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Abstract

Graphical models have been widely used to explicitly capture the statistical relationships

among the variables of interest in the form of a graph. The central question in these models

is to infer significant conditional dependencies or independencies from high-dimensional

data. In the current literature, it is common to assume that the high-dimensional data come

from a homogeneous source and follow a parametric graphical model. However, in real-

world context the observed data often come from different sources and may have heteroge-

neous dependencies across the whole population. In addition, for time-dependent data,

many work has been done to estimate discrete correlation structures at each time point but

less work has been done to estimate global correlation structures over all time points. In this

work, we propose finite mixtures of functional graphical models (MFGM), which detect the

heterogeneous subgroups of the population and estimate single graph for each subgroup by

considering the correlation structures. We further design an estimation method for MFGM

using an iterative Expectation-Maximization (EM) algorithm and functional graphical lasso

(fglasso). Numerically, we demonstrate the performance of our method in simulation studies

and apply our method to high-dimensional electroencephalogram (EEG) dataset taken from

an alcoholism study.

1 Introduction

Functional data analysis (FDA) [1–4] is a rapidly developing area of statistics for data that can

be naturally viewed as a smooth curve or function. Unlike traditional methods where the basic

statistical unit is a vector of measurements, FDA treats entire functions or curves as the pri-

mary objects of analysis [5, 6]. With the development of data collection technologies that use

powerful monitoring devices and computational tools, many scientific fields are now generat-

ing increasingly complex, high-dimensional datasets [7]. Analyzing these datasets, which can

be viewed as functions, requires characterizing the relationships among numerous variables to

gain insight into underlying phenomena [8].

Graphical models have been widely used to explicitly capture the statistical relationships

between the variables of interest in the form of a graph. Recent progress in graphical modeling
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has focused on methods for modeling complex dependencies among binary variables through

Ising models [9–11] and among continuous variables through Gaussian graphical models [12–

16]. However, there has been less attention paid to functional variables, and most existing

work concentrates on estimating discrete correlation structures at individual time points

rather than global dependencies across all time points.

To address this gap, functional graphical models have been introduced to model the condi-

tional dependence structure among random functions, such as measurements over time or fre-

quency in data like electroencephalogram (EEG) or functional magnetic resonance imaging

(fMRI). These models have been estimated using various approaches, including parametric

approaches based on Gaussian assumption [17], nonparametric approaches based on the addi-

tive conditional independence or additive principal scores [18, 19], and Bayesian approaches

[20]. Recent extensions are primarily based on Gaussian assumption. A doubly functional

graphical model has been developed to deal with the case where functional data is sparsely

observed [21]. A functional copula Gaussian graphical model was proposed to deal with mar-

ginal violation of the Gaussian assumption [22]. A conditional functional graphical models

was also introduced for the graph structure that is conditioned on and thus varies with the

external variables [23]. All of these approaches assume that the multivariate functional data

come from a homogeneous source.

In contrast, many real-world scenarios involve data from heterogeneous sources, where

dependencies may vary across different groups or subpopulations. Although it is common in

graphical model literature to assume homogeneity, there has been growing interest in incorpo-

rating heterogeneity. For the continuous variables, mixtures of Gaussian graphical models and

its variants have been proposed [24, 25], while for the binary variables, mixtures of Ising

graphical models have been developed [26, 27]. Similarly, mixtures of ordinal graphical models

have been introduced for ordinal data [28].

In this paper, we propose finite mixtures of functional graphical models (MFGM) to cap-

ture the heterogeneous conditional dependence relationships in multivariate functional data.

Our method simultaneously identifies latent subgroups of the studied population and esti-

mates separate functional graphical models for each subgroup, allowing for different depen-

dency structures across the groups. To estimate the model, we adopt a penalized likelihood

approach for sparse estimation, which involves regularizing the likelihood function with a

non-smooth penalty. This creates a challenging optimization problem, especially due to the

functional nature of the data. To tackle this, we extend the framework for the functional graph-

ical model [17], assuming that the observed functional data are realizations from a Gaussian

process, and propose an effective EM algorithm that incorporates the functional graphical

lasso (fglasso) method.

