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Background: Prostate cancer (PCa) is a multifactorial and heterogeneous

disease, ranking among the most prevalent malignancies in men. In 2020,

there were 1,414,259 new cases of PCa worldwide, accounting for 7.3% of all

malignant tumors. The incidence rate of PCa ranks third, following breast cancer

and lung cancer. Patients diagnosed with high-grade PCa frequently present with

existing or developing metastases, complicating their treatment and resulting in

poorer prognoses, particularly for those with bone metastases. Utilizing single-

cell RNA sequencing (scRNA-seq), we identified specific malignant cell subtypes

that are closely linked to high-grade PCa. By investigating the mechanisms that

govern interactions within the tumor microenvironment (TME), we aim to offer

new theoretical insights that can enhance the prevention, diagnosis, and

treatment of PCa, ultimately striving to improve patient outcomes and quality

of life.

Methods: Data on scRNA-seq was obtained from the GEO database. The gene

ontology and gene set enrichment analysis were employed to analyze differential

expression genes. Using inferCNV analysis to identify malignant epithelial cells.

We subsequently employed Monocle, Cytotrace, and Slingshot packages to infer

subtype differentiation trajectories. The cellular communication between

malignant cell subtypes and other cells was predicted using the CellChat

package. Furthermore, we employed pySCENIC to analyze and identify the

regulatory networks of transcription factors (TFs) in malignant cell subtypes.

The MDA PCa 2b and VCap cell lines were employed to validate the analysis

results through cellular functional experiments. In addition, a risk scoring model

was developed to assess the variation in clinical characteristics, prognosis,

immune infiltration, immune checkpoint, and drug sensitivity.
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Results: A malignant cell subtype in PCa with high expression of NEFH was

identified through scRNA-seq analysis. This subtype was situated at the

differentiation terminal, exhibited a higher level of malignancy, and exhibited

characteristics that were more prone to advanced tumor lesions. In addition, our

research underscored the intricate interactions that exist within the TME,

particularly the interaction between PTN secreted by this subtype and

fibroblasts via the NCL receptor. This interaction may be closely associated

with cancer-associated fibroblasts and tumor progression. Subsequently, we

determined that the NEFH+ malignant cell subtype was significantly correlated

with the TF IRX4. This TF is linked to a worse prognosis in PCa and may affect

disease progression by regulating gene transcription. Our conclusions were

additionally verified through cellular experiments. Furthermore, the prognostic

model we developed demonstrated satisfactory predictive performance, with

gene sets from the high NmRS group facilitating tumor progression and

deterioration. The analysis of immune infiltration was instrumental in the

development of clinical intervention strategies and patient prognosis.

Conclusion: By examining the cellular heterogeneity of a unique NEFH+

malignant cell subtype within the PCa microenvironment, we were able to

disclose their reciprocal interaction with disease progression. This offers a

novel viewpoint on the diagnosis and treatment of PCa.
KEYWORDS

multi-omics, single-cell RNA sequencing, prostate cancer, tumor heterogeneity,
precision medicine, drug discovery
Introduction

Prostate cancer (PCa) is the second most common cancer

worldwide and one of the leading causes of cancer-related death in

men, according to the 2020 global cancer data released by the

International Agency for Research on Cancer (1). Although most

PCa patients are diagnosed with indolent or slow-progressing disease,

approximately 15% of patients are diagnosed with high-risk cancer

that can be life-threatening (2). Additionally, there are significant

differences in the incidence and mortality rates of PCa among

different racial and ethnic groups. The incidence rate among black

patients is 70% higher than that among white patients, and the

mortality rate is 2 to 4 times higher compared to other racial and

ethnic groups (3). The treatment of PCa remains a challenging issue

for clinicians and researchers, particularly in the case of metastatic

disease. Bonemetastasis is the most common site of metastasis in PCa

and is a major cause of patient mortality. Approximately 1.7% to

11.9% of patients have bone metastasis at the time of initial diagnosis,

with a median survival of less than 3 years and a 5-year survival rate

of only 3%, severely impacting patients’ quality of life (4, 5).

Androgen deprivation therapy (ADT) is the mainstay of

treatment for PCa, but although tumors often initially respond to

ADT, the treatment effect is usually temporary and frequently leads to

the development of resistance (6, 7). Data indicate that 10% to 20% of
02
PCa progresses to castration-resistant prostate cancer (CRPC) within

5 years of diagnosis, with 84% of newly diagnosed CRPC patients

experiencing metastasis (8). The median survival period for patients

after the diagnosis of CRPC is approximately 14 months, which

contributes to the increased mortality rate of PCa (7).

For patients with locally advanced high-grade disease who are not

eligible for radical prostatectomy, external beam radiation therapy

(EBRT) is commonly employed as the primary treatment modality

(9). Although it is known that the addition of ADT to EBRT improves

overall survival (OS) in patients with Gleason scores of 8-10 by

approximately 1.5-fold compared to ADT alone (10, 11), the survival

benefit from adding ADT is less pronounced for Gleason scores of 9-

10, suggesting a lower sensitivity to ADT (12).

Currently, non-hormonal treatment options for advanced PCa

mainly include chemotherapy and immunotherapy. Although

studies have shown that the use of chemotherapy drugs may be

beneficial in terms of survival, such as the efficacy of Docetaxel in

symptomatic or rapidly progressing CRPC (13), the cytotoxic

potential diminishes as androgen receptor-targeted therapy

becomes the frontline treatment for resistant PCa. The rapid

development of immunotherapy has brought revolutionary

changes to the field of cancer treatment. However, the use of any

single immunotherapy modality is unlikely to significantly alter the

outcomes of PCa. Studies have shown that combining cancer
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vaccines or immune checkpoint inhibitors with other

immunotherapeutic agents, hormonal therapies, radiation

therapy, DNA damaging agents, or chemotherapy can enhance

immune functionality and provide clinical benefits (14, 15).

However, the limitations of immunotherapy are also quite

apparent, including limited efficacy in the majority of patients,

low response rates, and the potential for immune-related adverse

effects, which are significant contributors to treatment failure in

PCa. Furthermore, current treatment approaches have not fully

addressed individual variability, resulting in a lack of broad

applicability. Future research should focus on exploring novel

immunotherapeutic strategies, optimizing combination therapies,

and enhancing the study of patient biomarkers to improve efficacy

and ensure a wider spectrum of beneficiaries (16).

PCa is a disease characterized by significant heterogeneity, and the

mechanisms underlying its occurrence and progression are complex

and dynamic. Previous research has highlighted the interaction

between malignant epithelial cells and the tumor microenvironment

(TME) as a key driver of PCa progression (17). Furthermore, we believe

that cellular heterogeneity plays a critical role within the TME of PCa.

Cellular heterogeneity reflects the diversity among different cell

populations in the PCa microenvironment, which not only directly

influences tumor growth and dissemination mechanisms but also

establishes complex interactions among these cells. Investigating this

heterogeneity can help elucidate the evolutionary pathways of PCa and

deepen our understanding of its progression mechanisms, thereby

providing essential insights for developing more targeted therapeutic

strategies. In recent years, the development of single-cell sequencing

technology has provided a new tool for studying the heterogeneity of

tumor cells and the TME. By evaluating thousands of cells

simultaneously, single-cell sequencing technology can reveal the

complexity of intratumoral cells and provide new insights into the

field of tumor biology, thereby improving the diagnosis and treatment

of PCa and enhancing patient prognosis and survival rates. Therefore,

we performed single-cell sequencing analysis on a PCa dataset from the

GEO database, providing new perspectives for the diagnosis and

treatment of PCa to improve patient prognosis and survival rates.
Methods

Acquisition and processing of single-cell
derived data

The PCa data obtained through scRNA-seq was retrieved from

the NCBI Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/geo/). The dataset used for single-cell

analysis included 32 tumor and non-tumor samples from 18 PCa

patients, with the GSE accession number GSE181294. Detailed

information about the samples, including Tumor, Adj-normal,

grade, Gleason, Grade Group, Path Stage, Margin, Age, etc., can

be found in Supplementary Table S1. Bulk RNA-seq datasets and

clinical data were obtained from the Cancer Genome Atlas (TCGA)

(https://portal.gdc.cancer.gov/). The data used in this study was

obtained from publicly available databases and therefore did not

undergo ethical review.
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The scRNA-seq data was imported into R software (version

4.2.0) and examined using the Seurat package (version 4.3.0)

(18–21). We performed rigorous quality control on the data

excluding the following cells: (1) 300 nFeature < 7,500; (2) 500

nCount < 100,000; (3) mitochondrial gene expression exceeding

25% of the total gene count within the cell; (4) red blood cell gene

expression exceeding 5% of the total gene count within the cell. We

kept 127,930 cells ultimately for more study. Our research did not

call for ethical permission as we made use of publicly accessible

database data.

