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Abstract

The human malaria parasites, including Plasmodium falciparum, persist as a major cause of global 

morbidity and mortality. The recent stalling of progress toward malaria elimination substantiates 

a need for novel interventions. Controlled gene expression is central to the parasite’s numerous 

life cycle transformations and adaptation. With few specific transcription factors identified, crucial 

roles for chromatin states and epigenetics in parasite transcription have become evident. Although 

many chromatin modifying enzymes are known, less is known about which factors mediate their 

impacts on transcriptional variation. Like higher eukaryotes, long non-coding RNAs have recently 

been shown to have integral roles in parasite gene regulation. This review aims to summarize 

recent developments and key findings on the role of long non-coding RNAs in P. falciparum.
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P. falciparum malaria life cycle and gene regulation

The human malaria parasite Plasmodium falciparum prevents progress toward global health 

equity and causes over half a million annual deaths mainly in infants and pregnant women 

of sub-Saharan Africa [1]. Over the last few decades, this mortality has been reduced by 

interventions including artemisinin-based combination therapies, insecticidal nets and rapid 

diagnostic tests. However, further progress has been hindered by the spread of antimalarial 

resistance and the lack of highly effective vaccines. Furthermore, the parasite seems to adapt 

to survive in areas with low transmission and persists as asymptomatic infections that are 

often missed by diagnostics [2, 3]. To be successful, malaria elimination will require novel 

diagnostic, therapeutic and intervention strategies.

P. falciparum has a complex life cycle [4, 5]. It infects both human and mosquito hosts 

and undergoes numerous cellular transformations leading to distinct morphological and 

physiological changes in response to these altered environmental conditions (Figure 1). 

The publication of the genome and its annotation in 2002 shed light on the unique 
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nature of this pathogen [6]. The 23 megabase P. falciparum nuclear genome is about 82% 

AT-rich. It is organized into 14 chromosomes and encodes approximately 5720 protein 

coding genes, along with an apicoplast and a mitochondrial genomes [6]. Based on this 

foundational knowledge, early DNA microarray studies showed that most protein-coding 

genes are developmentally regulated in transcriptional cascades across the parasite life 

cycle [7, 8]. More recently, RNA-seq data improved our understanding of transcriptional 

variation by detecting novel spliced variants and antisense transcripts across the parasite life 

cycle [9–11]. Single-cell RNA-seq has recently begun to unveil the temporal resolution 

of transcription and profiles of minority populations [12, 13]. Technological advances 

and contextual applications of these methods continue to refine our understanding of the 

importance of transcriptional development and heterogeneity to parasite adaptation for 

infection, survival and transmission across both hosts [14–16]. Critical to parasite adaptation 

are genes families described as clonally variant genes, or CVGs, (see Glossary) that are 

involved in parasite processes such as immune evasion [10, 11]. Despite this wealth of 

foundational knowledge, the exact molecular mechanisms that underlie the parasite’s tightly 

controlled regulation of gene expression remain elusive.

While the P. falciparum genome encodes an expected number of general transcriptional 

factors [17, 18], few sequence-specific transcription factors (TFs) have been identified and 

validated. The apicomplexan apetala2 (ApiAP2) DNA-binding protein family are unique to 

apicomplexans and share homology with the plant AP2/ethylene response factor integrase 

DNA binding domain [19]. Several of the 27 ApiAP2 TFs have been demonstrated to be 

master transcriptional activators and repressors during parasite transitions in the mosquito, 

liver, IDC and sexual stages [20]. However, little is known about what recruits these master 

TFs to their DNA binding motifs. Recent machine learning algorithms suggest their role in 

regulation may be working in conjunction with epigenetic factors [21].

Supporting this view, data generated over the years have started to highlight the 

functional importance of epigenetic mechanisms and chromatin to the developmental 

regulation of parasite transcription [22–25]. Chromatin conformation capture (Hi-C) 
studies in Plasmodium species have shown that global chromatin configurations in long-

range interaction between subtelomeric and internal chromosome loci correlate with gene 

expression and form heterochromatin clusters that silence most CVGs [26–28]. Hi-C 

experiments have demonstrated that parasite nuclear compaction loosens along with the 

increased frequency of nuclear pores and transcriptional activity observed in the highly 

active trophozoite [29]. Nucleosome occupancy studies in P. falciparum have also revealed 

global transformations across the IDC [30]. Gene promoter accessibility correlates to 

expression levels, with active promoters exhibiting nucleosome depleted regions upstream of 

transcription start sites (TSSs) [30]. Variant histones also have specific occupancy sites in P. 
falciparum, such as H2A.Z/H2B.Z in euchromatin intergenic regions and PfCENH3 in the 

centromeric regions [31, 32].

Beyond nucleosome organization, histone cores are subject to reversible post-translational 
modifications (PTMs), including acetylation, methylation and phosphorylation. 