2 Method

2.1 Mixtures of functional graphical models

Our proposed mixture of functional graphical models (MFGM) are generalization of mixture

of graphical models from finite vector-valued context to infinite functional context. Suppose

the functional variables g1(t), . . ., gp(t) jointly follow a p-dimensional multivariate Gaussian

process with vertex set V = 1, . . ., p and edge set E. Let K be the number of mixtures and let Gk

= (V, Ek) represents the functional graphical model in the kth subpopulation. Now our mixture

of functional graphical model can be represented as

GðXÞ ¼ p1G1ðXÞ þ p2G2ðXÞ þ � � � þ pKGKðXÞ;

where
PK

k¼1
pk ¼ 1. Therefore, the goal of MFGM is to estimate π = (π1 . . . πK) and recover
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{E1, . . ., EK} and then infer membership label of each individual via maximizing the penalized

log-likelihood of the observed functional data.

Suppose we observe gi = (gi1, . . ., gip)>, i = 1, . . ., N and for each i, gij(t), t 2 T is a realization

from a Gaussian process. The Karhunen-Loève expansion allows us to represent each func-

tional variable with

gijðtÞ ¼
X1

l¼1

aijl�jlðtÞ;

for i = 1, . . ., N and j = 1, . . ., p.

We propose to approximate gij(t) by truncating the number of bases, denoted as M, which

increases asymptotically as N!1. the M-truncated version of Karhunen-Loève expansion

would be

gijðtÞ �
XM

l¼1

aijl�jlðtÞ;

for i = 1, . . ., N and j = 1, . . ., p. Here we assume that the truncated multivariate random vector

follows mixture of multivariate Gaussian distribution and

aM
i ¼ ðða

M
i1 Þ
>
; . . . ; ðaM

ip Þ
>
Þ
>
2 RMp �

XK

k¼1

pkN ðμk;ΘkÞ;

represents the first M principal component scores for the ith set of functions for i = 1, . . ., N,

where aM
ij ¼ ðaij1; . . . ; aijMÞ

>
. Here Θk represents the precision matrix.

Now the log-likelihood function for the observed functioanl data is given by

‘ ¼
XN

i¼1

log
XK

k¼1

pkN ða
M
i jμk;ΘkÞ;

where

N ðaM
i jμk;ΘkÞ ¼ ð2pÞ

�
Mp
2 jΘkj

1
2 exp �

1

2
ðaM

i � μkÞ
>Θkða

M
i � μkÞ

� �

:

Given the log-likelihood, we then maximize the penalized log-likelihood to estimate πk, μk,

and Θk for k = 1, . . ., K as follows:

max
fðpk;μk;ΘkÞ;k¼1;...;Kg

XN

i¼1

log
XK

k¼1

pkN ða
M
i jΘkÞ �

XK

k¼1

lk

X

j6¼l

kΘkjlkF

where k � kF denotes Frobenius norm. Here, Θkjl’s are M × M matrices for j = 1, . . ., p and

l = 1, . . ., p.

2.2 Computation

The EM algorithm provides a powerful tool to deal with latent variables in mixture models.

Following the spirit of the EM algorithm, we view the functional data to be incomplete, and

treat the latent variables as “missing data”. Moreover, unlike traditional approaches, the sparse

estimation imposes the non-smooth penalty function to regularize the likelihood function,

which leads to solving a challenging non-convex and non-smooth optimization problem.
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We introduce the latent random variables τi = (τi1, . . ., τiK), i = 1, . . ., N, satisfying that

tik ¼
1 if g iðtÞ belongs to the kth group;

0 otherwise:

(

ð1Þ

Now given the complete data, the complete log-likelihood would be

‘comp ¼
XN

i¼1

XK

k¼1

tik log pk þ tik logN ðaM
i jμk;ΘkÞ;

and the complete ℓ1-penalized log-likelihood function becomes:

Lcomp
¼ ‘comp �

XK

k¼1

lk

X

j6¼l

kΘkjlkF ð2Þ

E-step: Let p
ðlÞ
k , μðlÞk , and Θk

(l) be the estimate of πk, μk, and Θk for k at the lth iteration. In

the E-step of the (l + 1)th iteration, we compute the conditional expectation of τik given current

estimates p
ðlÞ
k , μðlÞk , and ΘðlÞk for k = 1, . . ., K. By using Bayes’ rule, we have

g
ðlþ1Þ

ik ¼
p
ðlÞ
k N ðaM

i jμ
ðlÞ
k ;Θ

ðlÞ
k Þ

PK
k¼1
p
ðlÞ
k N ðaM

i jμ
ðlÞ
k ;Θ

ðlÞ
k Þ
:

M-step: In the M-step of the (l + 1)th iteration, we obtain the estimates of parameters from

maximizing

XK

k¼1

XN

i¼1

g
ðlþ1Þ

ik ðlog pk þ logN ðaM
i jμk;ΘkÞ � lk

X

j6¼l

kΘkjlkF

" #

:

subject to the constraint that
PK

k¼1
pk ¼ 1. It is equivalent to maximizing

XN

i¼1

XK

k¼1

g
ðlþ1Þ

ik log pk

subject to
PK

k¼1
pk ¼ 1, and

XK

k¼1

XN

i¼1

g
ðlþ1Þ

ik logN ðaM
i jμk;ΘkÞ � lk

X

j6¼l

kΘkjlkF

" #

:

for k = 1, . . . K.

Now by solving the two above subproblems respectively for p
ðlþ1Þ

k and μðlþ1Þ

k , we can find the

following closed-form solutions. We update p
ðlþ1Þ

k by

p
ðlþ1Þ

k ¼
1

N

XN

i¼1

g
ðlþ1Þ

ik ;

and update μðlþ1Þ

k by

μðlþ1Þ

k ¼

PN
i¼1
g
ðlþ1Þ

ik aM
i

PN
i¼1
g
ðlþ1Þ

ik

:
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Next, we update Θðlþ1Þ

k by solving the below optimization problem with the state-of-art opti-

mization algorithm fglasso [17].

Θðlþ1Þ

k ¼ arg max
ΘðlÞk

logjΘðlÞk j � trðSðlþ1Þ

k ΘðlÞk Þ � lk

X

j6¼l

kΘðlÞkjlkF

( )

;

where

Sðlþ1Þ

k ¼

PN
i¼1
g
ðlþ1Þ

ik ðaM
i � μðlþ1Þ

k ÞðaM
i � μðlþ1Þ

k Þ
>

PN
i¼1
g
ðlþ1Þ

ik

:

Another way to update Θk 2 R
Mp�Mp

is by employing the alternating direction method of

multipliers (ADMM) algorithm [29] with the separability assumption on the precision matrix

[30]. ADMM algorithm is useful in estimating a sparse precision matrix [31], and partial sepa-

rability assumption allows the covariance matrices across different dimensions of Karhunen-

Loéve expansion so instead of estimating Mp × Mp, it becomes the estimation for Mp2. The

plot (c) in Fig 1 of [30] shows an example of such a precision matrix.

To further clarify the distinction between the fglasso method and the partial separability

assumption, let {θijuvk: i, j = 1, . . ., p; u, v = 1, . . ., M} be the elements of Θk 2 R
Mp�Mp. Under

the partial separability assumption, we impose that all θijuvk = 0 whenever u 6¼ v. In contrast,

the fglasso method applies a group lasso penalty, which encourages the parameters θijuvk to

exhibit a block structure. Specifically, all θijuvk with i 6¼ j are either simultaneously zero or

nonzero.

We alternate between the E-step and the M-step until the estimates of parameters converge.

Our proposed EM algorithm satisfies an ascent property as the classical EM algorithm and the

proof follows [25]. Here, the ascent property means the likelihood value will not decrease after

each step of EM. However, the ascent property does not imply that the EM updates will neces-

sarily converge to the MLE and our proposed EM algorithm may converge to a local maximum

of the observed data likelihood function, depending on the initial values. The EM algorithm is

sensitive to the initial values of the parameters, so care must be taken in the first step. In this

work, the Mclust function, acquired from the R package mclust, and the split_comp
function, acquired from the R package gmgm, are applied to the multivariate principal compo-

nent score vectors to provide good initials for the EM algorithm.

Now we discuss the tuning parameter selection of our algorithm via a cross-validation (CV)

approach. The J-fold CV score for K-mixture case is represented with:

CVðl1; . . . ; lKÞ ¼
XJ

j¼1

XK

k¼1

Njðlog bpk;� j � logj bΘlk
k;� jj þ trðbΘlk

k;� jΣk;jÞÞ; ð3Þ

where Nj is the sample size of test data in jth CV, bpk;� j is the estimated kth group proportion by

using training data in jth CV, bΘlk
k;� j is the estimated precision matrix of kth group by using

training data with the tuning parameter λk in jth CV, and Sk,j is the test data sample covariance

matrix in jth CV. This cross-validation score approximates negative log-likelihood of the data.