Normalization and selection of the top 2000 highly variable

genes (22–26) were performed on the filtered samples using the

“NormalizeData” and “FindVariableFeatures” functions in the

Seurat package. To correct for batch effects between datasets,

principal component analysis was conducted using the Harmony

R package (version 0.1.1) (27, 28). Cells were clustered using the

FindClusters function with a resolution of 1.0 based on the top 30

principal components (PCs). The top 30 significant PCs were

selected for uniform manifold approximation and projection

(UMAP) dimensionality reduction and visualization of gene

expression (29, 30).
Single cells copy number
variation evaluation

The scRNA-seq data was analyzed for CNVs using the

inferCNV R program (version 1.6.0) available from the GitHub

repository of the Broad Institute (https://github.com/

broadinstitute/inferCNV). This software application facilitates the

differentiation between malignant and healthy cells by examining

the chromosomal positions and gene expression levels to ascertain

CNVs (31, 32). Tumor-EPCs were identified as cells with high

CNV scores.
Cell type identification

We used Seurat’s “FindAllMarkers” function (33) to conduct a

Wilcoxon rank-sum test with the goal of identifying differentially

expressed genes (DEGs) among various cell clusters in order to

examine the heterogeneity of PCa cells (34). Threshold = 0.25,

min.pct = 0.25, and min.diff.pct = 0.25 were the parameters that

were employed. Then, we used Seurat’s “DotPlot” and “featureplot”

programs to show the expression patterns of the DEGs in each

cluster. Manually reviewing the outcomes and consulting pertinent

literature helped with the cell annotation process. Additionally, we

regrouped these cells in order to investigate the heterogeneity of

malignant cells in greater detail. We used marker identification to

characterize each subtype based on the genes unique to that grouping.
Enrichment analysis

The Gene Ontology (GO) (35, 36) and Gene Set Enrichment

Analysis (GSEA) (37) tools were used to conduct enrichment
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studies of DEGs in distinct cell types. We performed a functional

analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG)

utilizing the ClusterProfiler R package (version 4.6.2) (38–42).

One technique for gene set enrichment analysis is gene set

variation analysis (GSVA). In order to determine enrichment scores

for each gene set in each sample, it evaluates the variability of gene

expression data and compares it to predefined gene sets.
Pseudotime analysis and cell fate analysis

In order to examine the variations in development and

differentiation amongst malignant subtypes in PCa, we created

pseudotime trajectories of the subtypes using Monocle (v2.24.0),

which showed the patterns of malignant cell differentiation (43).

We utilized the CytoTRACE R package (version 0.3.3) (44) to

evaluate cell fate, which enabled us to deduce the time course of cell

differentiation. Next, we employed the Slingshot software (version

2.6.0) to deduce cell lineages as malignant subtypes differentiated

(45). Each malignant subtype’s differentiation trajectory was

deduced using the “getlineage” and “getCurves” tools. After that,

a UMAP projection was created using these trajectories

for visualization.
Cell-cell communication analysis

We used the CellChat R package (version 1.6.1) (46) to compute

regulatory networks based on ligand-receptor levels and infer

complicated cell-to-cell interactions, as well as analyze the

intercellular communication network within the TME. The “Identify

Communication Patterns” function was used to estimate the number

of communication patterns, and the “netVisualDiffInteraction”

function was used to show the variation in communication strength

between cells. The P-value, or significance threshold of 0.05, was used.
Gene regulatory network construction

To analyze the scRNA-seq data and reconstruct gene regulatory

networks, we used Python (v3.7) and the pySCENIC package

(version 0.10.0) uncovering key gene regulatory mechanisms. To

evaluate TFs enrichment and regulatory factor activity, we created

an AUCell matrix for this investigation.
Construction and validation of risk model

To construct a risk model, we obtained PCa-related data from

the TCGA database (https://portal.gdc.cancer.gov/). Initially, we

performed univariate Cox regression analysis to screen for potential

prognostic-related genes (47–52). To account for multicollinearity

among these genes, we further employed the least absolute

shrinkage and selection operator (LASSO) regression (53–57)

using the glmnet package (version 4.1-6). We assigned weights to

each gene based on its expression levels and the coefficients
Frontiers in Immunology 04
obtained from the multivariable Cox regression analysis. This

allowed us to construct a risk score formula: Risk score = ∑_i^n

(Xi × Yi) (X: coefficient, Y: gene expression level). Next, using the

“surv_cutpoint” function, we determined the optimal cutoff value to

divide patients into high and low-risk groups based on the risk

scores. The predictive accuracy of the model was assessed using

ROC curve analysis (58). To observe the prognosis of patients in

different groups, Kaplan-Meier survival curves were used to

evaluate the survival differences between different risk groups

(58, 59). Survival analysis was performed using the Survive

package (version 3.3.1) and survminer package (version 0.4.9). To

validate the predictive capabilities of the model based on NEFH+

malignant cell scores, we employed the “Survival” and “Time ROC”

R packages to generate ROC curves for 1-year, 3-year, and 5-year

survival rates, and calculated the area under curve (AUC) value of

the ROC curve (60–65). Survival analysis and time-dependent ROC

analysis were used for model validation. The distribution of risk

score scores, scatter plots of survival status, and heatmaps were

utilized to assess the model.
TME immunoassay

For the evaluation of the TME, we employed the ESTIMATE R

package (version 1.0.13) to estimate the stromal score, immune

score, and ESTIMATE score in PCa tissues (66). To analyze RNA-

Seq data and determine the relative proportion of infiltrating

immune cells, we utilized the Cell Type Identification for

Estimating Relative Subtypes of RNA Transcripts (CIBERSORT R

package, version 0.1.0) algorithm (67, 68), which provides insights

into 22 different immune cell types. Additionally, to quantify

immune cell infiltration in each sample, we employed the xCell

package to assess the enrichment of immune cells in PCa samples.

Furthermore, we investigated the correlation between risk scores

and immunomodulatory genes, particularly immune checkpoints.

To evaluate the response to tumor immune therapy, we utilized the

Tumor Immune Dysfunction and Exclusion (TIDE) tool

(http://tide.dfci.harvard.edu).
Mutation analysis

Using the TCGAbiollinks and maftools R package, the somatic

mutation data of PCa were obtained from the TCGA database. The

PCa expression data and TMB file were imported into the R

package. The correlation between DEGs associated with PCa and

tumor mutation burden was computed. Based on the correlation

results, waterfall plots were generated to depict the high-risk and

low-risk groups.
Drug sensitivity analysis

With the pRRophetic R package (version 0.5), we employed the

GDSC database (https://www.cancerrxgene.org/), the most

comprehensive pharmacogenomics database, to predict the
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treatment response of each tumor sample (69, 70). The IC50 values

for each medication were determined using regression, and the

accuracy of both regression and prediction was assessed using 10-

fold cross-validation with the GDSC training set. All settings were

set to their default values, including the “combat” option for

removing batch effects and the mean value for duplication gene

expression (71–73).
Cell culture

The MDA PCa 2b and VCap cell lines were acquired from

ATCC and cultured in specific growth media. MDA PCa 2b cells

were cultured in F12K medium, while VCap cells were cultured in

DMEM medium. Both media were supplemented with 10% fetal

bovine serum from Gibco BRL, USA, and 1% penicillin/

streptomycin. The cells were incubated under standardized

conditions, including a constant temperature of 37°C, a carbon

dioxide concentration of 5%, and a humidity level of 95%.
SiRNA transfection

IRX4 knockdown was achieved by employing short interfering

RNA constructs obtained. The transfection process followed the

prescribed guidelines supplied by Lipofectamine 3000 RNAiMAX

(Invitrogen, USA). The cells were introduced to a six-well plate when

they reached a 50% coverage and subsequently underwent

transfection using negative controls (si-NC) as well as knockdown

constructs (Si-IRX4-1 and Si-IRX4-2). The transfection process

utilized Lipofectamine 3000 RNAiMAX (Invitrogen, USA) for each

instance. The siRNA sequences are recorded in Supplementary

Table S2 in the Supplementary Materials.
Cell viability assay

The CCK-8 assay was used to evaluate the cellular vitality of

MDA PCa 2b and VCap cells after transfection. The cell

suspensions were added to a 96-well plate with a density of 5×10³

cells per well and incubated for 24 hours. After adding 10mL of

CCK-8 labeling reagent (A311-01, Vazyme) to each well, the plate

was placed in a light-protected environment and incubated at 37°C

for 2 hours. Cell viability was assessed by quantifying the

absorbance at 450nm using an enzyme-linked immunosorbent

assay (ELISA) reader on days 1, 2, 3, and 4. The mean optical

density (OD) values were computed and depicted on a line graph.
Cell proliferation assay with 5-Ethynyl-
2’-deoxyuridine

