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Indole-3-acetic acid enhances 
ruminal microbiota for aflatoxin 
B1 removal in vitro fermentation
Jiajin Sun , Zhonghao Wang , Xinyu Yan , Yuqi Zhao , Li Tan , 
Xuning Miao , Rong Zhao , Wenjie Huo , Lei Chen , Qinghong Li , 
Qiang Liu , Cong Wang  and Gang Guo *

College of Animal Science, Shanxi Agricultural University, Taigu, China

Aflatoxin B1 (AFB1) has been recognized as a serious health risk for ruminant animals. 
From a molecular perspective, indole-3-acid (IAA) possesses the potential to enhance 
the removal of AFB1 by rumen microbiota. Therefore, this study aims to investigate 
the impact of different concentrations of IAA on the removal of AFB1 by rumen 
microbiota using an in vitro technique. Experiment 1: interaction between AFB1 
and rumen fermentation. Experiment 2: The study used a randomized design with 
five IAA levels (0, 15, 150, 1,500, and 7,500 mg/kg) to examine the effect of IAA on 
AFB1 removal and its impact on rumen fermentation. The results showed: (1) the 
content of AFB1 gradually decreased, removal rate of up to 75.73% after 24 h. AFB1 
exposure altered the rumen fermentation pattern, with significantly decreased in 
the acetic acid/propionic acid ratio (p < 0.05). It significantly reduced the relative 
proportions of R. amylophilus, P. ruminicola, and F. succinogenes (p < 0.05). (2) As 
the content of IAA increased, AFB1 exposure decreased. A total of 15 and 150 mg/
kg IAA significantly mitigated the negative impact of AFB1 on key rumen bacteria 
(R. amylophilus, P. ruminicola and F. succinogenes), increased acetate levels and 
acetate/propionate ratio (p < 0.05). However, 1,500 mg/kg IAA lowered levels 
of propionate and isovalerate, adversely affected enzyme activities (pectinase, 
xylan and Carboxymethyl-cellulase) and relative proportions of microbiota (R. 
flavefaciens, P. ruminicola and F. succinogenes). In conclusion, IAA significantly 
removed AFB1, and in the range of 150 mg/kg of IAA reduced the negative effects 
of AFB1 on in vitro fermentation characteristics and fermentation end-products.
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Introduction

Aflatoxin B1 (AFB1) are toxic secondary metabolites produced during the growth of 
molds and commonly found in grains and animal feed (1–3). AFB1 exposure may reduce feed 
intake and weight gain, disrupt rumen microbiota balance, impair liver and kidney function, 
and negatively affect overall health (4, 5). Additionally, AFB1 can be transferred into animal 
products (meat and milk), thereby posing a risk to human health (6, 7). A recent review by 
Eskola et al. (8) suggested that about 60 to 80% of the global food crops are contaminated with 
mycotoxins. In the subtropical region, the highest concentration was 3.76 mg/kg (9). Ma et al. 
(10) collected 742 feed ingredients samples from various regions of China. Among them, more 
than 83.3% of the samples was contaminated AFB1 at different concentrations. The highest 
concentration in China exceeded the standard of 1.6 mg/kg (9). Previous studies had shown 
that rumen microbiota have the ability to remove AFB1 (7, 11, 12), but the ability is limited. 
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Therefore effective methods of enhancing the removal capacity of the 
original rumen microbiota for AFB1 are necessary to be developed.

Regarding the food safety, dietary interventions with plant-derived 
additives are a promising approach to promoting the removal of AFB1 
by rumen microbiota. In mammals, Indoleacetic-3-acid (IAA) is an 
important indole-derivative catabolized from dietary tryptophan by 
the intestinal microbiota, but intestinal dysbiosis can influence IAA 
production (13). IAA has various special functions in microbiota 
metabolism (14, 15), and has a certain regulatory effect on the synthesis 
of tryptophan and cytochromes (16). Cytochrome CYP can oxidize 
AFB1, forming AFB1-8, 9-epoxide (17, 18). Moreover, IAA was able to 
restore the intestinal microbiota balance and maintain its stability (19). 
But there are few reports on the removal of rumen microbiota and 
AFB1 by IAA. The objective of the present study was therefore to 
evaluate different dose of IAA in the rumen effect of the removal rate, 
ruminal fermentation profile, enzyme activity, and microbiota in vitro.