Therefore, a lower cross-validation score indicates better estimation. We built on the cross-val-

idation score for penalized likelihood estimation in Gaussian graphical models [32] and

extended it to accommodate mixtures of distributions. As the regular grid search process

requires too much computing time for finding the optimal tuning parameters, the more effi-

cient random search process is performed to find the optimal tuning parameter vector (λ1, . . .,
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λK)> that results in smallest value of CV. Then, the optimal tuning parameter vector is used for

MFGM to estimate parameters.

3 Results and discussion

3.1 Simulation study

We conduct a series of simulations to compare our MFGM algorithm with fglasso algorithm

and ADMM algorithm under the partial separability assumption. For simplicity, we refer to

these methods as MFGM-fglasso and MFGM-ADMM, respectively. The MFGM-ADMM

implementation is based on the R package fgm. Additionally, we compare these two methods

with the mixggm algorithm [33], which ignores the functional structure. We take the average

of observations across the time interval for each node, making a functional object into a single

value, and implements mixture of Gaussian graphical models in a multivariate vector context.

The implementation of mixggm algorithm is based on the R package mixggm.

3.1.1 Simulation settings. In each setting, the multivariate Gaussian functional variables

are generated via gij = s(t)> δij for i = 1, . . ., N and j = 1, . . ., p, where s(t) is a five-dimensional

Fourier basis function, and δij 2 R
5 is a mean zero Gaussian random vector. Hence, δi ¼

ðδ>i1; . . . ; δ>ipÞ
>
2 R5p

follows a multivariate Gaussian distribution with covariance S = Θ−1

[17]. Different block sparsity patterns in the precision matrix Θ correspond to different condi-

tional dependence structures. We consider five general structures as follows:

• Model 1 (Independent): An identity precision matrix of dimension 5p × 5p is generated.

Hence, all of the p nodes are disconnected. This is called Independent model.

• Model 2 (AR1): A block banded matrix Θ is generated with Θjj = I5 for j = 1, . . ., p, Θj,j+1 =

Θj+1,j = 0.5I5 for j = 1, . . ., p − 1, and 0 at all other locations. Hence, only the adjacent two

nodes are connected. This is called Autoregressive One (AR1) model.

• Model 3 (AR2-weak): A block banded matrix Θ with Θjj = I5 for j = 1, . . ., p, Θj,j+1 = Θj+1,j =

0.4I5 for j = 1, . . ., p − 1, Θj,j+2 = Θj+2,j = 0.2I5 for j = 1, . . ., p − 2, and 0 at all other locations.

Hence, the consecutively adjacent three nodes are pair-wise connected. This is called Autore-

gressive Two (AR2) model with weak connection.

• Model 4 (AR2-strong): Similar to Model 3, a block banded matrix Θ is generated with Θjj =

I5 for j = 1, . . ., p, Θj,j+1 = Θj+1,j = 0.6I5 for j = 1, . . ., p − 1, Θj,j+2 = Θj+2, j = 0.35I5 for j = 1,

. . ., p − 2, and 0 at all other locations. Hence, the consecutively adjacent three nodes are pair-

wise connected. This is called Autoregressive Two (AR2) model with strong connection.

• Model 5 (Random): A block banded matrix Θ is generated with random sparse connection

structure: Θjj = I5 and Θj,l = Θl,j = 0.25Bj,kI5 for j, l = 1, . . ., p, and j 6¼ l, where Bj,l is a Ber-

noulli random variable which takes the value 1 with probability 0.05. The precision matrix Θ
is generated to ensure it satisfies the positive-definite condition. This is called Random

model.

The five simulation models are depicted in Fig 1. In all settings, we consider dimension

parameter p = 20, and generate observations of δi from the associated multivariate Gaussian

distribution, and the observed values hijl are sampled using

hijl ¼ gijðtlÞ þ eijl; eijl � N ð0; 0:52Þ;

for i = 1, . . ., N, j = 1, . . ., p, and l = 1, . . ., T where each function is observed at T = 100 equally

spaced time points between 0 and 1.
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Two-cluster mixture models. We consider the following three different cases of two-cluster

mixture models with π ¼ 1

2
; 1

2

� �
.

1. Mixture of Independent and AR2-strong (Model(1,4))

2. Mixture of AR1 and AR2-weak (Model (2,3))

3. Mixture of AR2-strong and Random (Model (4,5))

We generate N = 100 functional observations of hi for each mixture. We expect that it is less

challenging to do clustering and to estimate connection structures in Model (1,4) as there is an

obvious distinction between the Identity precision matrix and AR2 precision matrix with

strong connections. Model (2,3) will be more difficult since the AR1 precision matrix and AR2

precision matrix with weak connections are more similar to each other. We go further to set

the design of Model (4,5) to explore whether our method can perform good analysis in the

mixture model in which a subgroup with random connection structure is involved.