MDA PCa 2b and VCap cells that had been genetically modified

were placed in a 6-well plate at a concentration of 5×10³ cells per

well and let to grow overnight. Afterwards, a solution of EdU with a

concentration that is twice as strong as the original was prepared by
Frontiers in Immunology 05
combining 10 mM EdU with a medium that does not contain

serum. The solution was introduced into the cell culture and

permitted to incubate at a temperature of 37°C for a duration of

2 hours. After the incubation period, the liquid containing the cells

was removed, and the cells were carefully rinsed with PBS.

Subsequently, the cells were treated with a 4% paraformaldehyde

solution for a duration of 30 minutes to ensure fixation. Afterwards,

a glycine solution with a concentration of 2 mg/mL and 0.5% Triton

X-100 was administered for a duration of 15 minutes. Subsequently,

the cells were incubated at room temperature with a solution

containing 1 ml of 1X Apollo and 1 ml of 1X Hoechst 33342 for

a duration of 30 minutes. Fluorescence microscopy was used to

measure and analyze cell proliferation.
Wound healing assay

The cells were transfected, then grown to a cell density of 95%

by seeding them onto 6-well plates. Then, using a sterile 200 mL
pipette tip, a careful linear scratch was made over the cell layer in

the culture wells. After that, PBS was used to gently wash the

wells. After rinsing, the cell culture was let to continue and the

culture medium was changed. Photography was used to record

the scratches at the original time point (0 hours) and 48 hours

later. Measurements were made of the scratches’ width for

further examination.
Transwell assay

To prepare for the experiment, the cells were subjected to a 24-

hour serum-free medium starvation. Subsequently, cell suspensions

were added to the upper chamber, which contained Costar, after the

addition of matrix gel (BD Biosciences, USA). In the lower

chamber, serum-containing medium was added. The cells were

then incubated in a cell culture incubator for 48 hours. After the

incubation period, the cells were fixed with 4% paraformaldehyde

and stained with crystal violet to evaluate their invasive capacity.
Statistical analysis

We performed statistical analysis using R software and Python

software to analyze the database data. All p-values reported in this

study are two-tailed, with values less than 0.05 considered

statistically significant. P-values below 0.001 were considered

highly significant, while those below 0.0001 were regarded as

extremely significant.
Results

Single cell landscape of PCa

We conducted an extensive analysis of the obtained dataset to

unveil the intricate single-cell landscape within the PCa
frontiersin.org
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microenvironment. Our workflow was illustrated in Figure 1. Using

the known typical cell type marker genes, 127,930 high-quality cells

were labeled. By using dimensionality reduction clustering with

UMAP plot, 9 cell types were obtained: T-NK cells, B-plasma cells,

endothelial cells (ECs), myeloid-cells, mast cells (MCs), epithelial

cells (EPCs), pericytes-smooth muscle cells (pericytes-SMCs),

fibroblasts, and plasmacytoid dendritic cells (pDCs). The

proportions of different tissue types (Adjacent-Normal high-grade

(NHG), Adjacent-Normal low-grade (NLG), Tumor high-grade

(THG, Gleason 8–10), Tumor low-grade (TLG, Gleason 6 and 7)

and cell cycle phases (G1, G2/M, S) in various cell types were

visualized using pie charts (Figures 2A, B).

Subsequently, we analyzed the proportion of cell types in different

phases (Figures 2C, D). We found that EPCs, pericytes-SMCs,

fibroblasts, ECs, and myeloid-cells were mainly derived from tumor

cells. The results of cell cycle study showed that T-NK cells occupied a

larger proportion in G2/M and S phases. Then, we described the

expression level and distribution of typical marker genes related to

cell subtypes in cells (Figures 2E, F). By visualizing the analysis of G2/

M.score, S.score, nFeature-RNA and nCount-RNA of all cells, the

differences among cell types were further clarified (Figure 2G). The

results of enrichment analysis showed that the marker genes of EPCs
Frontiers in Immunology 06
were mainly enriched in oxidative phosphorylation pathway

(Figure 2H). It is worth noting that PCa is mainly transformed

from glandular epithelial cells of prostate (74), and oxidative

phosphorylation is considered as a tumor-related metabolic marker

(75), which confirms that our findings are consistent with the

recognized biological functions related to PCa.
Visualization of malignant cell subtypes
in PCa

Given the profound importance of malignant cells in TME,

our subsequent objective is to characterize these cells in the

microenvironment of PCa. Studies indicated that a high CNV score

typically signified significant copy number alterations within cells,

which might have been associated with malignant transformation.

CNV scoring could be utilized to identify tumor heterogeneity and

reveal the presence of different subpopulations within the tumor

microenvironment, aiding in the understanding of tumor

development and resistance mechanisms (76, 77). To detect aberrant

amplification or deletion of chromosome copy number in EPCs, we

initially employed inferCNV to analyze the chromosome CNV of
FIGURE 1

Graphical Abstract. The analysis workflow for this research. We performed single-cell sequencing analysis on the GSE181294 dataset and identified a
distinct C3 NEFH+ malignant cells subtype. Through pseudotime analysis, enrichment analysis, cell communication, and transcription factor
regulation analysis, we revealed the significance of this subtype and confirmed the important role of the key TF (IRX4) through in vitro experiments.
Prognostic and immune analyses provided guidance for clinical intervention and treatment.
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epithelial cells using endothelial cells as a reference (Supplementary

Figure S1). According to CNV level, malignant cells was distinguished

from EPCs. After that, we re-clustered 3,076 malignant cells, and

annotated them according to each cell marker gene, and identified four

malignant cell subtypes: C0 TRPM4+ malignant cells, C1 SLPI+

malignant cells, C2 MIR205HG+ malignant cells and C3 NEFH+

malignant cells (Figure 3A). We employed the UMAP plot

combined with a cellular proportion pie chart to illustrate the relative

distribution of different subgroups (THG and TLG) within the four
Frontiers in Immunology 07
malignant cell subtypes (Figure 3B). Additionally, we visualized these

cells based on tissue types (Figure 3C). The results demonstrated that,

compared to other subtypes, the C1 and C3 malignant cell subtypes

exhibited a higher proportion of THG tissue. Additionally, a stacked

bar graph revealed that THG tissue predominantly comprised the C1

and C3 subtypes, in contrast to TLG tissue (Figures 3D, E). Therefore,

we hypothesized that the heterogeneity between these two tissue types

may be associated with the C1 and C3 subtypes. Similarly, the Ro/e

preference plot indicated a higher cell abundance of C1 and C3
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FIGURE 2

Single-cell analysis in PCa. (A, B) The UMAP plots depicted the single-cell lineage revealed in this work and labeled cell types using established
marker genes (T-NK cells, B-plasma cells, ECs, myeloid-cells, MCs, EPCs, pericytes-SMCs, fibroblasts, and pDCs). The pie charts depicted the
allocation of individual cell types across various Group and Phase classifications. (C, D) The stacked bar graphs illustrated the relative amounts and
distributions of nine cell types in various tissue sources and stages of the cell cycle. (E) The bubble plot depicted the levels of gene expression for
the five most significantly different genes across the nine cell types of PCa. The size of each bubble was proportional to the percentage of gene
expression, while the color indicated data normalization. (F) The UMAP plots were used to show the differential gene expression in the nine cell
types. (G) The UMAP plots displayed the G2/M scores, S scores, nFeature-RNA, and nCount-RNA of the nine cell types. (H) Conducting enrichment
analysis to identify variations in biological processes across distinct cell types in PCa.
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subtypes in THG tissue, further substantiating our conclusion