Materials and methods

Experimental design, procedure, and 
sampling

Experiment 1: They were divided into 80 bottles and allocated to 
two groups: (1) the CK group, blank control group without AFB1; (2) 
the AFB1 group, with 1 mg/kg AFB1. The in vitro fermentation was 
independently conducted seven times for 0, 1, 2, 3, 4, 5, 24, and 48 h. 
Experiment 2: The removal rate of AFB1 in Experiment 1 was used to 
select 24 h as the fermentation time for Experiment 2. They were divided 
into 20 bottles and allocated to five groups: (1) the AFB1 group, with 
1 mg/kg AFB1; (2) 1 mg/kg AFB1 + 15 mg/kg IAA group; (3) 1 mg/kg 
AFB1 + 150 mg/kg IAA group; (4) 1 mg/kg AFB1 + 1,500 mg/kg IAA 
group; (5) 1 mg/kg AFB1 + 7,500 mg/kg IAA group. Each treatment was 
performed inquintuplicate. The fermentation liquid was collected and 
stored in liquid nitrogen, pre-column derivatization (20) was carried out 
to detect AFB1 content and rumen fermentation indicators.

In vitro ruminal fermentation followed the method described by 
Longland et al. (21). The rumen fluid was collected from three Holstein 
dry cows (650 kg ± 20 kg) before the morning feeding. The ingredients 
and chemical composition of total mixed ration are presented in Table 1.
The mixture of the rumen fluid was filtered by four layers of gauze, 
mixed with buffer solution (v/v = 1:1), and kept at 39°C in a water bath 
while continually flushed with CO2. A total of 0.2 g alfalfa silage (DM, 
364.20 g·kg−1 FM; CP, 173.2 g·kg−1 DM; NDF, 389.5 g·kg−1 DM; ADF, 
285.5 g·kg−1 DM) and 0.2 g starch (DM, 85.24 g·kg−1 FM; Starch, 
612.1 g·kg−1 DM; CP, 55.8 g·kg−1 DM; NDF, 87 g·kg−1 DM; ADF, 
21.9 g·kg−1 DM) as the fermentation substrate and placed in nylon bags. 
Afterwards, 60 mL of the diluted rumen fluid was divided into 
individual fermentation bottles, sealed, and placed in a shaker (120 rpm) 
at 39°C (22). Upon at 24 h, it was immediately removed, stopped in an 
ice bath, and samples were taken for detection of various indicators.

Fermentation indicators, AFB1, 
fiber-degrading enzyme activity, and qPCR

A total 1 mL of the collected rumen fluid was subjected to 
pre-column derivatization (20). The content of AFB1 was determined 

using an Agilent 1,260 Infinity II high-performance liquid 
chromatograph (HPLC) with a C18 column, 4.6 × 250 nm, 5 μm. The 
mobile phase was acetonitrile-water (20:80); column temperature: 
40°C; mobile phase flow rate: 1.0 mL/min; injection volume: 20 μL; 
excitation wavelength 360 nm, emission wavelength 440 nm; 
detection time 20 min. The degradation rate of AFB1 = (AFB1 
content in the blank control  - AFB1 content in the experimental 
group)/AFB1 content in the blank control × 100%.

pH was measured using a pH meter (LE438, Mettler Toledo 
Instruments Co., Ltd. China). For the other analyses, 25% meta-
phosphoric acid was added to the fermentation fluid (1/5, v/v), and then 
samples were centrifuged for 10 min at 10,000× g at 4°C using a high-
speed freezing centrifuge (Eppendorf 5810R, Eppendorf AG, Hamburg, 
Germany). The supernatant was collected and stored at −80°C for 
NH3-N and VFA determinations. The content of ammonia nitrogen 
(NH3-N) was determined using the phenol-hypochlorous acid 
colorimetric method (23). The content of volatile fatty acids (VFA) 
(Acetic acid, Propionic acid, Butyric acid, Isobutyric acid, Valeric acid 
and Isovaleric acid) was determined using a high-performance gas 
chromatograph (GC-TRACE 1300, column model 30 m × 0.25 mm ×  
0.25 μm) (24). The determination of the four types of cellulase 
(Carboxymethyl cellulase, Pectinase, Xylanase, α-glicosidase) was carried 
out according to the method described by Agarwal et al. (25).