Three-cluster mixture models. To explore even more complex scenarios, we consider the fol-

lowing two different cases of three-cluster mixture models with π ¼ 1

3
; 1

3
; 1

3

�
).

1. Mixture of Independent, AR1 and AR2-strong (Model (1,2,4))

2. Mixture of AR1, AR2-strong, and Random (Model (2,4,5))

We generate N = 50 functional observations of hi for each mixture. In Model (1,2,4), the

three basic graphical structures, Independent, AR1, and AR2, are involved; and in Model

(2,4,5), the subgroup with random graphical structure is considered for the mixture with two

other heterogeneous subgroups. Here, we expect that the three-cluster mixture models are

more challenging than the two-cluster mixture models to analyze.

3.1.2 Simulation results. To apply our proposed MFGM algorithm to the analysis of sim-

ulated mixture data, first, the total functional observations are fitted by using an L-dimensional

cubic B-spline basis. The Generalized Cross Validation (GCV) method is used to choose the

optimal dimension parameter L. Then the smoothed functions are decomposed by M-trun-

cated Karhunen-Loève expansion, and the optimal harmonic number M is determined by

eight-fold CV. It turns out that M = 5, which aligns with our design. Further analysis reveals

that five principal components already explain over 99% of the total variation in the signal tra-

jectories for each node. The multivariate Karhunen-Loève expansion basis coefficient (princi-

pal component score) vectors aM
i with M = 5 are thus acquired for further mixture analysis

assuming Gaussianity.

In the iterative EM process to analyze the mixture of blocked Gaussian multivariate graphi-

cal models, our proposed method utilizing the fglasso algorithm (MFGM-fglasso) is compared

Fig 1. Conditional dependencies in simulated functional graphical models. Thickness of the edge denotes strength of connection.

https://doi.org/10.1371/journal.pone.0316458.g001
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with the ADMM algorithm under the partial separability assumption (MFGM-ADMM), to

solve the maximization problem of log-likelihood with penalty for estimating the conditional

dependence structures in each cluster. Our MFGM algorithms are also compared with the

mixggm algorithm to confirm the advantage of considering inherent functional nature of the

data. To provide good initials for the EM iterations, the Mclust function, acquired from the

R package mclust, and the split_comp function, acquired from the R package gmgm, are

applied to the multivariate principal component score vectors, for two-cluster and three-clus-

ter mixture models analysis, respectively. We tried tuning parameter values for λk in the range

from 0.8 to 2.5, with increments of 0.1, and determined the optimal value for each group k by

minimizing the cross-validation score in Eq (3). The optimal values were mostly from 0.9 to

1.5.

The estimation of the edge structures in each cluster are checked with following metrics;

Accuracy (Accu), True Positive Rate (TPR), and False Positive Rate (FPR). We run each simu-

lation 100 times for two-cluster mixture models analysis and 50 times for three-cluster mixture

models analysis, and the means of all metrics for the three methods are obtained for

comparison.

Two-cluster mixture models analysis. Table 1 shows the performance of estimates of the con-

ditional dependence structures in each subgroup in the designed two-cluster mixture models.

In the analysis of Model (1,4), all of the three methods do a good job to estimate the edge struc-

ture in subgroup 1. The MFGM-fglasso and mixggm outperform MFGM-ADMM in estimat-

ing the edge structure in subgroup 2. In analyzing the challenging mixture model, Model (2,3),

the three methods show similar decent performances, which are a little worse than that in ana-

lyzing Model (1,4). However, in analyzing Model (4,5), MFGM-fglasso and mixggm algorithm

do a decent job in estimating the conditional dependencies in both of the two subgroups, but

the MFGM-ADMM suffered in estimating the conditional dependencies in subgroup 1.

Three-cluster mixture models analysis. Table 2 compares the three algorithms in estimating

the conditional dependence structures in each subgroup in the designed three-cluster mixture

models. It shows that the three algorithms do better for Model (1,2,4) than for Model (2,4,5) in

estimating the graphical structures in the first two subgroups. However, they do worse in esti-

mating the graphical structure for the third subgroup. Moreover, it is revealed that MFGM-

fglasso does the best to estimate the heterogeneous networks in terms of Accuracy for most of

the three subgroups in both mixture models. It is worth to note that the mixggm algorithm

performed similarly to MFGM-fglasso.