(Figure 3F). Figure 3G showcased the differential expression of the

top five marker genes in the malignant cell subtypes, visualized using

the volcano plots (Figure 3H).
Frontiers in Immunology 08
Next, we showed the results of CNVscore, nFeature-RNA and

nCount-RNA of different tissue types and malignant cell subtypes by

violin plots (Figures 3I, J). It was found that the CNVscore of THGwas

higher than that of TLH, which was consistent with the biological
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FIGURE 3

Visualization of malignant cell subtypes in PCa. (A) Malignant cells were annotated based on known specific marker genes (represented by color): C0
TRPM4+ malignant cells, C1 SLPI+ malignant cells, C2 MIR205HG+ malignant cells, and C3 NEFH+ malignant cells. The UMAP plot was used to
visualize the distribution of these four malignant cell subtypes. (B) Pie charts displayed the distribution of each malignant cell subtype in different
tissue types based on the UMAP plot. The tissue types were categorized as THG and TLG. (C) The UMAP plot illustrated the distribution of malignant
cells across different tissue types. (D, E) Bar graphs illustrated the relative proportions of the four malignant cell subtypes across various samples and
tissue types. (F) The Ro/e score was used to evaluate the tissue preference of each subtype of malignant cells. (G) Bubble plots depicted the mean
expression levels of the top five genes that were differently expressed in each malignant cell subtype. The size of each bubble was proportional to
the percentage of gene expression, while the color indicated data normalization. (H) The volcano plots displayed the expression levels of
significantly upregulated and downregulated genes in the four malignant cell subtypes. (I–J) The violin plots illustrated the levels of CNVscore,
nFeature_RNA, and nCount_RNA in different tissue types and malignant cell subtypes. (K–M) Enrichment analysis results of biological processes in
the malignant cell subtypes were presented. (N) Bubble plots visually represented the metabolic pathways in several malignant cell subtypes.
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process of PCa tissue. It is noteworthy that both the C1 and C3

subtypes exhibited higher CNV scores. Additionally, compared to the

C1 subtype, the C3 subtype with high NEFH expression showed

elevated levels of nCount-RNA and nFeature-RNA. Therefore, we

inferred that the C3 subtype’s malignancy level might have been higher.

Subsequently, we determined that the subtypes shared specific

biological functions through the enrichment analysis of a variety of

malignant cells. For instance, transition metal homeostasis was

associated with both C1 and C3 subtypes. Furthermore, the C3

subtype was enriched in the cholesterol metabolism process

(Figures 3K–M). We also illustrated the metabolism pathways

using bubble plot and discovered that the C3 subtype was

substantially enriched in the metabolic pathways of glutathione

metabolism and fatty acid biosynthesis (Figure 3N).
Unveiling the development and
differentiation characteristics of malignant
cell subtypes through pseudotime analysis

To understand the source and development of cancer cells, we

extensively studied the intricate lineage and advancement of malignant

cells utilizing the Monocle software. It was easy to see in Figures 4A–E

that the C2MIR205HG+malignant cells weremostly in the early stages

of differentiation, more specifically in state 1 along the time axis.

Conversely, the C3 NEFH+ malignant cells were in the last stage of

development, predominantly found within state 3 throughout the

temporal trajectory. Afterwards, we utilized the CytoTRACE

technique to evaluate the differentiation and developmental

correlation between several subtypes of tumor cells. The findings

indicated that C3 NEFH+ malignant cells displayed elevated cellular

stemness, as seen in Figure 4F. Combining the Slingshot analysis, we

discovered a differentiation boundary transitioning from TLG to THG

tissue types, indicating a higher malignant degree among the cells at the

terminal stage of differentiation (Figure 4G). Malignant cells often

possess self-renewal capability and differentiation potential. Thus, as

the tumor advances, malignant cells in the last stage of differentiation

tend to have greater cellular stemness, in line with the results obtained

from the CytoTRACE investigation. Furthermore, the progression of

cancerous cell subtypes can be described in the order of

C2→C1→C0→C3. Additionally, the slingshot analysis of time states

showed that State 3 was positioned at the end of one of the

differentiation branches, with a greater proportion of C3 subtypes

within state 3. This finding further supports the conclusions drawn

from the Monocle analysis (Figures 4H, I).

Consistent with those findings, the genes TRPM4, which serve

as markers for the C0 subtype, and NEFH, which serve as markers

for the C3 subtype, were predominantly expressed during the mid-

late stage of the developmental trajectory. On the other hand, the

expression levels of SLPI, a marker for the C1 subtype, and

MIR205HG+, a marker for the C2 subtype, were initially high but

declined over time (Figure 4J). In addition, we conducted GO-BP

enrichment analysis on the DEGs linked to the malignant cell

subtypes. The analysis revealed that these genes were mainly

enriched in biological processes related to immunity, cytotoxicity,

antigen, processing, and other similar activities (Figure 4K).
Frontiers in Immunology 09
Cell-cell communication and visualization
of the PTN signaling pathway

We utilized CellChat to infer and analyze communication between

tumor cell subtypes and other cell types from single-cell data

(Supplementary Table S3). The number and intensity of interactions

between all cell types in PCa samples were comprehensively

summarized (Figure 5A). It was found that compared with other

types of cells, C3 NEFH+ malignant cells had a more significant effect

on pericytes-SMCs and fibroblasts. The circle graphs quantified the

number and intensity of interactions between all cells with C3 NEFH+

malignant cells as the signal source and fibroblasts as the target

respectively (Figures 5B, C). The results showed that there was a

strong intercellular communication network between C3 NEFH+

malignant cells and fibroblasts.

Next, we identified the ligand-receptor signals associated with

the communication pathway (Figure 5D) to determine the primary

afferent and efferent signals related to the C3 NEFH+malignant cell

subtype and other cells. The findings indicated that the primary

ligands associated with the output of C3 NEFH+ malignant cells,

when employed as signal senders, were MIF, MK, GDF, and CD46.

As signal receivers, the fibroblast-related receptors mainly included

PTN, CD99, and PDGF.

Subsequent analysis revealed potential connections to the PTN

signaling pathway network. Through network centrality analysis of the

inferred PTN signaling network, we found that C3 NEFH+ malignant

cells can act as signal senders within the PTN pathway. Fibroblasts, on

the other hand, can function both as signal sender promoting their

transformation into cancer-associated fibroblasts (CAFs) and as signal

receiver, mediator, and influencer interacting with C3 NEFH+

malignant cells (Figure 5E). Notably, C3 NEFH+ malignant cells

demonstrated the ability to engage in paracrine interactions with

fibroblasts, resulting in a substantial communication intensity

between these cell populations (Figure 5F). In addition, we compared

the receptor-ligand interaction between C3 NEFH+ malignant cells

and other cell types and found that when this subtype interacted with

fibroblasts, the ligand receptor had a high communication probability

with PTN-NCL (Figures 5G, H). Additionally, a circle graph further

confirmed that the interactions between C3 NEFH+ malignant cells

and fibroblasts could be mediated through the receptor-ligand pairs

within the PTN signaling pathway, specifically involving PTN-

NCL (Figure 5I).