Ruminal microbial DNA was extracted according to the method 
of Edrington TS (26). qPCR (primers were listed in Table 2) was used 
to determine the relative abundance of 10 bacteriain the incubation 
fluid. Real-time PCR was carried out on an Applied Biosystems Step 
One Plus Fast Real-Time PCR System (Applied Biosystems Co., 
USA). The reaction mixture (20 μL) were mixed with SYBR Premix 
TaqTM (10 μL, TaKaRa Biotechnology Co., Ltd., Dalian, China), 
ddH2O (7.0 μL), PCR forward or reverse primer (0.2 μmol L−1, 
0.8 μL), ROX Reference Dye (0.4 μL, 50×) and the template DNA 

TABLE 1 Ingredients and chemical composition of a total mixed ration.

Items Total mixed ration (TMR)

Ingredients (g kg−1 DM)

  Oathay 213.5

  Chinesewildrye 178.4

  Wholeplantcornsilage 458

  Soybeanmeal 30.5

  DDGS 25.5

  Wheatbran 50.9

Vitamins and minerals1 43.2

Chemical composition2

  DM (g kg−1 FW) 462.2

  CP (g kg−1 DM) 114

  NDF (g kg−1 DM) 460.5

  ADF (g kg−1 DM) 303.5

  Ca (g kg−1 DM) 4.2

  P (g kg−1 DM) 2.3

1Contained VA10000IU, VD2000IU, VE 50 mg, Fe 90 mg, Cu 12.5 mg, Mn 30 mg, Zn 90 mg, 
Se 0.3 mg, I 0.5 mg, Co 0.3 mg of vitamin E per kg TMR. 2DM, dry matter; FW, fresh weight; 
OM, organic matter; CP, crude protein; NDF, neutral detergent fiber; ADF, acid detergent 
fiber. The values of chemical composition are means of triplicate determinations.
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(1 μL). The number of cycles required to reach a threshold adjusted 
for each taxon (Ct) was recorded for eachsample. The PCR programs 
included initial denaturation (1 cycle of 50°C for 2 min and 95°C for 
2 min), primer annealing and product elongation [40 cycles of 95°C 
for 15 s and 60°C for 1 min (27, 28)].

Statistical analyses

Data of experimental 1 using Statistical Analysis System (paired 
sample T-test). Data of experimental 2 using the general linear model 
(GLM) procedure of Statistical Analysis System (SAS, 1999). The 
repeated measures model accounted for the fixed effects at different level 
of treatment. Tukey’s test was used for the multiple comparisons among 
mean values and linear and quadratic effects were calculated at p < 0.05, 
(*p < 0.05; **p < 0.001). p < 0.05 was accepted as statistically significant, 
and p-values between 0.05 and 0.10 were considered to represent a 
statistical trend. Figures were drawn using KingDrawPc V3.0.2.20 
(Qingdao Qingyuan Precision Agriculture Technology Co., Ltd., 
Qingdao, China), GraphPad Prism 9.0 (GraphPad Software, San Diego, 
CA, USA), and Adobe Illustrator 2022–26.0 (Adobe Systems, San Jose, 
CA, USA) for graphic illustration.

Results

Interaction between AFB1 and rumen 
fermentation

The removal efficiency of AFB1 exhibited a stable and significant 
increasing trend with the extension of incubation time (Figure 1). The 

removal rate of AFB1 increased rapidly in the first 24 h, after which the 
rate of removal slowed down between until 48 h. At 48 h, the removal 
rate of AFB1 can reach 80.09%. Considering the factors of removal 
efficiency, this experiment selects 24 h as the final fermentation time. 
Compared to the control group, AFB1 exposure significantly reduced the 
content of acetic acid (p < 0.05); meanwhile, the content of propionic 
acid, isobutyric acid valeric acid, and isovaleric acid significantly 
increased (p < 0.05). Further analysis shows that AFB1 exposure led to a 
significant decrease in the acetic acid/propionic acid ratio (p < 0.05). In 
addition, AFB1 exposure did not significantly affect the pH value and 
NH3-N content of the in vitro fermentation fluid.

Compared to the control group, AFB1 exposure has a significant 
(p < 0.05) effect on reducing the activity of xylanase, while it does not 
significantly affect the activity of pectinase, carboxymethyl cellulase 
and α-glucosidase (Figure 2).

As shown in Figure  3, the relative proportions of Prevotella 
ruminicola and Fusobacterium succinogenes significantly (p < 0.05) 
decreased after AFB1 exposure, indicating that the presence of AFB1 
inhibits the growth of these two types of bacteria.

