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Mangrove forests are distributed in the inter-tidal region between the sea and the land in 

the tropical and subtropical regions of the world largely between 30° N and 30° S latitude. 

The total mangrove forest area of the world in the year 2000 was 137,760 km2 in 118 

countries and territories, accounting for less than 1% of total tropical forests of the world 

(Figure 1) [1]. Prior to this study, accurate, up-to-date, and reliable information on mangrove 

distribution was not available. The estimates of world mangroves varied from ~110,000 to 

240,000 km2 [1].

Mangrove forests provide important ecosystem goods and services for human well-being. 

They are one of the most productive and biologically complex ecosystems in the world. 

Recent findings suggest that mangroves annually sequester two to four times more carbon 

compared to mature tropical forests, and store three to four times more carbon per equivalent 

area than tropic forests.

The protective role of mangrove forests from natural disasters is well recognized. Mangrove 

forests received special attention after the Asian Tsunami of 2004 and recent natural 

disasters such as hurricanes and cyclones.

Mangroves are in a constant flux due to both natural and anthropogenic forces. The 

forests have been declining at a faster rate than inland tropical forests and coral reefs. 

Anthropogenic causes are responsible for mangrove destruction at present, but relative sea-

level rise could be the greatest threat to mangroves in the future. The continued decline of 

the forests is caused by conversion to agriculture, aquaculture, tourism, urban development, 

and overexploitation. Predictions suggest that 30–40% of coastal wetlands and 100% of 

mangrove forest functionality could be lost in the next 100 years if the present rate of loss 

continues. Therefore, important ecosystem goods and services (e.g., natural barrier, carbon 

sequestration, biodiversity) provided by mangrove forests will be diminished or lost.
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Despite the importance of mangrove forests, reliable, accurate, and timely information on 

mangrove forests of the world is not available. Mangroves possess a very distinct spectral 

signature in remotely sensed data, particularly in the spectral range corresponding visible 

red, near infrared, and mid infrared, thus making it easier to classify compared to other 

land cover types. Advancement in remote sensing with the availability of higher spatial, 

spectral, and temporal resolution and availability of historical remote sensing data provides 

an opportunity to better characterize, map, and monitor mangrove forests.

Recent advancement in remote sensing data availability, image-processing methodologies, 

computing and information technology, and human resources development have provided an 

opportunity to observe and monitor mangroves from local to global scales on a consistent 

and regular basis. Spectral and spatial resolution of remote sensing data and their availability 

has improved, making it possible to observe and monitor mangroves with unprecedented 

spatial and thematic detail. Novel remote sensing platforms, such as unmanned aerial 

vehicles, and emerging sensors, such as Fourier transform infrared spectroscopy and LiDAR, 

can now be used for mangrove monitoring. Furthermore, it is now possible to store and 

analyze large volumes of data using cloud computing.

High quality contributions emphasizing (but not limited to) the topic areas listed below were 

solicited for the special issue:

• Application of aerial ground remote sensing, photography, multi-spectral, multi-

temporal and multi-resolution, satellite data, synthetic aperture radar (SAR) data, 

hyperspectral data, and LiDAR data.

• Application of advanced image pre-processing for geometric, radiometric, and 

atmospheric correction, cloud removal, image mosaicking

• Application of advanced image classification and validation techniques including 

supervised and unsupervised classification

• Application of remote sensing to derive spatio-temporal information on 

mangrove forests distribution, species discrimination, forest density, forest 

health, mangrove expansion and contraction, and other ongoing changes in 

mangrove ecosystems

In the last decade or so, significant improvement has been achieved in terms of 

remote sensing data availability, classification methodologies, computing infrastructure, and 

availability of expertise. We now have a large amount of data in need of the integration 

to answer critical science questions. To accomplish this requires the implementation of 

automated image pre-processing and classification approaches (Figure 2). At present, 

not everything can be automated, but many steps including pre-processing that normally 

constitute 50–60% of project time can be automated.

Pre-processing of satellite data should be centralized, whereas classification and image 

interpretation can be decentralized (Figure 3). However, there should be an inflow of 

information from centralized to local levels and vice versa.
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The recent trend has been to perform image processing using cloud computing such 

as Google Earth Engine (GEE) and Amazon Web Services (AWS). Using parallel 

computing, users will have unlimited computer processing capabilities. Moreover, code 

and classification algorithms can be shared and discussed in the shared platform. The few 

disadvantages include a lack of full control of the cloud-computing platform, cost, and the 

fact that documents are not available or fully explained in some cases.

A brief summary of the twelve papers published in this special issue are presented below.