Essentially, our study provided profound insights into the

intricate interactions between fibroblasts and malignant cell

subtypes in PCa. This relationship is likely closely linked to the

transformation of fibroblasts into CAFs, which promotes the

progression of PCa.
Identification and analysis of TFs
regulatory modules

TFs can directly interact with the genome and regulate gene

transcription by binding to specific nucleotide sequences upstream

of the target gene. This interaction plays a significant role in

determining the biological functions of cells.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1517679
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1517679
FIGURE 4

Slingshot analysis of malignant cell subtypes. (A) The Monocle analysis was utilized to infer the developmental trajectory of malignant cells. (B) Cells
were colored based on pseudotime and visualized to show the position of different cell types along the developmental trajectory. (C) The ridge plot
depicted the dynamic changes in the cell state of different cell subtypes. (D, E) The pseudotime was divided into seven-time states (States 1-7) based
on the time order, and the slingshot analysis inferred the differentiation trajectories of different cell subtypes at each time stage. The stacked bar
graph showed the proportions of cell subtypes in each of the seven-time stages. (F) The Cytotrace analysis was employed to rank the stemness of
malignant cell subtypes. (G–I) The UMAP plots displayed the slingshot differentiation trajectories of different malignant cell subtypes, different tissue
types, and different time stages. The solid lines represented the differentiation trajectories, and the arrows indicated the direction of differentiation
(from naive to mature). (J) Differential expression patterns of marker genes for four malignant cell subtypes during the differentiation process.
(K) The GO-BP enrichment analysis confirmed the biological processes corresponding to the pseudotime trajectory of malignant cell subtypes.
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FIGURE 5

Cellular communication landscape in PCa. (A) Circle graphs displayed the number (upper) and intensity (lower) of interactions among all cells in PCa.
The size of each circle was proportional to the number of cells in each group, and the edge width represented the communication probability.
(B) Circle graphs displayed the number (upper) and intensity (lower) of interactions of C3 NEFH+ malignant cells as the source with other cells.
(C) Circle graphs displayed the number (upper) and intensity (lower) of interactions of fibroblasts as the target with other cells. (D) Bubble plots
compared the outgoing communication patterns of secretory cells (upper) and the incoming communication patterns of target cells (lower). The
size of each dot was proportional to the contribution score calculated by pattern recognition analysis. Higher contribution scores indicated richer
signaling pathways in the corresponding cell group. (E) Heatmap displayed the centrality scores of the PTN signaling pathway. (F) Hierarchical graph
depicted the interactions between C3 NEFH+ malignant cells and other cell types in the PTN signaling pathway. (G) Comparative Analysis of
Significant Ligand-Receptor Pairs in the Interaction of C3 NEFH+ Malignant Cells with Other Non-malignant Cell Types. The color of the dots
represents the probability of communication between specific ligand-receptor pairs across the sender cell clusters and the recipient cell clusters.
The ligand is denoted as the former and the receptor as the latter, separated by a hyphen. (H) Bubble plot displayed the interactions between cells in
the PTN signaling pathway. (I) Circle plot showed the communication network of PTN-NCL ligand-receptor pairs with tumor cells as the receiver.
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To begin with, we employed the SCENIC and connection

specificity index matrix to classify prostate malignant cells into

four regulatory modules (M1, M2, M3, M4) based on the similarity

of AUCell score rules (Figure 6A). Subsequently, we conducted

dimensionality reduction and clustering analyses considering

various subtypes and tissue types (Figures 6B, C).

Through a comparison of the expression levels and regulatory

activities of TFs within each module and the malignant cell subtypes,

we identified that the TFs in the M4module predominantly regulated

C3 NEFH+ malignant cells (Figures 6D, E). Within the M4 module,

we found that IRX4 exhibited the highest fraction of variance across

the subtypes, indicating its prominent role in explaining a significant

portion of the data variability within the M4 module (Figure 6F).

Importantly, IRX4 demonstrated a high specificity score in C3 NEFH

+ malignant cells and THG (Figures 6G, H). This suggested a strong

and specific regulatory relationship between IRX4 and its target

genes, highlighting its potential as a biomarker or therapeutic target.

Finally, we visualized the expression levels of five key regulatory

factors (NEUROD1, IRX4, LTF, PURA, and ELK4) in the C3 subtype

(Figures 6I, J). We observed that the expression of IRX4 in the C3

subtype was significantly higher compared to other malignant cell

subtypes. To further investigate the relevance of these TFs, we

performed survival analysis using Kaplan-Meier and AUC curves

(Supplementary Figures S2A–F). Interestingly, our results indicated

that high expression of IRX4 might be associated with a poorer

prognosis in PCa. Nevertheless, the specific mechanism by which

IRX4 influences PCa remains unclear. Therefore, conducting in vitro

functional experiments to validate the impact of IRX4 on PCa cells

is imperative.

In vitro experimental verification

To further investigate the role of IRX4 in PCa, we conducted

in vitro experiments using MDA PCA 2b and VCap cell lines.

Initially, we knocked down IRX4 and assessed the mRNA and

protein expression levels before and after knockdown. Our findings

revealed a significant decrease in mRNA and protein expression

levels in both cell lines compared to the control group (Figure 7A).

Moreover, there was a noticeable decrease in cell viability following

the knockdown (Figure 7B).

Subsequent colony experiments demonstrated a significant

reduction in the number of cells after IRX4 knockdown (Figures 7C,

D). Additional EDU experiment confirmed that the knockout of IRX4

partially inhibited cell proliferation (Figure 7E). Furthermore, the

wound healing assay and Transwell assay indicated a substantial

decrease in cell migration after IRX4 knockdown (Figures 7F–H),

and the cell invasion capability also decreased (Figure 7I).

Collectively, these results indicate that the knockdown of IRX4

can inhibit the activity, migration, and proliferation of tumor cells,

thereby impeding tumor growth.

Construction and correlation analysis of
risk prediction model

We developed a prognostic model to investigate the clinical

significance of the NEFH+/IRX4 regulatory network. Initially, we
Frontiers in Immunology 12
performed univariate Cox regression analysis to identify genes

significantly associated with prognosis (Figure 8A). To address the

issue of multicollinearity among these genes, we employed LASSO

regression analysis for further selection (Figure 8B). Subsequently, a

multivariate Cox regression analysis was conducted, resulting in the

identification of five genes related to prognosis. The coef values for

these genes were calculated (Figures 8C, D). The findings revealed

that ZNF782, ZNF695, YY1, NR1I3, and FOXA3 were unfavorable

prognostic factors.

To further investigate the differences between different scoring

groups, we performed an analysis of DEGs. Based on the optimal cut-

off value ofNEFH+malignant cell score, patients in the TCGA cohort

were categorized into two groups: the high NmRS group and the low

NmRS group (NmRS: NEFH+ malignant cells risk score). It was

observed that higher scores were associated with worse prognosis.

Curve and scatter plots were utilized to illustrate the differences in

risk scores, survival, and outcomes between the two groups, clearly

indicating that the high NmRS group was associated with a poorer

prognosis (Figure 8E). Furthermore, a heatmap was generated to

display the differential expression of the five genes between the high

and low NmRS groups (Figure 8F). Principal component analysis

demonstrated that PC1 (high NmRS group) accounted for 10.2% of

the total variance in all principal components, while PC2 (low NmRS

group) accounted for 4.2% of the total variance (Figure 8G).

Additionally, the ROC curve provided an intuitive visualization of

the AUC values predicted by the TCGA cohort at 1 year, 3 years, and

5 years, demonstrating the predictive value of the model (Figure 8H).

The Kaplan-Meier survival curve further confirmed the conclusion

that the high NmRS group had a worse survival outcome, with a p-

value less than 0.0001 (Figure 8I).

To elucidate differential gene expression and associated

biological processes between high and low groups, we employed

visualization and enrichment analysis techniques. Initially, a

heatmap was utilized to depict gene expression of the top thirty

genes (Figure 9A), while a volcano plot showcased differential gene

up-regulation and down-regulation (Figure 9B).

Subsequently, various enrichment methods were employed to delve

deeper into the related biological processes. KEGG analysis indicated

predominant enrichment of differential genes in cytoskeleton in muscle

cells, motor proteins, and cardiac muscle contraction (Figure 9C).

Conversely, GO analysis revealed enrichment in myofibril and muscle

cell development (Figure 9D). Furthermore, GSVA enrichment analysis

was conducted on the gene set comprising the prediction model, as

represented in the heatmap (Figure 9E). Lastly, GSEA analysis was

performed on the initial 30 up-regulated and down-regulated genes. Up-

regulated genes exhibited enrichment in DNA geometric change, sister

chromatid segregation, mitotic sister chromatid segregation, cell cycle

DNA replication, down-regulated genes were primarily enriched in

striated muscle adaptation, sarcomere organization, striated muscle cell

development, and muscle cell development (Figure 9F).