Effect of IAA supplementation on rumen 
fermentation and AFB1 removal

It can be  observed that the content of IAA added showed a 
positive correlation with the removal rate of AFB1 (Figure  4). At 
concentration of 7,500 mg/kg IAA, AFB1 removal rate reached a 
maximum of 75.1%.

IAA at concentrations of 15 mg/kg and 150 mg/kg showed a 
positive correlation with the content of volatile fatty acids. Specifically, 
IAA at concentrations of 15 mg/kg and 150 mg/kg had a significant 

TABLE 2 PCR primers for real-time PCR assay.

Target species Primer sequence (5′) GeneBank 
accession no.

TE (°C) Size (bp)

Total bacteria
F: CGGCAACGAGCGCAACCC

R: CCATTGTAGCACGTGTGTAGCC
AY548787.1 60 147

Total anaerobic fungi
F: GAGGAAGTAAAAGTCGTAACAAGGTTTC

R: CAAATTCACAAAGGGTAGGATGATT
GQ355327.1 57.5 120

Total protozoa
F: GCTTTCGWTGGTAGTGTATT

R: CTTGCCCTCYAATCGTWCT
HM212038.1 59 234

Total methanogens
F: TTCGGTGGATCDCARAGRGC

R: GBARGTCGWAWCCGTAGAATCC
GQ339873.1 60 160

R. albus
F: CCCTAAAAGCAGTCTTAGTTCG

R: CCTCCTTGCGGTTAGAACA
CP002403.1 60 176

R. flavefaciens
F: ATTGTCCCAGTTCAGATTGC

R: GGCGTCCTCATTGCTGTTAG
AB849343.1 60 173

B. fibrisolvens
F: ACCGCATAAGCGCACGGA

R: CGGGTCCATCTTGTACCGATAAAT
HQ404372.1 61 65

F.succinogenes
F: GTTCGGAATTACTGGGCGTAAA

R: CGCCTGCCCCTGAACTATC
AB275512.1 61 121

R. amylophilus
F: CTGGGGAGCTGCCTGAATG

R: GCATCTGAATGCGACTGGTTG
MH708240.1 60 102

P. ruminicola
F: GAAAGTCGGATTAATGCTCTATGTTG

R: CATCCTATAGCGGTAAACCTTTGG
LT975683.1 58.5 74
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increasing trend in the content of acetic acid (PL = 0.001), propionic 
acid (PL = 0.012), butyric acid (PL = 0.005), isobutyric acid 
(PQ < 0.001), and valeric adid (PL = 0.002), isovaleric acid (PQ = 0.001) 
and total volatile fatty acids (TVFA) (PL = 0.031). Furthermore, at 
1500 mg/kg IAA, the content of acetic acid (PL = 0.001), valeric acid 
(PL = 0.002), the ratio of acetic acid/propionic acid (PL = 0.001), and 
TVFA (PL = 0.031) in the fermentation broth significantly increased, 
but the content of propionic acid (PL = 0.012), butyric acid 
(PL = 0.005), isobutyric acid (PQ < 0.001), and isovaleric acid 
(PQ = 0.001) significantly decreased trend. The addition of IAA did not 
significantly affect the pH and NH3-N content in the fermentation 
fluid (Figure 5).

The impact of adding different concentrations of IAA on the 
activity of major fiber-degrading enzymes in vitro fermentation fluid 
is shown in Figure 6. A total of 15 and 150 mg/kg IAA significantly 
increased the activity of xylanase (p < 0.05) and showed an enhancing 
trend for pectinase (PL = 0.002) and carboxymethyl cellulase 
(PQ = 0.005). In contrast, 1,500 mg/kg concentrations of IAA 
significantly decreased the activity of pectinase (p < 0.05), exhibited a 
certain inhibitory effect on the activity of xylanase and 
carboxymethyl cellulase.

That 15, 150 and 1,500 mg/kg of IAA were added to the 
fermentation fluid, there was an increasing trend in the relative 
proportions of total bacteria (PL = 0.026), B. fibrisolvens (PL = 0.019), 

R. albus (PL = 0.014), R. amylophilsus (PL = 0.012), total methanogenic 
archaea (PL = 0.003), P. ruminicola (PL = 0.046) and F. succinogenes 
(PL = 0.003) (Figure  7). However, the relative proportions of 
R. flavefaciens had a downward trend (PL = 0.059).