Younes [2] explored and developed a novel, data-driven approach to extract plant phenology 

of six different mangrove forests across Australia. They used Landsat imagery and 

Generalized Additive Models (GAMs) to derive phenology. They found that the Enhanced 

Vegetation Index (EVI) is directly related to leaf production rate, leaf gain, and net leaf 

production. Leaf production rate was verified using in-situ data, but the leaf gain and net 

leaf production was verified using published literature data. The authors also found that the 

EVI has a two-to-three-month lag time to respond to leaf gain in most cases. The paper 

concluded that satellite imagery can be useful to better understand mangrove phenology.

In a paper by Yancho et al. [3], a new tool was developed called the Google Earth Engine 

Mangrove Mapping Methodology (GEEMMM) to map and monitor mangrove forests of 

the world. The GEEMMM is an “intuitive, accessible and replicable approach” developed 

primarily for non-remote sensing users including coastal managers and decision makers. The 

tool was developed in a study conducted in the mangrove forests of Myanmar and is based 

on cloud computing capabilities GEE. Both qualitative and quantitative accuracy assessment 

were performed to test the tool. The accuracy assessment shows that the tool is suitable for 

mangrove mapping and monitoring worldwide. The tool may not be that effective to map 

large mangrove areas. In addition, internet connectivity may present a challenge in running 

GEEMMM.

Darmawan et al. [4] monitored the mangrove forests before and after the 1997 forest fire, 

identified the impact of forest and predicted for the future. The authors used Landsat satellite 

data acquired in 1989, 1998, 2002, and 2015 and integrated the Markov Chain and Cellular 

Automata model to compute mangrove forest cover change from 1989 to 2015 in Ambilang 

National Park Banyuasin Regency, South Sumatra, Indonesia. The change data was used 

to predict mangrove distribution in 2028. The study showed that approximately 9.6% of 

mangrove forest in the study area decreased from 1989 to 1998 primarily due to the 1997 

forest fire. Mangrove forest has increased by 8.4% from 1998 to 2002, and 2.3% from 2002 

to 2015. Future predictions showed continued increase of mangrove forests from 2015 to 

2028 ranging from 27.4% to 31%.

Nabab et al. [5], studied the fifth largest mangrove forest of the world in Niger Delta, 

Nigeria. The forest is under immense pressure from overexploitation and degradation due 

to the oil and gas industries. The authors mapped the eight main land cover types using 

Landsat satellite data and L-band radar data of three epochs. They also examined the forest 

fragmentation of both healthy and degraded mangrove forests. The study concluded that 

mangrove forests decreased by 500 km2 while built-up increased by 1740 km2 from 1988 
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to 2013. The authors also concluded that the mangrove forests in the study was found to be 

more fragmented in 2013 compared to 1988. The major challenge in this area however, was 

the availability of cloud free images.

Toosi et al. [6] examined the applicability of multi-sensor remote sensing data to classify 

land cover classes in a mangrove ecosystem in Iran. They combined Sentinel-2 and 

WorldView-2 satellite data and classified eight land cover classes using an upscaling 

approach. The upscaling approach consists of “(i) extraction of reflectance values from 

Worldview-2 images, (ii) segmentation based on spectral and spatial features, and (iii) 

wall-to-wall prediction of the land cover based on Sentinel-2 images.” They concluded that 

the information generated could be useful for the conservation and sustainable management 

of mangrove forests in Iran.

Quang et al. [7] examined the performance of four different image classification algorithms: 

Artificial Neural Network (ANN), Decision Tree (DT), Random Forest (RF), and Support 

Vector Machine (SVM). All four classification approaches are machine learning supervised 

classification approaches. They used Landsat, SPOT-7 and Sentinel-1 satellite data to 

classify mangrove forests of Red River estuary of northern, Vietnam. The authors mapped 

mangrove forest cover change, and age and species composition. The change analysis 

showed that the mangrove forest area increased from 1975 to 2019 due to successful 

plantation and forest protection efforts led by local community. The study concluded that 

SVM was the most accurate classifier out of four classifiers tested. This study concluded that 

SVM classifier will be valuable for monitoring mangrove plantation projects.

Biswas [8] developed a new method to delineate individual mangrove patches using Aerial 

Photography with a spatial resolution of 0.08 m, acquired in January 2017. The study was 

conducted in an area located adjacent the “Everglades National Park, in Florida, USA. 

This new method utilizes marker-based watershed segmentation. This segmentation methods 

detects markers using a “vegetation index and Otssu’s automatic thresholding”. The authors 

used fourteen vegetation indices. The Vegetation Index Excess Green (ExG) without shadow 

removal produced the most accurate results to detect individual mangrove patches and to 

detect individual trees.