Analysis of immune infiltration, mutation,
and drug sensitivity

To investigate immune cell composition differences in NmRS

with varying risk scores, we employed the CIBERSORT algorithm
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FIGURE 6

Identification of gene regulatory networks in C3 NEFH+ malignant cells. (A) Heatmap displayed the identification of four regulatory modules in
malignant cell subtypes based on SCENIC regulatory rule modules and AUCell similarity scores. (B, C) UMAP plots colored and visualized all
malignant cells based on the activity scores of regulatory modules, respectively, according to cell subtypes and tissue types. (D) Bar graphs provided
a visual comparison of the AUC values of TFs in each module across different malignant cell subtypes. (E) Scatter plots displayed the regulatory
activity of TFs in each module across different malignant cell subtypes. (F) Scatter plot displayed the ranking of TFs based on the fraction of variance
across subtype in each module. (G, H) Rank the regulatory factors of different malignant cell subtypes and tissue types based on the regulatory
specificity score. (I, J) Bar graphs depicted the AUC value of the top five TFs in C3 NEFH+ malignant cells across different malignant cell subtypes.
UMAP plots visualized the distribution of these TFs.
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for analyzing twenty-two immune cell types in TCGA database

PCa patients, as illustrated in Figure 10A. The proportions of eight

immune cell categories were presented in Figure 10B, revealing

distinctions between the two groups via a box plot. Notably,
Frontiers in Immunology 14
higher infiltration of naive B cells, T cells CD4 memory resting,

and T cells follicular helper was observed in the high NmRS

group, implying potential immune reactions associated with

immune escape.
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FIGURE 7

In vitro experiments confirmed the effects of IRX4 knockdown. (A) Decreased mRNA and protein expression levels after IRX4 knockdown. (B) CCK-8
assay showed a significant decrease in cell viability after IRX4 knockdown compared to the control group. (C, D) Colony formation assay
demonstrated a significant decrease in colony numbers after IRX4 knockdown. (E) EDU staining experiment confirmed the inhibitory effect of IRX4
knockdown on cell proliferation. (F) Wound healing assay showed that IRX4 knockdown inhibited cell migration. (G) Bar graph displayed a significant
decrease in cell proliferation and migration abilities after IRX4 knockdown. (H, I) Transwell assay showed that IRX4 knockdown suppressed the
migration and invasion abilities of tumor cells in MDA PCA 2b and VCap cell lines. **P<0.01, ***P<0.001.
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FIGURE 8

Construction and validation of the NEFH+ malignant cells risk score (NmRS) model. (A) Forest plot of univariate Cox regression analysis showed
genes with significant differences (HR<1: protective factors, HR>1: risk factors). (B) LASSO regression analysis identified five prognostic-related genes
(non-zero regression coefficients). The optimal parameter was determined through cross-validation (upper plot), and the LASSO coefficient curve
was determined using the optimal lambda (lower plot). (C) Forest plot displayed the results of multivariate Cox regression analysis. (D) Bar graph
showed the Coef values of the genes used for model construction. (E) Curve plot displayed the risk scores of the high NmRS group and low NmRS
group (upper plot), and scatter plot showed the survival/death events over time in the two groups (lower plot). (F) Heatmap displayed the differential
expression of model genes, with color scale based on normalized data. (G) Scatter plot showed the distribution of genes along PC1 and PC2 in the
high NmRS group and low NmRS group. (H) Sensitivity and specificity of 1-year, 3-year, and 5-year outcomes were evaluated using ROC curves and
AUC values. (I) Kaplan-Meier curves displayed the survival differences between the high NmRS group and low NmRS group.
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Subsequently, we assessed the correlation between immune cells

and NmRS, as depicted in Figure 10C. The findings indicated a

significant positive correlation between NmRS and macrophages, T

cells CD4 memory resting, and T cells follicular helper, while a

significant negative correlation was observed between NmRS and

M1 macrophages. A heatmap visualization was employed to depict
Frontiers in Immunology 16
the correlation analysis among immune cells, modeling genes, OS,

and risk score (Figure 10D). Moreover, differences in TIDE values

between the two groups were evident (Figure 10E).

Additionally, Figure 10F displayed a heatmap showcasing

variations in modeling genes, StromalScore, ImmuneScore,

ESTIMATEScore, TumorPurity, and immune cell infiltration
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FIGURE 9

Enrichment analysis of DEGs and GSVA analysis results. (A) Heatmap displayed the expression of the top 30 DEGs in the high and low NmRS groups.
(B) Volcano plot showed the upregulated and downregulated DEGs in the high and low NmRS groups. (C) Bar graph displayed the results of KEGG
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levels between the high NmRS and low NmRS groups, computed

using the CIBERSORT and Xcell algorithms.

Next, we presented the correlation between DEGs and tumor

mutation load using a waterfall diagram for the high and low-risk

groups (Figure 10G). Furthermore, the correlation between

immune checkpoint-related genes, modeling genes, risk score, and
Frontiers in Immunology 17
OS was displayed in a bubble plot (Figure 10H). The results revealed

a strong positive correlation between NR1I3, ZNF782, YY1, and

most immune checkpoints.

Finally, through drug sensitivity analysis, we identified potential

clinical efficacy of certain drugs for prognosis-related genes,

including ABT.263, AZD.2281, Bleomycin, Cisplatin, Cytarabine,
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FIGURE 10

Analysis of immune infiltration differences and drug sensitivity in different risk groups of C3 NEFH+ malignant cells. (A) Stacked bar graph displayed the
distribution of twenty-two immune cells among different risk score groups. (B) Box plot showed the differences in eight types of immune cells between
high and low NmRS groups. (C, D) Lollipop chart and heatmap displayed the correlation analysis between immune cells and risk scores, model genes,
and OS. (E) Differences in TIDE levels were shown between high and low NmRS groups. (F) Heatmap displayed the differences in infiltration levels of
immune cells calculated using CIBERSORT and Xcell, as well as the model genes, StromalScore, ImmuneScore, ESTIMATScore, and Tumor Purity
between the high and low NmRS groups. Color scale was based on standardized data. (G) Calculation of the correlation between DEGs and tumor
mutation burden, and waterfall plot showed the results in the high and low-risk score groups. (H) Bubble plot showed the correlation between model
genes, risk scores, OS, and immune checkpoint-related genes. (I) Drug sensitivity analysis. *P < 0.05, **P < 0.01, ***P < 0.001.
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Embelin, Epothilone.B, Etoposide, IPA.3, Methotrexate, MS.275,

Shikonin, and Vorinostat. However, for the low-risk group,

Dasatinib and Bicalutamide were found to be effective (Figure 10I).
Discussion

PCa is a prevalent malignancy of the male reproductive system,

and its treatment continues to face numerous challenges, particularly

in the management of metastatic disease. Treatment resistance is one

of the primary factors leading to therapeutic failure in PCa,

significantly impacting patient prognosis (78). Research has shown

that high-grade PCa with Gleason scores of 8-10 exhibit rapid

growth, increased metastatic risk, and heightened resistance to

treatment (79). High-grade PCa exhibited more aggressive

biological behavior, often characterized by faster growth and an

earlier tendency to metastasize. The rapid progression of these

tumors could have been linked to the genetic instability of tumor

cells, the activation of the EMT process, and the inflammatory

responses within the tumor microenvironment (80). The metabolic

reprogramming in high-grade PCa likely involved changes in lipid

metabolism. Studies indicated that prostate cancer cells were more

dependent on fatty acid oxidation as the primary energy supply

pathway, with relatively lower glucose uptake rates (81). To address

these challenges, the rapid development of scRNA-seq in recent years

has provided powerful tools for cancer immunology research. These

technologies facilitate an in-depth analysis of cellular interactions

within the TME and their roles in disease progression, thus offering

new perspectives for exploring treatment strategies (82).

To elucidate the complexities of the PCa TME, we employed

scRNA-seq to depict the overall landscape of the TME. Dimensionality

reduction and clustering analyses revealed a significant increase in the

proportion of tumor cells among various stromal cell types, including

EPCs, pericyte-SMCs, fibroblasts, ECs, andmyeloid-cells. Notably, PCa

primarily originates from prostatic glandular epithelial cells.