Quantitative mass spectrometry studies on each histone identified over 200 PTMs in P. 
falciparum with some unique to the parasite [33]. Certain PTMs are considered distinctive 
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features of euchromatin or heterochromatin; for example, H3K9me3 and H3K36me3 

associate with inactive promoters and heterochromatin and are mutually exclusive of 

H3K9ac and H3K4me3, signatures of active transcription and euchromatin [34]. While 

additional studies are needed to unravel the complexity of the histone code, nucleosome 

positioning and histone PTMs are clearly critical regulators of gene expression as they 

likely cooperate with ApiAP2 TFs to recruit general transcriptional machinery as needed 

throughout the parasite life cycle. However, how these parasite factors are specifically 

recruited to the chromatin remains to be determined. Because gene regulation is critical 

to Plasmodium development and survival, an improved understanding of the underlying 

mechanisms that regulate gene expression and host-pathogen interaction is likely to open 

unexplored avenues for novel therapies. In eukaryotes, including P. falciparum, long non-

coding RNAs have recently been shown to have fundamental roles in gene expression [35–

43]. For those reasons, this review focuses on recent advances in our understanding of the 

roles of lncRNAs in P. falciparum gene expression for development, adaptation and survival 

within its hosts.

long non-coding RNAs in higher eukaryotes

Conserved across eukaryotes, long non-coding RNAs (lncRNAs) are ≥ 200 nucleotide-long 

transcripts that are typically transcribed by RNA polymerase II but do not encode proteins. 

Like mRNA, lncRNAs are often capped, spliced and polyadenylated. Based on their 

genomic origins, lncRNAs are categorized as sense, antisense, bidirectional, intronic and 

intergenic [44]. As lncRNAs can bind DNAs, RNAs and proteins, their conserved functional 

range in eukaryotes is expansive [35] (Figure 2). By tethering genomic DNA, lncRNAs can 

facilitate changes in three-dimensional (3D) chromatin structures and long-range contacts 

between regulatory factors, like enhancer elements [35]. At the local level, lncRNAs 

can also regulate the expression of genes via transcriptional interference or as signals 

for downstream gene expression [35]. Moreover, lncRNAs can regulate gene promoter 

accessibility by recruiting, guiding or enhancing chromatin remodeling enzymes like histone 

acetylases and deacetylases [35]. Similarly, lncRNAs can recruit transcriptional factors 

or influence their activity [35]. LncRNAs can also interact with spliceosomal factors to 

affect the frequency and efficiency of mRNA splicing [35]. Additionally, some lncRNAs, 

including circular lncRNAs can act like molecular sponges that mediate available microRNA 

(miRNA), which bind complementary mRNA to modulate its degradation or translational 

repression [35]. At the post-transcriptional level, lncRNAs can regulate gene expression by 

mediating mRNA export and availability for turnover, decay and translation (decoy) [35]. 

Also in the cytosol, lncRNAs can serve as scaffolds for protein complexes involved in gene 

expression [35]. By directly interacting with translation factors, lncRNAs can also affect the 

frequency and efficiency of translation [35].

One of the first lncRNAs discovered in eukaryotes, is the 15–17-kb-long lncRNA X-inactive 

specific transcript (Xist) that is now known to mediate the allelic exclusion of the inactive 

X chromosome (Xi) during zygotic development of female placental mammalians [45]. 

Xist expressed by the Xi recruits chromatin remodeling enzymes to methylate DNA 

and histones on this chromosome and form epigenetic memory for gene silencing. Xist 

represses genes in cis by interacting with the RNA-binding protein SPLEN and multiprotein 
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Polycomb protein complexes PRC1 and PRC2 which catalyze the PTMs H2AK119ub1 and 

H3K27me3, respectively [45]. Along with the gain of H3K9me2/3 and H4K20me1, the 

formation of heritable Xi silencing is marked by the loss of RNA Polymerase II, general 

transcription factors and activating PTMs like H4ac, H3K9/27ac and H3Kme1/3 [46].

In higher eukaryotes lncRNAs have been linked to diseases ranging from cancers to 

cardiovascular, neurological and autoimmune diseases and are, therefore, studied for their 

potential chemotherapeutic, diagnostic, prognostic and predictive values [47]. Like Xist, 

two other lncRNAs have been shown to interact with PRC1 and PRC2 to silence gene 

expression: HOX transcript antisense (HOTAIR) and the antisense lncRNA in the INK4 

locus (ANRIL) [47]. As the first lncRNA shown to influence transcription in trans, HOTAIR 

regulates skin differentiation and has been linked to numerous epithelial and stromal cancers 

[47]. ANRIL, on the other hand, upregulates G1 phase cell cycle progression and cancer 

cell growth by regulating heterochromatin and silencing three important tumor suppressor 

genes on the nearby sense strand of chromosome 9: the alternative reading frame (ARF) 

protein p14 and the two cyclin-dependent kinase (CDK) inhibitors p15/CDKN2B and p16/

CDKN2A [47].

Also conserved in eukaryotes, telomeric repeat-containing RNAs (TERRAs) are 

heterogenous lncRNAs that regulate telomere length, possibly by binding DNA to block 

the reverse transcriptase telomerase or displacing inhibitory proteins [48]. TERRAs also 

regulate telomere structural integrity by promoting homology dependent repair via their 

interaction with RAD51 [48]. Lastly, TERRAs are also thought to mediate telomeric 

heterochromatin by interacting with associated proteins like heterochromatin protein 1 

(HP1), the Origin Recognition Complex (ORC) and telomere repeat factors (TRFs) [48].

