for lineage
analysis to construct lineage trees based on cell similarity determined by Hamming distance or other methods.
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to establishing standard training data sets or benchmarking
approaches. In many cases, data sets with a clear “ground truth”
for clonal relationships may not exist, making validation a com-
plex task (VanHorn and Morris 2021). Recently, new pipelines
are emerging to reconstruct lineages from a single round of barcod-
ing (Johnson et al. 2020; Weinreb and Klein 2020). More novel
methods are required for robust and standard analysis in future
scLT studies.

Barcode recovery in viral barcoding scLT

Barcode dropout represents a critical challenge in lineage tracing,
and various factors during the experimental process can contrib-
ute to this issue (Bramlett et al. 2020). First, the barcode dropout
can be attributed by temporal dynamics of barcode stability and
FACS sorting. Our experience indicates that the integration of
DNA barcodes tends to stabilize after 2–3 weeks after transduction.
By the third week, we noticed that ∼90% of the cells initially iden-
tified as positive during sorting at 48–72 h retained their positivity.
This emphasizes the importance of further sorting before splitting
samples, while FACS sorting could lead to a further reduction in la-
beled cell numbers. Therefore, it becomes crucial to account for
these factors when estimating cell numbers for scRNA-seq to en-
sure accurate and reliable results in downstream analyses.
Second, barcode drop out could be caused by silencing or low
expression of the barcodes, which limits the detection by scRNA-
seq that relies on the capture of expressed barcodes. This partial
detection of the barcodes is a particular issue whenmultiple, inde-
pendent barcodes are needed to comprise a complete lineage label
(VanHorn and Morris 2021). Third, cell division may cause
unequal distribution of barcodes among daughter cells that result
in the loss of barcodes in some cells, contributing to barcode drop-
outs and reduced recovery rates.

Another crucial factor contributing to barcode dropout is the
labeling and capture rate of cells within a population, especially in
the context of in vivo studies. Cell death or inadequate cell disso-
ciation can lead to failures in cell capture (VanHorn and Morris
2021). As illustrated in the TREX study (Ratz et al. 2022), only
0.51% of all initially barcoded cells were found to be present in
the tissue when Space-TREX was applied for spatial high-density
clonal tracking in mouse brain tissue. This significant loss was at-
tributed to multiple stages in the experimental process, including
the loss during tissue dissociation (10.6% of cells recovered), FACS
sorting (35%–64%of sorted cells recovered), droplet encapsulation
(50% of loaded cells recovered), as well as cloneID dropout from a
subset of sequenced cells (24%–51% containing a cloneID) (Ratz
et al. 2022). The study also provided a summary of barcode recov-
ery rates from various scLT studies, revealing a broad spectrum of

recovery rates ranging from 11% to 74%. Additionally, Biddy
et al. (2018) reported that the expression of CellTag is lost in
11 ± 2% of cells by day 28. This wide variability underscores the
diversity of experimental conditions, methodologies, and chal-
lenges associated with barcode recovery in different research
contexts. This diversity highlights the complexity of factors
influencing the success of scLT experiments. Consequently, it
emphasizes the critical need for careful consideration and optimi-
zation in experimental design to ensure reliable and meaningful
results across studies (Ratz et al. 2022).

The barcode recovery rate is significantly linked to the proba-
bility of identifying a clone at different time points or under differ-
ent treatment conditions. Weinreb et al. (2020) outlined three key
factors influencing this probability for N initially barcoded cells:

1. P(split): the probability that members of the same clone are
physically present in both fractions when cells are split for se-
quencing and replating.

2. P(detect early): the probability that cells in the fraction desig-
nated for immediate sequencing are actually detected.

3. P(detect late): the probability that cells in the replated fraction
survive cell culture/treatment and appear in the late time point
data set.

The final yield of labeled cells is then proportional to N×P
(split) ×P(detect early) ×P(detect late). Balancing the initial cell
numbers for barcoding becomes a critical consideration to avoid
an excessive number of clones that exceed the single-cell sequenc-
ing capacity, ensuring that P(detect early) ×P(detect late) does not
reach low values (Weinreb et al. 2020).

However, these parameters may not be intuitive during the
planning phase of scLT studies. Hence, optimizing initial cell num-
bers, culture duration, sample splitting time, and related sample
collection time through pilot studies is critical and highly encour-
aged to enhance barcode recovery, as well as the reliability and in-
formativeness of scLT experiments. This iterative optimization
process ensures that the experimental design aligns with the goals
of the study and maximizes the chances of successful barcode
detection.