Furthermore, previous studies have indicated that stromal cells, such

as fibroblasts and smooth muscle cells, are crucial components of the

PCa microenvironment and are closely associated with the malignant

transformation of EPCs and cancer progression (83).

Additionally, inflammatory responses are recognized as a

significant hallmark of cancer. In PCa patients, the expansion of

myeloid cells in peripheral blood is often correlated with a

shortened tumor survival period and resistance to treatment (84).

Studies have indicated that myeloid inflammatory cells play critical

roles in promoting the progression of PCa and treatment resistance

(85). This finding aligns with our conclusions and further

underscores the interactions among various cellular components

in the TME and their impact on PCa progression.

To reveal the intra-tumor heterogeneity of malignant epithelial

cells, we categorized the obtained cells into four subtypes: C0 TRPM4+

malignant cells, C1 SLPI+ malignant cells, C2 MIR205HG+ malignant

cells, and C3 NEFH+malignant cells. TRPM4 was a calcium-activated,

non-selective cation channel that was widely expressed in various

organs, immune cells, and the central nervous system. It was

involved in physiological processes such as circulation, immune
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response, cancer, and hormone secretion (86). Secretory leukocyte

protease inhibitor (SLPI), a protein with broad anti-inflammatory and

immunoregulatory functions, its expression had altered in diabetic

nephropathy (DN), likely linked to its role in reducing inflammation

and protecting the kidneys from damage (87). MIR205HG, a long non-

coding RNA (lncRNA), played a key role in esophageal cancer,

potentially influencing tumor progression by regulating processes

such as cell proliferation, migration, invasion, and apoptosis, and it

might serve as a potential diagnostic and therapeutic target for

esophageal cancer (88). NEFH (Neurofilament Heavy Chain) is a

neurofilament protein primarily found in axons of neurons, where it

promoted efficient neural signal transmission and was linked to the

diameter of nerve fibers, affecting the speed of signal conduction (89).

Analysis of these subtypes revealed that the C3 NEFH+ malignant cell

subtype is closely related to high-grade tumors and exhibits a higher

CNV score, indicating greater malignancy.

Understanding the metabolic changes in cancer unveiled critical

energy pathways, including glycolysis, oxidative phosphorylation,

glutaminolysis, and lipid metabolism, which played essential roles in

cancer cells and served as key targets for cancer therapies (90).

Targeting metabolism was also recognized as an important approach

to enhance the effectiveness of standard treatments such as

chemotherapy, radiotherapy, and immunotherapy. For example,

targeting the metabolism of tumor cells could counteract the

metabolic adaptations induced by standard therapies, thereby

improving their sensitivity (91). Metabolomics technology was

valuable for identifying metabolic reprogramming pathways and key

enzymes associated with disease progression and drug resistance,

providing insights into their functions and molecular regulatory

mechanisms. These findings could identify metabolic vulnerabilities

related to disease and resistance, validating their potential as novel

molecular targets for new drug development or combination therapies

(92). In addition, our metabolic analysis showed significant enrichment

of the C3 subtype in metabolic pathways, such as glutathione

metabolism and fatty acid biosynthesis. Tumor cells typically exist in

a reductive microenvironment, characterized by elevated levels of

glutathione. Previous research has indicated that the baseline

glutathione concentration in PCa cells is significantly higher than

that in normal cells (93, 94). Moreover, excessive dietary fat intake is

considered a major risk factor for PCa, with fatty acid metabolism

playing an essential role in promoting the proliferation of PCa cells

(95). Therefore, the enrichment of the C3 subtype in these metabolic

pathways not only highlights its importance in the metabolic

adaptation of PCa cells but may also reflect its potential role in

tumor progression and resistance. These findings offer new avenues

for metabolic intervention strategies targeting PCa.

Subsequently, through pseudotime analysis, we found that this

subtype was located at the terminal end of the developmental

trajectory, exhibiting higher stemness characteristics. We observed a

differentiation line indicating a transition of tissue types from TLG to

THG, suggesting that cells at the differentiation endpoint possessed

higher malignancy. Notably, the distribution of the differentiation

endpoint closely aligned with that of the C3 subtype. This

observation led us to speculate on the intricate relationship between

the C3 NEFH+ malignant cell subtype and the progression of high-
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grade PCa. Moreover, the trajectories we identified provided significant

insights into the biological implications of tumor progression. The

alignment of the differentiation endpoint with increased malignancy

highlighted how the cells’ developmental status could influence their

aggressive behavior and overall tumor dynamics. By understanding

these trajectories, we could better correlate specific stemness features

with the transition to more aggressive cancer phenotypes. This

emphasized the critical need to study the C3 subtype as a unique

research entity, as it may serve as a key player in the advancement

of high-grade PCa and its associated malignancy features. In the TME,

the role of the tumor stroma is often perceived as dualistic, with the

potential to both inhibit tumor development and promote its

progression. In PCa, the mechanisms governing the interactions

between epithelial and stromal cells remain insufficiently

characterized compared to other malignancies. Fibroblasts, which are

crucial components of the stroma, are prevalent in the TME and

significantly influence tumor cell proliferation and migration through

the secretion of various cytokines, matrix proteins, and growth factors

(96). The TME of PCa was composed of a complex cellular ecosystem

that included tumor cells, immune cells, and stromal cells, among other

cell types. This heterogeneity was particularly evident in prostate cancer

and was closely linked to patient prognosis. While heterogeneity in the

TME was also observed in other cancers, such as breast and lung

cancer, the cellular makeup and interaction patterns might have

differed (97). In prostate cancer, the infiltration of regulatory T cells

(Tregs) was associated with an immunosuppressive microenvironment

in advanced disease, possibly induced by a FAP+ fibroblast

subpopulation (98). Moreover, various cell subpopulations and

transcriptional levels related to disease progression in prostate cancer

were altered, which could have differed from the stromal changes noted

in other cancer types (99). Notably, fibroblasts can differentiate into

CAFs, which have been shown to play critical roles in tumor initiation

and progression (99). The complexity of interactions between

fibroblasts and PCa cells involves multiple signaling pathways,

complicating our understanding of their interconnected relationships

within the TME. To elucidate the potential interaction mechanisms

between C3 NEFH+ malignant cells and fibroblasts, we employed a

systematic analysis of intercellular communications using the CellChat

tool. Our results revealed a robust communication network between C3

NEFH+ malignant cells and fibroblasts. Importantly, C3 NEFH+

malignant cells were found to secrete the factor PTN, which interacts

with fibroblasts via its receptor, NCL. This interaction is pivotal in

facilitating the transformation of fibroblasts into CAFs, a process

closely associated with tumor progression. These findings underscore

the significant role of C3 NEFH+ malignant cells in modulating the

PCa microenvironment. The biological implications of our findings are

profound. C3NEFH+malignant cells appear to actively reconfigure the

stromal landscape, thereby creating an environment conducive to

tumor growth and metastasis. This insight suggests that targeting C3

NEFH+ malignant cells may offer a promising therapeutic strategy.

Disruption of the signaling pathways that mediate the interaction

between these malignant cells and fibroblasts could lead to the

development of novel treatments aimed at counteracting the

supportive role of the stroma in tumor progression. From a

therapeutic standpoint, targeting the PTN-NCL signaling axis may
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provide an innovative approach to inhibit CAF formation and thereby

attenuate tumor aggressiveness. Such targeted therapies could be

synergistically integrated into existing treatment protocols, potentially

enhancing patient outcomes by addressing the TME’s influence on

cancer progression. A key difficulty in drug development was ensuring

the specificity and selectivity of the drug in order to reduce off-target

effects. For instance, the knockdown of PTN in young mice resulted in

defects in adult neurogenesis and cognitive dysfunction. This

highlighted the need for careful consideration of the potential

neurotoxic effects when developing drugs targeting the PTN-NCL

signaling axis (100). Drug resistance was another significant

challenge. In triple-negative breast cancer (TNBC) tissues that had

relapsed after chemotherapy, the expression of PTN and its receptor

PTPRZ1 was found to be elevated, which was closely linked to a poor

prognosis (101). This suggested that tumors might acquire resistance

by upregulating the PTN-NCL signaling axis during treatment, a factor

that needed to be considered in drug development. Overall, these

findings highlight the critical need for further research into the

dynamic interactions within the TME and their implications for

developing effective therapeutic interventions.