At the post-transcriptional level, one of the most studied lncRNAs, the metastasis-associated 

lung adenocarcinoma transcript 1 (MALAT-1), is implicated in alternative splicing events 

by modulating the phosphorylation of serine- and arginine(SR)-rich proteins [47]. A more 

recent discovery involved the antisense lncRNA to ubiquitin carboxy-terminal hydrolase 

L1 (AS-Uchl1) that increases UCHL1 protein synthesis at the post-transcriptional level. 

AS-Uchl1 is regulated by stress signaling pathways and is required for the association 

of the overlapping sense protein-coding mRNA with active polysomes for translation. 

Dysregulation of AS-Uchl1 has been implicated in neurodegenerative diseases [35].

long non-coding RNAs in Plasmodium falciparum

Although their roles in infectious diseases have only been studied more recently, lncRNAs 

are beginning to emerge as new players in the development of eukaryotic pathogens 

within their human hosts, including malaria parasites [36, 37]. In P. falciparum, early 

transcriptomic studies showed the parasite expresses natural antisense lncRNAs across its 

life cycle [49–56]. Technological advances such as strand-specific and short-read sequencing 

using nanopore platforms identified novel parasite lncRNAs, including over 1300 circular 

lncRNAs, and confirmed parasite lncRNAs are regulated developmentally [9, 57–59]. 

Similarly, profiling of nascent non-coding transcripts, amplification-free sequencing and 

single molecule real-time (SMRT) long-read sequencing have helped further expand the 
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repertoire of parasite lncRNAs to > 2,500 candidates [37, 60–62]. Most recently, a leap 

forward has been made by manually annotating short- and long-read sequencing, unveiling 

1,119 novel lncRNAs [63]. In this study, a total of 2,369 lncRNAs expressed in the asexual 

stages have been identified and categorized as antisense (75%), intergenic (12%), UTR-

associated (9%) or sense overlapping an exon or intron (< 2% and < 1%, respectively). Some 

of these lncRNAs have homology with known RNA families, including those encoding 

structural RNAs, while others may encode smaller structural RNAs, suggesting lncRNAs 

may be integral to parasite RNA structure [63]. Although a subset of transcripts identified 

as lncRNAs may encode small proteins [37, 62, 63], no peptides have been detected for the 

annotated lncRNAs discussed in this review. Furthermore, while some annotated lncRNAs 

have been implicated in parasite gene regulation, the functional roles of most parasite 

lncRNAs have yet to be explored.

A recent study addressed a critical knowledge gap in P. falciparum lncRNA biology – 

where lncRNAs were identified as either enriched in the nuclear or cytoplasmic cellular 

fraction and, in accordance with conserved functions in higher eukaryotes, more likely 

involved either in epigenetic or translational regulation, respectively [43]. Of the 1,768 

candidate intergenic lncRNAs identified, ~ 40% were identified as novel compared to 

previous published studies, with >700 nucleus-specific [43, 55, 58, 62, 63]. Many of 

these novel discovered lncRNAs likely result from the different experimental approaches 

used and/or the gametocyte stages being examined for the first time. In contrast, some 

of the annotated lncRNAs that were not detected in this study may likely result from the 

stringent filters used to select intergenic lncRNAs with great confidence. In this study, 

the stage-specific expression and subcellular localizations of several lncRNA candidates 

were validated using RNA fluorescent in situ hybridization (RNA-FISH). Importantly, the 

genome-wide occupancy of several lncRNA candidates was also determined by Chromatin 
Isolation by RNA Purification (ChIRP-seq), a method based on immunoprecipitation of 

biotinylated targeted oligos, and showed that lncRNA occupancy is focal, sequence-specific 

and correlates with the expression of neighboring genes.

long non-coding RNAs in host cell permeabilization

In the IDC, schizonts express many genes in preparation for the invasion of RBCs, including 

the merozoite surface proteins and rhoptry-associated proteins [7, 8, 14, 16]. Expression 

of these invasion-related genes have been shown to be regulated by at least two nuclear 

proteins: the bromodomain protein PfBDP1, which binds acetylated H3 in promoters, 

and the transcription factor ApiAP2-I [20, 64]. Suggesting their adaptive roles, some of 

these genes occur as multicopy CVGs [65, 66], with some regulated epigenetically and 

expressed variably in parasite laboratory strains and field isolates [23, 67]. For example, the 

cytoadherence-linked asexual genes (clag3), which are involved in forming the plasmodial 

surface anion channel at the RBC membrane and mediate uptake of soluble host nutrients, 

include two genes on chromosome 3, clag3.1 and clag3.2 [65]. Expression of these genes 

involves monoallelic exclusion mechanism with a memory reset in the mosquito and a 

nearby lncRNA [38, 65–67]. The epigenetic silencing of clag3 genes has been linked to 

resistance against some toxins and antimalarials [38, 67, 68]. Interestingly, both the clag3 
gene switching and biallelic silencing observed in blasticidin S resistance correlate to the 
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expression of a neighboring, >1kb-long intergenic lncRNA known as TR2, suggesting this 

lncRNA may activate clag3 gene switching and/or expression [38] (Figure 3A). However, 

the function of this lncRNA has not yet been validated at the mechanistic level to 

elucidate its potential role in epigenetics, monoallelic exclusion, antimalarial resistance and 

adaptation.

long non-coding RNAs in host immune evasion

After invading the RBC, P. falciparum expresses CVGs at the host cell surface. These 

CVGs, known as variable surface antigens (VSAs), mediate virulence and pathogenicity 

by two immune evasion strategies that include binding host endothelium (cytoadherence) of 

various tissues to sequester from circulation, and varying the mutually exclusive expression 

of highly diverse multicopy VSAs (antigen switching) [69]. Among VSAs, the ~60 var 
genes have been studied most because they undergo monoallelic expression and encode the 

main immune evasion VSA – the erythrocyte membrane protein 1 (PfEMP1) [70, 71].