Summary and future perspectives

Prospective genetic lineage barcoding technologies have found ex-
tensive application for simultaneously tracking and analyzing
clonal relationships in populations ranging from hundreds to mil-
lions of cells. The choice of barcode type depends on the specific
objectives of the study. Typically, viral integration barcoding offers
a vast barcoding space, allowing for the simultaneous labeling of

Box 2. ScLT data analysis and cloning calling

The first part of the analysis in scLT is similar to traditional scRNA-seq analysis before lineage barcode calling and clone calling. They typically
encompass steps such as quality control, sequence alignment, barcode demultiplexing, UMI counting, normalization, filtering, dimensionality
reduction, and clustering of gene expression data to identify different cell types and states. After this initial analysis, the lineage barcodes can be
identified and analyzed to reconstruct cell lineage and clonal relationships. In the process of calling lineage barcodes in scLT studies, cells
containing information on all triples (Cell-BC, UMI, and Lineage-BC) are extracted. To ensure the unambiguity of assigning Lineage-BC to cells,
it becomes critical to establish a cutoff for UMI read counts at this stage. This cutoff helps filter out cells with insufficient UMI counts, thereby
enhancing the reliability of lineage barcode assignments. After lineage labels are assigned to cells, the next step involves collapsing or
aggregating cells with the same Lineage-BC. Hamming distance or Jaccard distance with a threshold that measures the similarity of two cells
has been commonly used for collapsing (Rodriguez-Fraticelli et al. 2020; Weinreb et al. 2020; Weng et al. 2024). Cells within the same lineage
whose Hamming or Jaccard distance falls below the chosen threshold can be grouped together. These groups represent cells that are
considered similar in terms of their gene expression profiles and are collapsed into a single representative cell.
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thousands to millions of clones through early barcoding. Through
the integration of clonal relationships and single-cell transcrip-
tomics, scLT with viral barcoding have demonstrated remarkable
precision in uncovering cell lineages and clonal dynamics in the
realms of developmental biology and cancer heterogeneity.
Despite these advantages, there are still challenges associated
with this cutting-edge technology.

Firstly, the occurrence of barcode dropouts and a low recovery
rate poses limitations on the precision of lineage reconstruction.
This can be attributed by technical limitations in barcode insertion
and detectionmethods, genetic heterogeneity among cells leading
to variations in barcode expression efficiency, unequal segregation
of barcodes during cell division, and biological noises, among oth-
er factors. To address these challenges, novel research focusing on
refining experimental techniques, improving the design of bar-
coding systems, and developing computational methods to miti-
gate the impact of dropouts and enhance the reliability of scLT is
highly needed. Advances in technology and a deeper understand-
ing of these factors are crucial for overcoming these limitations
and improving the accuracy of lineage reconstruction in single-
cell studies. For example, to address challenges such as insufficient
expression of barcodes in specific cells, an effective strategy may
involve integrating a single-cell multiomics approach, such as
G&T-seq. This innovative technique allows for the simultaneous
detection of DNA and RNA at a genome-wide scale within the
same cell. Embracing such an approach holds great promise in en-
hancing barcode detection rates and overcoming limitations asso-
ciated with inadequate transgene expression in certain cells.

Besides the high dropout rates, another challenge in prospec-
tive scLT is the ability to trace cells throughout a long period, either
with one-time or multiple instances of static barcode insertion or
with the continuous generation of new barcodes. Most studies us-
ing static barcodes add these barcodes at the initial starting time
point. This approach involves introducing a unique DNA barcode
or barcode combination into each cell at the beginning of the ex-
periment, which remains unchanged as the cells proliferate and
differentiate over time (Rodriguez-Fraticelli et al. 2020; Weinreb
et al. 2020; Gutierrez et al. 2021; Fennell et al. 2022; Ratz et al.
2022). However, this method has limitations in long-term studies,
as it does not capture dynamic changes in cell lineage or allow for
the identification of newcell populations that emerge later. Several
studies have introduced additional static DNAbarcodes to label the
initially labeled cells at a later time point, such as in studies per-
formed using CellTagging (Biddy et al. 2018; Kong et al. 2020).
However, selecting the right time or interval for later time tagging
is a significant challenge (Chen et al. 2022). The timing of barcode
introduction is crucial because it needs to be aligned with specific
biological events of interest, such as the onset of differentiation, re-
sponse to a treatment, or emergence of a particular cell population
(Wagner and Klein 2020). Tagging too early may miss critical later
events, while tagging too late might not capture the early lineage
relationships. Therefore, optimizing the timing for adding DNA
barcodes at a later time point for an additional layer of cell tracking
requires a deep understanding of the biological system and careful
experimental design to ensure that themost informative stages are
captured. In contrast, methods that continuously generate new
barcodes throughout the experiment can provide a more detailed
and dynamic picture of cell lineage relationships. These approach-
es, such as CRISPR-based lineage tracing (Alemany et al. 2018;
Spanjaard et al. 2018; Chan et al. 2019; McKenna and Gagnon
2019; Quinn et al. 2021; Lin et al. 2023), introduce newmutations
at regular intervals, creating a more complex and informative bar-

code pattern that reflects ongoing cellular events. This continuous
barcoding can help track cell divisions, migrations, and differenti-
ation processes more accurately, but it also introduces additional
complexity in data analysis and interpretation.