Zhu et al. [9] estimated the Aboveground Biomass (AGB) of mangrove plantation forests 

in China. The authors used optical and radar a data obtained from Chinese satellite and 

Unmanned Aerial Vehicle (UAV) data. The optical data obtained from Geofen-2 (GF-2), 

SAR data obtained from Geofen-3 (GF-3), and UAV-based Digital Surface Model (DSM) 

data were used to estimate AGB of Qi’ao Island, China. Random forest classifier and 

collected field plot data were used for the classification and results validation. The study 

showed highest accuracy of AGB estimation when all three optical, SAR, and DSM were 

used. The lowest accuracy was achieved when only optical data was used, higher accuracy 

was achieved when both optical and SAR data were used. The paper highlighted the 

importance of combining multi-source data to improve the classification accuracy.

Hu et al. [10] used a combination of ground inventory data, spaceborne LiDAR, optical 

imagery, climate surfaces, and topographic maps to produce a global AGB map of the world 

Giri Page 4

Remote Sens (Basel). Author manuscript; available in PMC 2025 January 02.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



for the year 2004 at 250-m resolution. Image classification was performed using random 

forest classification method. Training and validation data were obtained from published 

literature and free-access datasets. The study concluded that the average global mangrove 

“AGB density was 115.23 Mg/ha, with a standard deviation of 48.89 Mg/ha”. Total AGB 

storage of global mangrove forest was 1.52 Pg. This result was comparable to other AGB 

data of the mangrove forests of the world estimated using remotely sensed data. The new 

biomass map prepared during this study could help understand the global distribution of 

AGB at 250 m spatial resolution.

Pham et al. [11] investigated the usefulness of gradient boosting decision tree classification 

approach to estimate Above-Ground Biomass (AGB) of mangrove forests. This study was 

conducted in Can Gio Biosphere research in Vietnam. A synergistic use of optical and 

SAR data and a new gradient boosting regression technique called the extreme gradient 

boosting regression (XGBR) algorithm. The model results were verified using 121 sampling 

plot data collected during the dry season. Data fusion techniques were used to handle 

Sentinel-2 multispectral instrument (MSI) and the dual polarimetric (HH, HV) data of 

ALOS-2 PALSAR-2. Among all models, the XGBR model was the most accurate. The 

study demonstrated that the XGBR model and remotely sensed data such as Sentinel-1 and 

ALOS-2 PALSAR-2 data can accurately estimate the AGB of the study area.

Chamberlain et al. [12] combined remote sensing change analysis approach and 

conventional method of change detection to detect subtle transformations of land cover 

modification in a large estuarine region of Queensland, Australia. Landsat satellite data 

acquired in 2004, 2006, 2009, 2013, 2015 and 2017 were used for the classification and 

change analysis. Image classification was performed using supervised classification method 

and Maximum Likelihood clustering algorithm. Post classification change analysis was 

performed. Results from this study showed a steady decline (1146 ha), of mangrove from 

2004 to 2017. They found a decreasing trend in the “vegetation extent of open forest, 

fringing mangroves, estuarine wetlands, saltmarsh grass, and grazing areas, but this was 

inconsistent across the study site”. Results obtained from this study is expected to be useful 

to better understand the coastal ecosystem dynamics.

Hauser [13] used cloud computing capabilities of GEE and entire Landsat -7 and Landsat-8 

archives to compute spatio-temporal dynamics of mangrove forests and land use changes. 

This study was conducted in Ngoc Hien District, Ca Mau province in the Mekong Delta of 

Vietnam. The Classification and Regression Trees (CART) classification method was used to 

classify (1) dense mangrove forest, (2) sparse mangroves, (3) aquaculture/waterbodies, and 

(4) built-up and barren lands, land cover classes. The study revealed that the annual rate of 

deforestation in the study area from 2001 to 2019 was 0.01%. This study contributes to the 

growing body of literature dealing with dense time series satellite data and cloud computing.

The twelve papers published in this special issue use a wide variety of satellite data and 

classification approaches to answer important mangrove conservation and management 

questions. The primary objective is to improve our scientific understanding on the 

distribution and dynamics of mangrove forests in different parts of the world. These studies 

help advance our scientific understanding of how various types of remotely sensed data can 
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be utilized with different types of classification approaches to derive meaningful mangrove 

data and information in support of furthering the science needed to support a global 

monitoring effort.
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Figure 1. 
Distribution of the mangrove forests (green) of the world for the year 2000 at 30 m spatial 

resolution [1].
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Figure 2. 
Conceptual diagram of the integration of data, computing, and methods using science and 

engineering to improve our scientific understanding of mangrove forest cover change.
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Figure 3. 
Conceptual framework of pre-processing and image classification showing centralized 

versus field/ground/local level processing.
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