The var genes cluster in subtelomeric regions and in five internal chromosome loci [72]. 

They have different upstream promoter sequences (ups) that form five groups (upsA-E), with 

one linked to severe malaria (upsA) [73]. Despite those differences, most var genes have a 

similar structure with a highly variable exon 1 and two conserved elements – an intron with 

a bidirectional promoter and a second exon [74, 75]. The active var is expressed strongly 

in ring stages and downregulated in late-stage parasites when sufficient surface protein is 

expressed; however, var switching occurs in a subpopulation of parasites at a rate specific 

to each var gene [71]. The histone variant H3.3 has been implicated in var gene epigenetic 

memory [76], which is also reset in the mosquito like the clag3 genes [11, 67, 77].

Many forms of epigenetic regulation participate in the silencing of inactive var genes, 

including their organization into repressive cluster(s) within peripheral nuclear foci [24, 

26–28, 78, 79]. Because Hi-C studies have shown that the 3D chromatin structures 

of P. falciparum strains expressing different var genes are highly similar with all var 
genes interacting in a heterochromatin cluster, var gene switching likely depends on 

local factors rather than long-range interactions [27]. At silenced genes, the var ups are 

enriched in repressive marks like H3K9me3, H3K36me3, H2A and HP1 [39, 79–81], as 

well as the chromatin modifiers histone deacetylase PfSir2 and methyltransferase PfSET2 

(also known as PfSETvs) [82, 83] (Figure 3B). Conversely, the promoter of the active 

var gene is enriched in H3K9ac and the double-variant histones H2A.Z/H2B.Z [32]. 

While histones in the active var gene promoter are also marked by H3K4 di- and tri-

methylation, the modifying enzymes responsible are not yet identified [39, 80]. Recently, 

an immunoprecipitation study has shown a protein complex of the histone acetyltransferase 

PfMYST and the RuvB-like AAA+ ATPase homologues (PfRuvBL) interacts with the 

subtelomeric var gene promoters and H3, H4, H3K9me1 and H4ac during the ring stage of 

the IDC, when active var gene expression is strongest [84].

Although less is known about which factors mediate local changes in the chromatin states of 

var genes, lncRNAs have been shown to play important roles in their regulation [37, 39–41, 

71]. Two lncRNAs are expressed by the var intronic bidirectional promoter: a conserved 
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sense lncRNA extending into exon 2 and a variable antisense lncRNA complementing 

the 3’-region of exon 1 [74, 75]. These var-lncRNAs, which are 5’-capped but not 

polyadenylated, associate with chromatin and localize to perinuclear foci [75]. Because 

var sense lncRNAs are not specific to individual genes, are transcribed from both active and 

repressed genes and accumulate in the mature life stages [71], they have been suggested to 

potentially participate in var gene silencing, imprinting or epigenetic memory [37]; however, 

their functional role has not yet been determined.

In contrast, only the var intronic antisense-lncRNA (var-as-lncRNA) of the active gene 

is transcribed by early life stages [71]. Despite the mechanism being ill-defined, var-
as-lncRNA associates with the active var gene in trans and initiates its expression in 

a sequence-specific, dose-dependent manner [39]. Likewise, interrupting var-as-lncRNA 

expression downregulates the active var gene and alters its epigenetic imprinting, resulting 

in var gene switching [39, 40]. In contrast, the var-as-lncRNA is not necessary for activating 

the evolutionary divergent var2csa, which shows hierarchically selective expression, possibly 

to mediate a role in gene switching [85]. Therefore, the var-as-lncRNAs may have 

var gene- or subtype-specific roles in gene regulation. Recently, RNA-FISH studies on 

transgenic parasites with controllable var gene switching have shown that the var-as-lncRNA 

colocalizes with the active var gene in the nuclear periphery [41]. Collectively, these studies 

demonstrate that the var-as-lncRNA regulates var monoallelic exclusion in the IDC with 

roles in gene activation and switching.

In addition to these var-lncRNAs, two novel exonic antisense and downstream intergenic 

groups of var lncRNAs have recently been identified [63]. While little is known on their 

roles, it seems that the regulation of this multi gene family may be mediated by a complex 

interaction of numerous parasite var-lncRNAs.