Table 1. Comparison of edge estimations by MFGM-fglasso, MFGM-ADMM, and mixggm in two-cluster mixture simulations.

Subgroup 1 Subgroup 2

Accu TPR FPR Accu TPR FPR

Model (1,4) MFGM-fglasso 0.9911 0.9924 0.0085 0.8450 0.7637 0.1326

MFGM-ADMM 1.0000 1.0000 0.0000 0.7854 0.0868 0.0000

mixggm 0.9484 1.0000 0.0543 0.8692 0.8889 0.1369

Model (2,3) MFGM-fglasso 0.8462 0.3838 0.0117 0.8458 0.9959 0.1797

MFGM-ADMM 0.8150 0.2130 0.0000 0.8943 0.2707 0.0000

mixggm 0.8694 0.6243 0.0553 0.8868 0.9166 0.1183

Model (4,5) MFGM-fglasso 0.8378 0.7483 0.1347 0.9503 0.5768 0.0035

MFGM-ADMM 0.7858 0.0887 0.0000 0.9400 0.4545 0.0000

mixggm 0.8614 0.8455 0.1337 0.9064 0.6614 0.0633

https://doi.org/10.1371/journal.pone.0316458.t001
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3.2 Application to EEG data

Alcoholism is a common neurological disorder caused by the mutual effect of genetic and

environmental factors. It not only damages the brain system but also leads to cognitive and

mobility impairments [34]. It is of great importance to not only find a way that is reliable to

distinguish alcoholics from normal subjects, but also recover the distinction of the brain pat-

terns between alcoholics and normal subjects, which helps to explore the underlying mecha-

nisms for alcoholism. Electroencephalogram (EEG) is a very effective tool for studying the

complex dynamics of brain activities. It can visualize complex brain activities as dynamic out-

puts [35]. Therefore, it can be used to distinguish alcoholics from normal subjects based on the

differences in the signals. A functional brain network accounts for the neuro-dynamical inter-

actions between neural regions. Functional connectivity defines statistical interdependence

between the dynamics of all pairs of the network nodes without taking into account causal

effects [36]. Therefore, the analysis of the functional EEG data by mixture of functional graphi-

cal models is expected to depict the distinct brain networks in the two subgroups.

We apply the proposed MFGM-fglasso algorithm along with MFGM-ADMM and mixggm

algorithms on the EEG dataset acquired from the online UCI Knowledge Discovery in Data-

bases Archive (https://kdd.ics.uci.edu/databases/eeg/eeg.html). Zhang et al. [37] describe in

detail the data collection process. This data arose from a large study to examine EEG correlates

of genetic predisposition to alcoholism. The study consisted of 122 subjects, of which 77

belonged to the alcoholism group and 45 to the control group. The data were initially obtained

from 64 electrodes placed on the subjects’ scalps that captured EEG signals at 256 Hz during a

one-second period. Each subject completed 120 trials under either a single stimulus (a single

picture) or two stimuli (a pair of pictures) shown on a computer monitor. As the 64 electrodes

were located at standard positions, to reduce the dimension of the data, we select the electrodes

that detect signals in the 19-channel montage as specified according to the 10–20 International

system (Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, O2) [38], which

are depicted in Fig 2 by the red circles. Furthermore, referring to the cases considered in [17,

38], we focus on the EEG signals filtered at α frequency bands between 8 and 12.5 Hz that are

acquired by applying the eegfilter function (R package eegkit) on the raw data. To remove

the potential dependence between the measurements and the influence of different stimulus

types, we only select observations under single stimulus for the use in this study [17, 20, 39].

Moreover, it shows that many studies used multiple samples per subject in order to obtain a

sufficiently large sample, which violated the independence assumption inherent in most

Table 2. Comparison of edge estimations by MFGM-fglasso, MFGM-ADMM, and mixggm in three-cluster mixture simulations.