Discussion

Previous studies had found that some ruminal microbiota 
have the ability to removal AFB1 (26, 29). A total 1 mg/kg of AFB1 
can cause a disturbance in the rumen microbiota and reduce the 
abundances of Prevotella and P. butyrivibrio (30). But higher 
concentrations (2.5 mg/kg) of AFB1 not only alter rumen 
fermentation pattern but also compromise the safety of liver 
function (26). In our study, as the fermentation time increased, 
AFB1 exposure gradually decreased, reaching a stable state after 
a period of time. Especially when the fermentation time reached 
48 h, the removal efficiency of AFB1 can reach about 80%. This 
phenomenon can be attributed to two key factors: (1) ruminal 
microbiota reduce the toxicity of AFB1 through adsorption; (2) 
enzymes secreted by ruminal microbiota can break down the 
structure of AFB1, converting it into weakly toxic substances. In 
addition, research has shown that AFB1, as a harmful secondary 
metabolite widely present in feed and its raw materials. AFB1 can 

FIGURE 1

Interaction between AFB1 and rumen fermentation. CK: blank control group without AFB1, AFB1: with 1 mg/kg AFB1. *p < 0.05; **p < 0.001. Different 
letters indicate a significant difference.
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disrupt the balance of microbiota in the rumen when ingested by 
ruminants and enter the rumen, leading to change the rumen 
microbiota and affecting the normal fermentation process of the 
rumen (31, 32). In our study, the pH showed no significant 
changes, indicating that the in vitro fermentation test was normal. 
VFAs are the main source of energy for ruminants to obtain from 
feed (33), but the exposure of AFB1 has a significant inhibitory 
effect on the rumen microbiota, leading to decrease in the total 
volatile fatty acids (TVFA) and change in the fermentation type. 
This corresponds to previous studies by Cao et al. (30). In vitro 
fermentation experiments showed that after AFB1 exposure, the 
relative proportions of core microbiota in the rumen such as 
Prevotella and Fusobacterium decreased, these presented the 
similar results as acetic acid changes. In addition, AFB1 also 
reduced the activity of xylanase, consistent with the changes of 
B. fibrisolvens, while the activity of other enzymes such as 
pectinase did not change significantly, which may be related to the 
amount of AFB1 exposure. AFB1 exposure can lead to produce 
changes in pectase activity (34). Although the removal mechanism 
of AFB1 unclear, growing evidence has revealed that rumen 
microbiota dysbiosis is involved in the exposure of AFB1. 
Therefore, the restoration of rumen microbiota balance is likely 
to contribute to AFB1 removal.

IAA is a crucial biological regulatory substance for the growth 
of plants, which is considered to be  an effective and 
environmentally friendly additive with the potential to modulate 
the balance of animal microbiota. Although research on IAA in 
rumen microbiota is still in its infancy, this experiment has 
confirmed that adding different concentrations of IAA to rumen 
fluid containing AFB1 can effectively reduce the content of AFB1. 

FIGURE 2

Interaction between AFB1 and rumen fermentation.

FIGURE 3

Interaction between AFB1 and rumen fermentation.
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IAA can activates the expression of cytochrome genes, such as 
cytochrome P450 enzymes have been found in different organisms, 
that is a key enzyme that involve in the biotransformation of AFB1 

and affects its toxicity (17). Moreover, IAA can maintain 
microbiota homeostasis and improve microbiota disorders by 
activating signal transduction pathways through its specific 
ligands (35). Although the mechanism by which IAA removes 
AFB1 is not yet clear, a growing body of evidence suggests that the 
rumen microbiota is involved in the removal of AFB1. Therefore, 
we  have focused on the metabolic mechanisms of rumen 
microbiota with the addition of IAA. Considering that high 
concentrations of IAA may affect the balance of the rumen, 
according to the “Safety Use Specifications for Feed Additives” the 
recommended amount of tryptophan (the precursor of IAA) in the 
diet of ruminants is 0.1% (1 g/kg). The dosage of IAA is based on 
previous reports (50 mg/kg body weight) (36) and our preliminary 
studies, and with a rumen volume of 50 L, it is considered safe for 
cattle. In addition, some studies have shown that excessively high 
concentrations (50 mg/kg body weight) of IAA may change the 
animal microbiota (19). Therefore, this experiment further 
explored the specific impact of IAA additions of 15, 150, and 
1,500 mg/kg on rumen fermentation parameters, aimed to verify 
the addition of a reasonable range of IAA concentrations to 
mitigate the impact of AFB1 on the rumen fermentation process, 
thereby enhancing animal health.