Beyond the var-lncRNAs, other regulatory ncRNAs, lncRNAs and proteins have been 

implicated in regulating var genes and other subtelomeric VSAs. For example, the fifteen 

RNAs of unknown function (RUF)6 ncRNAs, which are 135 nt long, transcribed by RNA 

Polymerase III and have >50% GC content, are found in close proximity to the internal 

var genes and expressed in a clonally variant manner [86–88]. These RUF6 ncRNAs 

colocalize in trans with the telomeric and internal var ups, and their overexpression can 

upregulate active var gene expression [86, 87]. Similarly, CRISPR-Cas9 interference of 

RUF6 expression downregulates the expression of var genes and other VSAs like rifin, 

stevor and pfmc-2TM [88]. In contrast, these GC-rich transcripts were also shown to 

act as var gene repressors in cis and suggested to inhibit heterochromatin spreading by 

acting as insulator elements [86]. Functional knockdowns of two parasite exoribonucleases, 

PfRNaseII and Rrp6, led to the upregulated expression of RUF6, var genes and other VSAs, 

suggesting their post-transcriptional regulatory roles may be mediated by nascent transcript 

decay [89, 90]. Furthermore, disrupting PfRNaseII overcame monoallelic exclusion of var 
genes by increasing transcript abundances of upsA-type var and var-as-lncRNA, which was 

further supported by decreased PfRNaseII expression observed in severe malaria patients 

[89]. Recently, several ApiAP2 TFs termed heterochromatin-associated factors (ApiAP2-

HFs) have been shown to be differentially enriched in heterochromatin, VSAs like var genes 
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and the ruf6 genomic loci suggesting these TFs may mediate the influence of RUF6-ncRNA 

on var gene expression [20].

Proximal to the var genes and other VSAs in subtelomeric regions, lncRNAs transcribed 

from the P. falciparum telomere-associated repetitive elements, or TARE-lncRNAs, could 

be implicated in forming and maintaining local heterochromatin near these important 

immune evasion genes [53, 58, 91, 92]. Six repetitive blocks of TARE DNA sequences 

span from the telomeres (TARE1) to the first subtelomeric var gene (TARE6) [91]. Early 

RNA-FISH studies showed TARE-lncRNAs localize to the nuclear periphery and are 

transcribed throughout the IDC mainly as >six- and ~four-kb long transcripts spanning 

TARE6 and from TARE3 to TARE1 [43, 53, 92]. TARE-lncRNAs share similarities with 

TERRAs, like enrichment with binding sites for the homologues of TERRA-associated 

nuclear and chromatin-remodeling proteins. The TARE-lncRNAs may regulate telomeric 

heterochromatin by recruiting chromatin modifiers (i.e., PfSir2 and PfKMT1) and repressive 

hallmarks (i.e., PfHP1, PfORC1 and H3K9me3) [78, 93–95]. For TARE6-lncRNA, these 

interactions have been suggested to be mediated by secondary hairpin loops formed by 

21-bp DNA repeats [92]. Palindromic var subtelomeric promoter element 2 (SPE2) motif 

sequences have also been identified in the TARE-lncRNAs, suggesting they may interact 

with var genes and regulate them by recruiting histone modifiers [53]. Furthermore, 

ApiAP2-HFs and ApiAP2-SIP2 have also been shown to affect var gene regulation and 

bind SPE2 motifs at TARE regions and upsB-type var genes [20, 96], suggesting ApiAP2-

complex may interact with these loci or lncRNAs. Supporting this notion, the GC-rich and 

highly conserved TARE4-lncRNA was recently confirmed to be highly expressed throughout 

the IDC by RNA-FISH and shown to have strong, specific interactions with the telomeres 

and regions upstream of the upsB-type var genes by ChIRP-seq experiments [43, 53, 58]. 

While this data will have to be further validated at the experimental and mechanistic 

level, P. falciparum TARE-lncRNAs may be involved in controlling telomere maintenance, 

heterochromatin clusters and var gene expression.

Most recently, nucleic acid secondary structures of guanine tetrads known as G-

quadruplexes (G4s), which interact with lncRNAs to influence telomere maintenance, DNA 

repair, recombination and gene expression in higher eukaryotes, have also been identified 

in the P. falciparum genome [97–100]. Parasite G4s were found to associate with telomeric 

and subtelomeric regions and to be enriched in VSA genes in all Plasmodium spp. [98–100]. 

Consistent with their potential role in telomere maintenance, the telomere-binding protein, 

PfGPB2, was shown to interact with DNA G4s and guanine-rich RNA [101]. Parasite G4s 

were also shown to associate with subtelomeric recombination events [100]. Furthermore, 

the knockdown of a RecQ helicase, which are known to resolve DNA secondary structures 

like G4s, has demonstrated higher frequencies of var gene recombination, especially for the 

var genes containing G4s [102].

Additionally, G4 ligands have been shown to affect parasite growth, replication and gene 

expression, particularly in subtelomeric VSAs like var genes [100, 103, 104]. Supporting 

this regulatory role, G4s are enriched in nucleosome depleted regions and the var ups, TSSs 

and exon 1, with an antisense strand preference for the latter [100]. Importantly, an antisense 

G4 was also shown to repress the ectopic expression of a VSA reporter gene. Strikingly, 
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a recent study examining multiple CRISPR-Cas9 gene edited parasite knockouts of the 

RecQ1 helicase resulted in the silencing of all var genes [105]. In contrast, RecQ1 genetic 

knockouts based on a double-crossover showed upregulation of var genes in some clones 

[102]. Although these discrepancies may be due to different approaches, these results should 

be interpreted cautiously. Regardless, given their associations with var gene expression and 

enrichment proximal to the var-as-lncRNA, it is tempting to speculate that lncRNAs and G4s 

may cooperate to control var gene expression.