In our in-depth analysis of TFs, we identified key TFs in the C3

NEFH+ malignant cell subtype, including NEUROD1, IRX4, LTF,

POURA, and ELK4. Notably, IRX4 exhibited the highest subtype

variance proportion in the M4 module, indicating its central

regulatory role in C3 NEFH+ malignant cells. Moreover, IRX4

demonstrated high specificity scores in both the C3 NEFH+

malignant cell subtype and THG tissue, suggesting a strong

regulatory relationship between this TF and its target genes.

Consequently, IRX4 may serve as a potential biomarker or

therapeutic target. Survival analysis results indicated that the

expression level of IRX4 is likely associated with poorer prognosis

(P<0.05). Previous research has confirmed that the knockdown of

IRX4 can suppress stem-like characteristics and resistance to

gefitinib in non-small cell lung cancer cells (102), although the

specific mechanisms of IRX4 in PCa remain unclear. Thus, IRX4

may become a promising focal point in PCa research.

Early and accurate identification of high-grade PCa is crucial for

advancing both basic research and clinical practice. However,

existing methods are limited due to the lack of sensitive and

specific biomarkers. Previous studies have evaluated at least ten

prognostic models based on various gene signatures and machine

learning algorithms; however, these models typically perform

poorly in survival prediction (AUC < 0.6) (103). To address this

gap, we constructed a new predictive model based on the top 100

marker genes of the C3 subtype, achieving good predictive accuracy.

The final five genes associated with poor prognosis were ZNF782,

ZNF695, YY1, NR1I3, and FOXA3. These findings provide new

directions for cancer prediction and diagnosis.

Immune checkpoints play a critical role in regulating immune

responses. Tumor cells often evade immune surveillance by

upregulating immune checkpoints to inhibit local immune responses

(104). Considering the widespread presence of immune cells in the

TME of PCa, we analyzed differences in immune infiltration across

different risk assessment categories. Compared to the lowNmRS group,

the high NmRS group exhibited significantly increased infiltration of
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naive B cells and resting CD4 memory T cells, likely reflecting an

immune response associated with immune evasion (105). Interestingly,

we found a negative correlation between the predictive model score and

M1 and M2 macrophages, suggesting that tumors may promote the

polarization of macrophages toward the M2 phenotype, thereby

inhibiting M1 activity and leading to a dual reduction in the number

of M1 and M2 macrophages. This change may be related to tumor

progression and poor prognosis. Despite enhanced immune

suppression and poorer prognosis in high-risk patient groups, they

may exhibit greater sensitivity to chemotherapeutic agents such as

Dasatinib and Bicalutamide, providing new research directions for

subsequent clinical interventions. Tumor vaccines were found to have

the potential to supplement conventional cancer therapies and targeted

treatments. Their mechanism involved reprogramming the immune

system to target and destroy cancer cells. These vaccines could have

been one of the most promising strategies to overcome the inherent

resistance in current cancer therapies (106). By examining the

interactions between immune cells in the tumor microenvironment,

new therapeutic approaches were developed, such as enhancing anti-

tumor immune responses through modulation of the Th1/Th2 balance

or influencing the function of Treg cells. The spatial architecture of the

tumor microenvironment, particularly the tumor-stroma boundary,

was emphasized for its impact on immune checkpoint blockade (ICB)

efficacy. Targeting specific cell populations in defined spatial regions,

like CXCL14+ CAFs, might have sensitized ICB responses (107).

Although more research and clinical trials were needed to optimize

immune microenvironment modulation for better therapeutic

outcomes, the insights provided new avenues for developing

treatments for PCa. Real-world studies (RWS) served as an

important tool for assessing the efficacy and safety of drugs,

especially in infectious diseases with multiple infection sites and

complex pathogens. In the case of prostate cancer, this meant the

need to evaluate the effectiveness of treatment regimens in a broader

patient population (108). RWS showed that infections caused by

multidrug-resistant Pseudomonas aeruginosa were difficult to treat,

as many antibiotics were ineffective against this critical pathogen. This

suggested that in prostate cancer, multidrug resistance (MDR) might

also be a significant issue, highlighting the need for new treatment

strategies to overcome it (109).

Single-cell sequencing technology has transformed biological

research by enabling the detailed analysis of individual cells. This

advancement has provided critical insights into cellular heterogeneity

and the complex molecular mechanisms underlying diseases like PCa.

In the realm of personalized treatment, single-cell analysis opens new

avenues for understanding the tumor microenvironment and

identifying specific cell types or subpopulations that contribute to

disease progression or therapeutic resistance. By allowing a more

nuanced view of tumor heterogeneity, single-cell analysis enhances

our understanding of PCa biology. The identification of the C3 NEFH+

malignant cell subtype, in particular, presents a valuable opportunity

for future clinical research. Investigating this subtype could lead to the

development of targeted approaches for early screening and the

optimization of treatment strategies. This includes the identification

of potential biomarkers to enhance detection capabilities and the

recognition of specific therapeutic targets to improve treatment
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effectiveness. Furthermore, comprehending the unique characteristics

of the C3NEFH+ subtype will facilitate patient stratification and enable

personalized treatment decisions, ultimately leading to better patient

outcomes. However, this study has several important limitations.

Firstly, the sample size is relatively small, focusing primarily on

single-cell data from a subtype of PCa patients, which may restrict

the generalizability and applicability of the results. Secondly, the

analytical methods used in this study mainly relied on single-cell

sequencing and transcriptomic analysis, without considering other

factors that may influence the outcomes. Therefore, future research

should conduct multicenter studies with larger sample sizes to validate

the potential roles of IRX4 and the constructed prognostic model in

PCa. Additionally, incorporating proteomics and metabolomics

approaches will provide deeper insights into the functional

characteristics of specific subgroups and key molecules, thereby

offering a more comprehensive basis for the early diagnosis and

individualized treatment strategies for PCa. Through multi-omics

analysis, we can better understand the biological mechanisms of

tumors and identify potential therapeutic targets. In summary, our

research focused on the diversity of epithelial cells in high-grade PCa at

the individual cell level, further revealing the significance of IRX4 in

this cancer type. Moreover, we identified several prognostically relevant

genes, discovering a significant correlation between a higher NmRS and

poorer prognosis. These findings not only enhance our understanding

of the developmental mechanisms of PCa but also provide new

opportunities for predicting and diagnosing this disease, with

important clinical implications. Future studies should continue to

explore these discoveries to advance research and treatment progress

in PCa.
Conclusion

This study utilized technology to delve into the complexities of the

PCa TME, revealing the interactions between various cellular

components and their influence on tumor progression. We identified

the C3NEFH+malignant cell subtype, which was associated with high-

grade PCa and exhibits increased malignancy. The communication

between malignant epithelial cells and fibroblasts through the PTN

signaling pathway may be linked to the transformation of CAFs. TFs

analysis identified key regulators, such as IRX4, which plays a central

role in C3 NEFH+ cells, with its expression level significantly

correlating with patient prognosis. These findings provide new

biomarkers and therapeutic targets for the early diagnosis and

treatment of PCa. Furthermore, our survival prediction model based

on C3 subtype marker genes demonstrated promising results, offering a

new tool for clinical practice.

In summary, this research enhances our understanding of the

PCa microenvironment and lays the groundwork for future

therapeutic strategies and biomarker development. We anticipate

that subsequent studies will validate these findings and explore their

potential clinical applications, particularly focusing on cellular

heterogeneity within the tumor microenvironment, elucidation of

resistance mechanisms, and the development of early diagnostic

biomarkers, thereby advancing our understanding of tumor biology.
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SUPPLEMENTARY FIGURE 1

The analysis of inferCNV. Using scRNA-seq data of endothelial cells to predict

CNV. Red indicated amplification, while blue indicated deletion.

SUPPLEMENTARY FIGURE 2

The analysis of the C3 subtype marker gene and the top five TFs in bulk.

Kaplan-Meier survival curves and ROC curves depicted the marked genes of
C3 malignant cell subtype and the top five TFs (NEUROD1, IRX4, LTF, PURA,

ELK4). *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. “ns”was used to

say that there was no significant difference.
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