In our study, found that 150 and 15 mg/kg concentrations of IAA 
can significantly increase the content of TVFA, while 1,500 mg/kg 
concentrations of IAA tend to decrease. Indicate that the addition of 
IAA, enhances the rumen microbiota ability to utilize carbon sources 
and stimulates the degradation of nutrients within the rumen (37). 
In the experiment, after the addition of IAA, the content of acetic 
acid showed a linear upward trend, this is attributed to the metabolic 

FIGURE 4

Effect of IAA supplementation on rumen fermentation and AFB1 
removal. PL represents a linear response, PQ represents a quadratic 
linear response.

FIGURE 5

Effect of IAA supplementation on rumen fermentation and AFB1 removal.
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fermentation products of R. amylophilus and P. ruminicola being 
primarily acetic acid (38, 39). With the addition of IAA, the observed 
changes in the microbiota, such as Prevotella and Fusobacterium, are 
closely related to the adjustment of VFAs composition (40, 41). These 
microbiota decompose the fiber in the feed, promoting the 
production of acetic acid and propionic acid. Propionic acid is key 
in the gluconeogenesis process, affecting body fat and lactose 
synthesis, this is primarily due to F. succinogene impact on the 
production of propionic acid through the propionate metabolism 
pathway (42–46). The concentration of IAA has a significant 
regulatory effect on propionic acid production, with 150 and 15 mg/
kg concentrations of IAA causing a linear increase in propionic acid 
content, while 1,500 mg/kg concentrations of IAA reduce the level 
of propionic acid. F. succinogene also exhibited a trend of increasing 
first and then decreasing in this study. The change in butyric acid 

content is also related to the amount of IAA added, with 150 mg/kg 
and 15 mg/kg concentrations of IAA increasing butyric acid content, 
while 1,500 mg/kg concentrations of IAA reduce butyric acid 
content. B. fibrisolvens metabolize the production of butyric acid in 
rumen fluid, and the addition of 1,500 mg/kg IAA may make the 
microbiota rapidly metabolize and compete for rumen nutrients, 
resulting in the poor competitiveness of B. fibrisolvens and reducing 
the production of butyric acid (47). In addition, the regulation of the 
acetic acid/propionic acid ratio affects microbiota protein synthesis 
and the structure of the rumen microbiota, which relates to the 
digestion and nutritional metabolism of the whole body (48, 49). In 
the rumen ecosystem, bacteria can degrade and utilize starch and 
plant cell wall polysaccharides, such as xylan and pectin. These 
bacteria play an important role in the degradation of protein and the 
absorption and fermentation of peptides (50–53). The addition of 

FIGURE 6

Effect of IAA supplementation on rumen fermentation and AFB1 removal.
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IAA has a significant impact on the changes in the rumen microbiota 
and the activity of the main fiber-degrading enzymes. A total of 15 
and 150 mg/kg concentrations of IAA had increased trend of the 
activity of pectinase, xylanase, and carboxymethyl cellulase, while 
1,500 mg/kg concentrations of IAA reduced the activity of these 
enzymes. These results show that IAA alleviates the imbalance of the 
rumen fermentation caused by AFB1 by regulating the rumen 
microbiota and enzyme activity. R. albus, B. fibrisolvens and 
R. flavefaciens, as the main fiber-degrading bacteria, can produce 
xylanase. In this study, the significant increase in R. albus and 
B. fibrisolvens is consistent with the changes in xylanase. The decrease 
in xylanase with the addition of 1,500 mg/kg concentrations of IAA 
may be related to the downward trend of R. flavefaciens. The changes 
in carboxymethyl cellulose are mainly caused by P. ruminicola, and 
pectinase follows the relative changes of R. flavefaciens and 
B. fibrisolvens (36). In summary, the appropriate addition of IAA had 
a positive impact on the rumen microbiota and metabolic products, 
but 1,500 mg/kg concentrations of IAA may inhibit the rumen 
fermentation process. These findings provide important information 
for optimizing rumen fermentation and improving the nutritional 
absorption of ruminants.

Conclusion

This experiment preliminarily explored the impact of in vitro 
addition of IAA on the removal rate of AFB1 and rumen fermentation. 
It was found that IAA in the range of 150 mg/kg addition could 
improve the removal rate of AFB1 and reduce the negative effects of 
AFB1 on in vitro fermentation characteristics and fermentation 

end-products. This provides a new strategy to mitigate the potential 
threat of AFB1 to animal health.
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