Although less is known about regulatory proteins that interact with P. falciparum lncRNAs, 

a recent study on transgenic parasites with controllable var switching, predicted secondary 

structures of var-as-lncRNAs and subsequently targeted them by domain-specific ChIRP 
(dChIRP) and LC-MS/MS to identify their associated proteins [41]. Knockdown of one 

such protein, the redox sensor thioredoxin peroxidase I (PfTPx-1), demonstrated its role in 

var gene switching and activation at the ring stage, possibly via redox mechanisms providing 

an ideal microenvironment for transcription [41]. Additionally, PfTPx-1 knockdown showed 

upregulation of VSAs, like the var, stevor, rifin and Pfmc-2TM genes [41]. A related 

approach, ChIRP-MS, identified proteins interacting with the RUF6 ncRNAs [106]. These 

ncRNAs were found to interact directly with RNA Polymerase II at the var expression site 

as well as a DEAD box RNA helicase, which may potentially regulate gene transcription by 

resolving G4s of the active var gene [106].

long non-coding RNAs in gametocytogenesis

As an alternative to continuing the IDC by reinvading RBCs, a parasite subset can develop 

into transmissible sexual stages. Parasite commitment to gametocytogenesis is also an 

adaptive response to the host and ecological factors that affect transmission potential [5, 

107, 108]. Our understanding of the transcriptional changes underlying this process and the 

epigenetic factors regulating them has grown in recent years [109, 110].

The 3D chromatin structure of gametocytes differs substantially from its asexual 

counterparts [28]. Specifically, the transcription factor ap2-g, expressed during the early 

stages of sexual commitment and essential for gametocytogenesis [5, 109, 110], was 

shown to interact strongly with repressive heterochromatin in asexual stages but dissociate 

from them in early gametocytes to reassociate in late-stage gametocytes [28]. The 

gametocyte development protein 1 gene (Pfgdv1) was discovered and shown to be 

mutated in a gametocyte-deficient laboratory parasite strain [111]. Full restoration of 

Pfgdv1 demonstrated its centrality in regulating gametocytogenesis [111]. During sexual 

commitment, the nuclear protein PfGDV1 evicts HP1 from H3K9me3 on the ap2-g promoter 

[42]. Following HP1 displacement, euchromatin forms and facilitates the expression of 

ap2-g, which initiates sexual commitment. In the asexual stages, the five-exon antisense 

lncRNA transcribed downstream from gdv1 (gdv1-as-lncRNA) was shown to self-regulate, 

repress gdv1 and indirectly silence ap2-g [42] (Figure 3C). Proposed regulatory mechanisms 

of gdv1-as-lncRNA include transcriptional interference of gdv1 expression, competitive 

binding of gdv1 inhibiting transcription factors and binding of gdv1 mRNA influencing 

turnover [37]. Regardless of the exact mechanisms underlying ap2-g repression by gdv1-as-
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lncRNA, regulation of a master ApiAP2 TF by parasite lncRNA suggests other similar 

regulatory relationships may also exist.

More recently, the male development gene 1 (pfmd1) has been demonstrated as critical to 

parasite sex determination and male gametocyte development via CRISPR-Cas9 genome 

editing strategies [112]. Using scRNA-seq, this study showed that md1 expression was 

male-specific, increased at the sexual bifurcation between gametocyte stages II and II and 

that a truncated md1 transcript and an intronic, antisense lncRNA (md1-lncRNA) were 

female-specific [112]. Despite normal expression of md1 transcripts and protein, sexual 

maturation and exflagellation, the knockout of the lncRNA-associated intron showed not 

only a 5-fold lower md1-lncRNA expression but also a subtle increase in male gametocytes, 

suggesting that this lncRNA influences md1 silencing in female gametocytes but is not the 

main driver [112]. Overall, this study revealed that sex determination in P. falciparum is at 

least partially regulated by lncRNAs.

With >500 novel candidate lncRNAs recently identified as enriched in the sexual parasite 

life stages [43], gdv1-as-lncRNA and md1-lncRNA are likely the first of many regulatory 

lncRNAs to be found important for P. falciparum sexual development. Two of those recently 

identified candidate lncRNAs lie between genes involved in sexual regulation and were 

shown previously by ChIP-seq for H3K9me3 to be repressed at asexual stages but active 

at sexual stages [28]. Based on scRNA-seq data, these gametocyte-specific lncRNAs were 

shown to be gender-specific with higher lncRNA-ch9 and lncRNA-ch14 levels in male 

and female gametocytes, respectively [43]. Importantly, ChIRP-seq data demonstrated these 

lncRNAs are enriched near their genomic loci in sexual stages and correlate negatively 

with H3K9me3 occupancy based on ChIP-seq [28]. Together, these studies suggest these 

lncRNAs may recruit chromatin remodeling enzymes and sequence-specific TFs to regulate 

nearby gametocyte-specific genes. To further validate the importance of lncRNA-ch14, 

disrupting this lncRNA through CRISPR-Cas9 gene editing technology was shown to 

significantly decrease rates of gametocytogenesis, skew the parasite population sex ratio to 

male gametocytes and impair male exflagellation [43]. Similarly, membrane feeding assays 

show mutants were less infectious to mosquitoes based on lower oocyst and sporozoite 

infection rates and intensities [43]. Collectively, the findings confirm the importance of 

regulatory lncRNAs to gene regulation throughout P. falciparum’s life cycle and highlight a 

critical need to further understand their role in a more systematic manner.