Model (1,2,4) Model (2,4,5)

Subgroup 1 Subgroup 2 Subgroup 3 Subgroup 1 Subgroup 2 Subgroup 3

MFGM-fglasso Accu 1.000 0.9606 0.8481 0.9668 0.8457 0.9375

TPR 1.000 0.7552 0.3545 0.8248 0.3428 0.4497

FPR 0.000 0.0046 0.0003 0.0091 0.0001 0.0000

MFGM-ADMM Accu 0.9937 0.9164 0.8181 0.9117 0.8201 0.9301

TPR 0.8760 0.4621 0.2332 0.4203 0.2396 0.3645

FPR 0.0001 0.0065 0.0022 0.0049 0.0016 0.0000

mixggm Accu 0.9692 0.9490 0.8554 0.9343 0.8630 0.9016

TPR 1.0000 0.7593 0.8557 0.7310 0.8102 0.5564

FPR 0.0324 0.0188 0.1447 0.0312 0.1208 0.0557

https://doi.org/10.1371/journal.pone.0316458.t002
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methods. Following the analysis in [17, 39], we average the valid band-filtered EEG signals

across all trials for each subject.

First, the filtered EEG functional observations are fitted by using an L-dimensional cubic B-

spline basis. The GCV method is used to choose the optimal dimension parameter L. Then the

smoothed functions are each decomposed by M-truncated Karhunen-Loève expansion. Differ-

ent from that in the simulation studies, the CV method always selects the highest value from

the search grid as the harmonic number M, which leads to a very high dimension of the multi-

variate Karhunen-Loève expansion basis coefficient vector, making it too difficult for the fol-

lowing mixture model analysis. As the FPCA turns out that six principal components already

explain more than 90% of the total variation in the signal trajectories for each node, we fix

M = 6 as the truncation number for the Karhunen-Loève decomposition. The multivariate

Karhunen-Loève expansion basis coefficient (principal component score) vectors aM
i with

M = 6 are thus acquired for further mixture analysis assuming Gaussianity.

Similar to the simulation studies, we compared our MFGM-fglasso method with the

MFGM-ADMM and mixggm algorithm. Again the Mclust function, acquired from the R

package mclust, is applied to the multivariate principal component score vectors to obtain

the initialization for EM algorithm. For the tuning parameter selection, values from 0.8 to 2.5

with an increment of 0.1 were tried. The optimal values were found to be λ1 = 2.2 and λ2 = 2.4.

Fig 2. EEG channel system. The 19-channel montage specified according to the 10–20 International system (indicated by red circles). Picture by

Laurens R. Krol.

https://doi.org/10.1371/journal.pone.0316458.g002
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In Table 3, clustering results of three algorithms are reported. Here, we can see that our pro-

posed MFGM-fglasso method performed best in terms of finding two groups where Group 1

consists of most control subjects and Group 2 consists of most alcoholic subjects. Both

MFGM-ADMM and mixggm found less distinctive groups compared to our proposed method.

Fig 3 depicts the estimated brain nodes connection structures in each clustered group by

the three methods. Our MFGM-fglasso method reveals that, in both subgroups, the electrode

locations from the frontal region are densely connected, and the electrode locations from

Table 3. EEG clustering results for MFGM-fglasso, MFGM-ADMM, and mixggm.

MFGM-fglasso Real Labels

Control Alcoholic

Groups Group 1 19 7

Group 2 26 70

MFGM-ADMM Real Labels

Control Alcoholic

Groups Group 1 25 15

Group 2 20 62

mixggm Real Labels

Control Alcoholic

Groups Group 1 20 24

Group 2 25 53

https://doi.org/10.1371/journal.pone.0316458.t003

Fig 3. Comparison of conditional dependence structures in two subgroups. One group can be described as alcoholic and the other group can

be described as control. Solid edges in black color represent common in both alcoholic and control; dash-dotted edges in red color represent

specific in alcoholic; dash-dotted edges in blue color represent specific in control.

https://doi.org/10.1371/journal.pone.0316458.g003
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other regions of the scalp tend to be only sparsely connected. This is consistent with the find-

ings reported by a functional graphical models study that analyzed the same EEG dataset [17].

Notably, while Qiao et al. [17] applied a functional graphical model separately to each true

group, our approach analyzes data from both groups, simultaneously uncovering brain con-

nectivity patterns and identifying the heterogeneous subgroups within the data. We also notice

that the nodes connection structure in the frontal region in the alcoholic subgroup has an

asymmetric pattern compared to a symmetric pattern in the control which echoes the findings

from [38]. In addition, the Fz electrode-located region has a little more connection with the

adjacent regions in the alcoholic subgroup than that in the control, but the Cz electrode-

located region has less connection with the adjacent regions in the alcoholic subgroup than

that in the control. Moreover, very sparse connections in the lower left Temporal region and

Occipital region are revealed in the alcoholic subgroup compared to none in the control. The