A third challenge in the field is the absence of standardized
benchmarking data sets and computational methods, complicat-
ing the validation of scLT results. The novelty of this technology
presents difficulties in establishing clear benchmarks or ground
truth data for assessing accuracy. Many studies involving viral in-
tegration barcodes develop custom pipelines tailored to their spe-
cific data. For example, Kong et al. (2020) built an analytical
pipeline to study lineage hierarchies for their barcoding technique
called CellTagging, which employed several rounds of lentivirus
infections to achieve sequential barcoding. Weinreb and Klein
(2020) developed a pipeline for analyzing lineage barcoding exper-
iments in hematopoiesis. LineageOT was developed for inferring
developmental trajectories from snapshots of both cell lineage
and cell state (Forrow and Schiebinger 2021), and Cospar was de-
veloped to study clonal dynamics (Wang et al. 2022). Unfortunate-
ly, these customized in-house pipelines are often user-unfriendly,
hindering the ability to compare results across different studies.
This limitation constrains the broader expansion of barcoding
and clonal tracking experiments (Lyne et al. 2018). In response
to this challenge, two R-based programs, i.e., genBaRcode (Thie-
lecke et al. 2020) and barcodetrackR (Espinoza et al. 2021), have
been introduced to establish standardized data analysis proce-
dures. GenBaRcode was developed to facilitate routine barcode
data analysis by offering features such as barcode sequence identi-
fication, abundance quantificationwith error correction, and visu-
alization functions. Moreover, it provides a user-friendly graphical
user interface, catering to those less experienced in R, to conduct
analyses effectively (Thielecke et al. 2020). BarcodetrackR incorpo-
rates a range of tools designed for the comprehensive analysis and
visualization of clonal tracking data, especially for exploring longi-
tudinal clonal patterns and lineage relationships in clonal tracking
studies involving hematopoietic stemandprogenitor cells (HSPCs)
(Espinoza et al. 2021). It is important to note, however, that nei-
ther program was developed for scLT data. Fueled by the
CRISPR–Cas9 genome editing technology, tremendous recent ad-
vances in computational program development have been ob-
served for CRISPR-based scLT, focusing on tree reconstruction.
Some programs are based on observed edited barcodes only, such
as distance-based DCLEAR (Gong et al. 2022), machine-learning-
based AMbeRland (Gong et al. 2021; Chen et al. 2022), maxi-
mum-parsimony-based Cassiopeia (Jones et al. 2020), and Startle
(Sashittal et al. 2023). Some recent programs can simultaneously
integrate lineage tracing and transcriptome data for lineage tree in-
ference, such as neighbor-joining andmaximum-likelihood-based
LinRace (Pan et al. 2023). Additionally, the maximum-likelihood-
based framework LinTIMaT (Zafar et al. 2020) can integrate both
mutational and transcriptional data for reconstructing lineage
trees. Despite these advances, there is a considerable demand for
computational programs tailored to ensure standardization and ro-
bust analysis of scLT data, especially for integrating DNA barcode
data analysis.

Finally, the existing scLT methods are primarily designed for
compatibility with scRNA-seq platforms, and they often lack the
capacity to capture spatial information. This limitation hinders a
comprehensive understanding of complex gene regulatory net-
works at the single-cell level and impedes the exploration of the
spatial context in which clonal dynamics unfold within tissues
or organs. The development of novel barcode libraries holds the
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promise of enabling barcode detection in single-cell multiomics
and spatial transcriptomic data sets. In a recent study, Jindal
et al. (2023) applied CellTag-multi, a technique for capturing her-
itable random barcodes expressed as polyadenylated transcripts in
both scRNA-seq and single-cell Assay for Transposase Accessible
Chromatin sequencing (scATAC-seq). This method enables inde-
pendent clonal tracking of transcriptional and epigenomic cell
states. Additionally, Ratz et al. (2022) developed Space-TREX, a
method grounded in spatial transcriptomics, facilitating the con-
current profiling of spatial gene and protein expression along
with clonal barcodes in the same tissue section. These studies
mark a significant advancement, opening new avenues for lineage
barcode research.

In conclusion, the evolving landscape of scLT represents a dy-
namic frontier in cellular biology. The integration with innovative
technologies, such as single-cell multiomics and spatial transcrip-
tomics, has not only addressed existing limitations but has also un-
veiled unprecedented opportunities for unraveling intricate clonal
dynamics at both the molecular and spatial levels. As we continue
to refine methodologies and expand our toolkit, the path forward
holds great promise for deeper insights into cellular differentia-
tion, tissue development, and disease progression, ultimately
shaping the future of scLT research. Recognizing current gaps in
knowledge, future investigations should focus on advancing com-
putational tools, developing novel barcode libraries, and integrat-
ing multiomics approaches and spatial transcriptomics. These
endeavors will undoubtedly propel our understanding further,
opening new frontiers in the exploration of cellular heterogeneity
and dynamic processes.
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