lncRNAs in host-pathogen interaction

As mentioned previously, circular lncRNAs can interact with miRNAs to alter gene 

expression. Circular RNAs have been identified in P. falciparum and contain potential 

binding sites for human miRNAs, providing a possible link for crosstalk between parasite 

lncRNA and host miRNA to influence both parasite and host gene expression [58, 113, 

114]. While the plasmodial genomes lack the pathways and molecular components essential 

for endogenous miRNA biogenesis, it has been well documented that the host miRNAs 

can be altered by infection and affect the expression of parasite VSA genes [113, 114]. 

Specifically, these miRNAs have been implicated to affect host cellular immunity, sickle cell 

protection, susceptibility in pregnancy and the development of severe and cerebral malaria 
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[113, 114]. Additionally, it has been demonstrated that the parasite can export extracellular 
vesicles (EVs) containing some of these miRNAs complexed with host-derived Argonaute 

2 protein, along with parasite mRNA and small non-coding RNAs [113, 114]. These EVs 

have been shown to affect host vascular permeability, and exogenous EVs added to parasite 

cultures showed they affect VSA gene expression [113, 114]. Beyond host miRNAs, mouse 

models have shown malaria infection also affects the expression levels of host lncRNAs 

implicated in immune-related signaling pathways and host cellular immunity [115]. Overall, 

these studies suggest that both the parasite and host lncRNAs may have important roles 

in mediating the host-pathogen immune signaling network to modulate the outcome of the 

infection.

Concluding remarks

While most of the work regarding the discovery of lncRNAs in Plasmodium spp. has been 

done on laboratory reference strains, it will be interesting to determine the conservation 

and diversity of lncRNAs among strains and species. Future studies examining lncRNAs 

in field isolates in varying environmental conditions, such as global regions, antimalarial 

interventions, malaria endemicities and transmission settings, will be needed to provide a 

contextual understanding of their potential biological importance to parasite survival and 

adaptation.

It is also important to keep in mind that RNA-seq approaches, including sc-RNA-seq, 

often miss lncRNAs using the standard bioinformatic pipelines as these lncRNAs are not 

always annotated. As lncRNAs are less abundant and stable than steady-state mRNAs [43], 

it will be critical to improve their detection by using novel strategies together with the 

depletion of nascent mRNAs, rRNAs and tRNAs [36]. As bioinformatic advances continue 

to refine the in silico P. falciparum lncRNA transcriptome [63], applying these algorithms to 

datasets enriched for Plasmodium lncRNA will allow the detection of additional candidates 

[43]. However, a new set of experimental approaches is ultimately needed to unravel the 

role and the biological complexity of parasite lncRNAs [116]. Some of these approaches 

are described in Figure 4 and include RNA-FISH or CRISPR-Cas9 editing tools that 

can validate the localization of the identified lncRNA and improve our understanding of 

their function, respectively [43]. While CRISPR-Cas9 makes site-specific edits with high 

efficiency, off-target cleavage and disruption of the parasite genome can be a disadvantage. 

Such an approach can indeed disrupt important DNA loci and DNA binding sites. For 

the functional analysis of lncRNAs, the adaptation of the CRISPR-Cas13 system to P. 
falciparum will be a clear advantage. CRISPR-Cas13 is an outlier in the CRISPR world as 

it can specifically knockdown or edit RNAs, rather than DNAs, in eukaryotic cells. Such a 

system will allow the functional analysis of parasite lncRNAs without altering the parasite 

genome sequence [117]. Additionally, lncRNA-knockdown could be used in conjunction 

with Hi-C, RNA-seq or ribosome profiling to examine their respective contribution(s) to the 

P. falciparum 3D genome, transcriptome and translatome (Figure 4).

Other techniques able to examine the interaction of lncRNAs with DNA, RNAs or proteins 

are also now widely used to examine the biological function of lncRNAs (Figure 4). As 

mentioned previously, ChIRP-seq has recently been applied to discover the binding sites 
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of P. falciparum lncRNAs across the genome [43]. Similarly, dChIRP and ChIRP-MS 

have been used to identify proteins interacting with parasite lncRNAs [41, 106]. However, 

methods for examining lncRNA-RNA interactions like crosslinking of matched RNAs and 

deep sequencing (COMRADES) have yet to be adapted to P. falciparum [118]. Additional 

strategies that permit the de novo global discovery of the lncRNA interactome with DNA, 

RNA or protein have the potential to transform the way we look at lncRNA in gene 

expression and chromatin structure. For example, Chromatin-associated RNA sequencing 

(ChAR-seq) and RNA in situ conformation sequencing (RIC-seq) are based on proximity 

ligation and could be applied to examine the lncRNA interactome with DNA and RNA, 

with the latter additionally permitting RNA conformation capture [118] (Figure 4). Also 

adaptable to P. falciparum, the RNA-dependent proteins (R-DeeP) method uses density 

gradient ultracentrifugation with quantitative MS to identify and estimate the protein 

complexes that are dependent of RNAs based on RNase-treated and -untreated samples 