MFGM-ADMM algorithm shows distinction between the two subgroups. Very dense regional

connections are found all over the whole brain in the control. In contrast, very spare regional

connections are shown in the alcoholic subgroup except for the occipital region and the lower

temporal regions. These findings do not align with the previous findings in the EEG study and

this may suggest that the assumption of partial separability in MFGM-ADMM algorithm may

not be valid for the EEG data analysis. Finally, the mixggm algorithm estimates super dense

regional connections in both of the two subgroups which again does not aligns with previous

studies. This might be due to the following reason. Taking the average of observations across

the time interval for each node, ignoring the inherent functional nature in the data, could be

invalid in EEG data analysis.

To sum up, our MFGM-fglasso method outperforms the other two competing methods in

the real-world EEG data analysis, in finding distinctive two groups where one group represents

the control group and the other group represents the alcoholic group and in estimating the

heterogenous brain connectivity patterns.

3.3 Discussion

The main strength of our method lies in integrating mixture models with functional graphical

models, which allows us to simultaneously detect heterogeneous subgroups within a popula-

tion and estimate graph structures based on global correlation patterns. The promising perfor-

mance of our approach is demonstrated through carefully designed simulation studies and its

application to an EEG dataset studying alcoholism.

The simulation results also reveal that ignoring the functional structure of the data leads to

suboptimal performance, and imposing the partial separability assumption on the precision

matrix is similarly ineffective.

Our model assumes that the functional variables jointly follow a p-dimensional multivariate

Gaussian process. If this assumption does not hold, alternative methods, such as copula Gauss-

ian graphical models or nonparametric approaches, may be considered. Additionally, while we

assume the number of clusters is known a priori, this is not always the case in practice. If the

true number of clusters is unknown, model selection criteria such as BIC or the Integrated

Classification Likelihood (ICL) can be used. However, due to the complex functional structure

of graphical models, it remains unclear how to accurately compute the effective degrees of free-

dom for BIC [17].

Our method is also well-suited for estimating heterogeneous dependencies in human brain

functional magnetic resonance imaging (fMRI) data and identifying subpopulations with

shared brain connectivity patterns. For example, it can be applied to the ADHD-200 Global

Competition dataset [40], which contains 776 resting-state fMRI scans from eight independent

PLOS ONE Finite mixtures of functional graphical models

PLOS ONE | https://doi.org/10.1371/journal.pone.0316458 January 2, 2025 12 / 15

https://doi.org/10.1371/journal.pone.0316458


imaging sites. This dataset includes 491 scans from typically developing individuals and 285

from children and adolescents with Attention Deficit Hyperactivity Disorder (ADHD).

Moreover, our method is applicable to functional genomics, particularly in the analysis of

gene expression data during disease progression, where patients may come from diverse back-

grounds. Gene expression data are often represented as functional curves, with each gene’s

expression measured at multiple time points. Our approach can uncover heterogeneous

dependencies among genes within different patient subgroups, allowing for the identification

of distinct gene interaction networks that evolve as the disease progresses.

4 Conclusion

We introduced the MFGM method, which combines mixture graphical models with func-

tional data analysis (FDA) to generalize mixture graphical models from a vector-based to a

functional context. Our MFGM method leverages an efficient EM algorithm that solves the

log-likelihood maximization problem with a penalty, enabling the estimation of graphical

model parameters for each subgroup. Additionally, we incorporate the fglasso algorithm

within the EM framework to estimate the precision matrix. We believe that our approach,

which not only clusters functional observations into subgroups but also uncovers heteroge-

neous conditional dependencies within each subgroup, significantly advances the methodol-

ogy of high-dimensional graphical models.

The proposed method has the potential to expand the applicability of graphical models to a

variety of complex data types, such as functional genomics, brain imaging, and longitudinal

health data. By enabling more accurate modeling of heterogeneous dependencies, our method

offers valuable insights into the underlying structures of high-dimensional data that are often

missed by traditional methods.

Looking ahead, there are several promising avenues for future research. For example,

extending our method to non-Gaussian settings could broaden its applicability, while further

advancements in the selection of the optimal number of clusters could enhance model accu-

racy. Additionally, integrating our approach with other advanced machine learning techniques

could improve its performance and scalability in real-world applications.

Ultimately, our method provides a novel strategy for analyzing complex functional data,

offering new possibilities for understanding the intricate dependencies within high-dimen-

sional datasets in various scientific and clinical fields.
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