[119]. We are only starting to understand the features and functional versatility of lncRNAs 

in malaria parasites and it is most likely that this knowledge represents only a small 

fraction of their regulatory potential (see Outstanding Questions). The identification of 

novel lncRNAs in Plasmodium spp. as well as in field samples together with the use of 

new tools and technologies to understand their function will not only transform the way 

we see lncRNAs in parasite biology but will also most likely provide novel diagnostic and 

therapeutic strategies to negatively influence parasite survival in its host cells.
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Figure 1. The Plasmodium falciparum Life Cycle and key lncRNAs identified.
P. falciparum undergoes many cellular transformations in its hosts leading to distinct 

morphological and physiological stages. Infection begins when an infected mosquito 

inoculates sporozoites into the human skin that migrate to the bloodstream. Some of these 

sporozoites reach the liver to invade hepatocytes where they differentiate and divide into 

ten to a thousand merozoites within a merosome that reenters the bloodstream. After 

this 8–14 day process, these merozoites are released to invade erythrocytes and initiate 

the asexual intraerythrocytic developmental cycle (IDC). Inside anucleated red blood cells 

(RBCs), parasites develop from relatively dormant ring stages to transcriptionally active 

trophozoites and then to dividing schizonts that produce up to 32 new merozoites. These 

merozoites are then released into the bloodstream to invade new RBCs. This asexual cycle 

lasts approximately 48 hours and can cause symptoms like fever, headache, anemia, multiple 

organ failure and coma. During the IDC, a portion of parasites may differentiate into male 

and female gametocytes for transmission. After roughly two weeks of maturation, both 

sexual forms must be ingested by a female anopheline mosquito. Once inside the mosquito 

midgut, sexual reproduction leads to the formation of a zygote, which then differentiates 

into a mobile ookinete and crosses the midgut wall to form an oocyst. The oocyst undergoes 

schizogony to produce thousands of sporozoites that invade the salivary glands to infect a 

human host during the mosquito’s blood meal, continuing the pathogen’s life cycle. Key P. 
falciparum lncRNAs identified to be involved in host cell permeability, immune evasion and 

gametocytogenesis are listed in their respective stages of the IDC. Additionally, the stage-

specific roles of var-as-lncRNA in var gene activation at the ring stage and gdv1-as-lncRNA 
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in sexual commitment are highlighted (green arrows represent active gene promoters, while 

those in red are repressed).
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Figure 2. The role of lncRNAs in higher eukaryotes.
Within the nucleus, the functions of lncRNAs in eukaryotic gene regulation include roles 

in (A) spatial organization, (B) transcriptional regulation based on DNA binding, (C) 
recruitment of activating and repressing histone modifiers, (D) recruitment of transcriptional 

factors, (E) scaffolding for spliceosomal proteins and (F) sponging microRNAs. At the 

post-transcriptional level, lncRNAs can mediate mRNA (G) transport and (H) availability 

for turnover, decay or translation. LncRNAs can also (I) serve as scaffolds for protein 

complexes involved in gene regulation and (J) interact with translational factors to enhance 

or inhibit ribosomal translation.
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Figure 3. Functional roles of lncRNAs and ncRNAs in P. falciparum.
P. falciparum lncRNAs can activate or silence genes relevant to the parasite’s IDC and 

adaptation: (A) clag3 gene switching modulates nutrient uptake, (B) var gene activation 

mediates immune evasion and (C) ap2-g activation initiates sexual commitment. The 

different shapes used for individual lncRNAs are meant to distinguish them rather than 

represent their actual structures.
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Figure 4. Technological approaches for examining the function of P. falciparum lncRNAs.
An array of techniques exists within a systems biology approach for examining the 

characteristics and relevance of lncRNAs involved in host-parasite interactions. At the DNA, 

RNA and protein levels, integrating targeted (a priori) methods to examine molecule-specific 

interactions and global (de novo) approaches to provide interactome-wide information will 

help to unravel the complex biology of lncRNAs in malaria. For example, RNA-FISH 

(fluorescent in situ hybridization) can be used to validate the expression and localization of 

lncRNAs. Genome editing technologies including CRISPR-Cas9 and -Cas13 can be used to 

knockout or knockdown lncRNA, respectively. Chromatin Isolation by RNA Purification 

(ChIRP)-seq and crosslinking of matched RNAs and deep sequencing (COMRADES) 

use biotinylated capture oligos against RNAs of interest to affinity purify crosslinked 

DNAs and RNAs, respectively. Based on next-generation sequencing, these techniques 

can identify RNA binding sites. ChIRP-MS uses a similar capture methodology but is 

followed by mass spectroscopy to identify the proteins that are bound to specific lncRNAs. 

Global approaches like Chromatin-associated RNA (ChAR)-seq often use proximity ligation 

followed by affinity purification to identify lncRNA and DNA interactions across the 

genome. Similarly, RNA in situ conformation sequencing (RIC-seq) uses proximity ligation 

and affinity purification to capture RNA-RNA interactions. Finally, the RNA-dependent 

proteins (R-DeeP) method uses RNase-treated and -untreated samples coupled with sucrose 

density gradient, ultracentrifugation and quantitative MS to identify protein complexes that 

depend on RNAs.
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