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2D MoS2-based reconfigurable analog
hardware

Xinyu Huang1,2,10, Lei Tong3,10, Langlang Xu1,10, Wenhao Shi 1, Zhuiri Peng1,
Zheng Li1, Xiangxiang Yu1, Wei Li 4, Yilun Wang 1, Xinliang Zhang 1,
Xuan Gong 5, Jianbin Xu 3, Xiaoming Qiu6, Hongyang Wen7, Jing Wang8,
Xuebin Hu9, Caihua Xiong 5 , Yu Ye6 , Xiangshui Miao 1,2 & Lei Ye 1,2

Biological neural circuits demonstrate exceptional adaptability to diverse
tasks by dynamically adjusting neural connections to efficiently process
information. However, current two-dimension materials-based neuromorphic
hardware mainly focuses on specific devices to individually mimic artificial
synapse or heterosynapse or soma and encoding the inner neural states to
realize corresponding mock object function. Recent advancements suggest
that integrating multiple two-dimension material devices to realize brain-like
functions including the inter-mutual connecting assembly engineering has
become a new research trend. In this work, we demonstrate a two-dimension
MoS2-based reconfigurable analog hardware that emulate synaptic, hetero-
synaptic, and somatic functionalities. The inner-states and inter-connections
of all modules co-encode versatile functions such as analog-to-digital/digital-
to-analog conversion, and linear/nonlinear computations including integra-
tion, vector-matrix multiplication, convolution, to name a few. By assembling
the functions to fit with different environment-interactive demanding tasks,
this hardware experimentally achieves the reconstruction and image shar-
pening of medical images for diagnosis as well as circuit-level imitation of
attention-switching and visual residual mechanisms for smart perception. This
innovative hardware promotes the development of future general-purpose
computing machines with high adaptability and flexibility to multiple tasks.

General-purpose hardware is engineered to mirror human-like
advanced problem-solving abilities and cognitive thinking. The fun-
damental challenge in developing general-purpose hardware lies in
replicating the adaptability and flexibility of human brain intelligence1.

The construction of general-purpose hardware can be decomposed
into developing machine learning modules that simulate various units
of the brain, such as neuron aggregates and then integrated based on a
brain-like cognitive architecture, enabling the system to emulate the
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operational principles and structural intricacies of the human brain
intelligence2. In particular, the highly reconfigurable neural network of
brain neural circuits is one of the important sources of brain intelli-
gence, giving the brain the exceptional capacity for flexible adaptation
to dynamic environments. The brain neural circuits can maintain
flexible reconfigurable synapse/heterosynapse/soma inter-
connections while frequently adjusting neuronal states3. Such dis-
tinctive mode orchestrates the connections of neural circuits across
various interactive environmental tasks to ensure an appropriate
alignment between task complexity and computational resources4. For
neural circuits, neural signals are transmitted to the receiving neuron
via synapse, subsequently relayed through the control of hetero-
synaptic connection to various soma, where the integration and pro-
cessing of signals are performed (Fig. 1a)5–7. Therefore, neuromorphic
computing hardware equipped with this capability needs to be

developed to imitate the principles and structures of the brain neural
circuits. Such hardware should be able to simultaneously implement
precise engineering of individual devices’ inner states and inter-mod-
ules’ connections, thus boosting adaptability and plasticity and pro-
viding strategies for the implementation of adaptability and flexibility
in general-purpose hardware8–10.

2D materials, which possess superior physical properties11, can
support neuromorphic computing hardware12–14. Neuromorphic
hardware based on 2D materials respectively adopts transistors, logic
gates, and memory to construct synapses, heterosynapse, and soma
components, which is optimized for a specific individual function15–17.
Recent advancements have demonstrated the integration of multiple
2D material devices and multiple sensor modalities to achieve brain-
like functionalities18–22. However, despite these advancements, limita-
tions remain in fully emulating the computational flexibility of brain

Fig. 1 | Concept of RAH and reconfigurable functionalities. a Schematic of the
complex structures and functions of biological neural circuits formed by synapses,
heterosynapses, soma, and their inter-connections. In the synaptic component, the
release and reception of neurotransmitters accomplish signal transmission, and
their dynamic modulation (concentration and action time) simulates the reconfi-
gurable weights, reflecting the plasticity inherent in biological synapses. Hetero-
synapses are particularly notable for their ability to facilitate inter-neural circuit
communication through state transitions and to transmit signals across various
types of neural cells. The soma component underscores the integrative capacity of
neural networks in processing complex signals. Themultifunctionality of biological
neural circuits is demonstrated in the capability of these circuits to perform a
multitude of tasks, including perception and learning. b Schematic of the biology-
inspired reconfigurablehardware (I) that encompasses threeprincipalmodules: the
synaptic module (cascaded MoS2 FET arrays), the heterosynapse module (MoS2

FET-basedOPAandMoS2 FETconnections), and the somamodule (MoS2 FET-based
OPA and feedback component integration) (II). These modules employ adjustable
states, such as conductance encoding, switchability, and reconfigurable feedback
mechanisms, to mimic the components of biological neural circuits, such as
synapses, heterosynapses, and soma. This configuration facilitates multitask pro-
cessing, including signal conversion, artificial visual simulation, and neural network
computing (III). cDemonstration of 8-bit DAC. Square-wave input signals (Vin1–Vin8)
with an input amplitude of 0.1 V and an input frequency of fn = 2n−1 × f1, where
f1 = 5 Hz is the input frequency of signal Vin1 (I). Conductance encoding in the
synapse module following j1 (Gn = 2n−1 ×G1, G1 = 6.06μS) (II), a sustained on-state T1

as p1 in the heterosynapse module (III), and a voltage follower as k1 in the soma
module (IV). The inset in the synapse module shows the output curves of the eight
FETs. d Output characteristics of the 8-bit DAC. The inset (black box) provides a
magnified view of the output signal between 170 and 180 milliseconds.
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neural circuits, especially when efficient multitasking is required in
dynamic environments23,24. This limitation results in resource waste in
lightweight settings, specifically, excessive driving signals and device
redundancy, because computational tasks of varying information
content require different device quantities25–27. Moreover, this limited
adaptability may yield suboptimal outcomes because different linear
and nonlinear computational processes are required to match differ-
ent tasks by circuit assembly28–31. Therefore, the development of 2D
material-based reconfigurable analog hardware is the key to truly
emulate the computational flexibility of brain neural circuits for mul-
titasking demands in dynamic environments.

In this work, motivated by biological principles, we developed an
2D MoS2-based reconfigurable analog hardware (RAH) that included
synapse, heterosynapse, and soma modules (Fig. 1b, (I)) and demon-
strated its reconfigurablemultiple functions andpotential as a solution
for general-purpose machines with rich dynamics. At the device level,
synapse, heterosynapse, and somamoduleswere fabricatedwithMoS2
FETs (including cascaded MoS2 FETs and MoS2 FET-based operational
amplifier (OPA) units32). At the circuit level, the synapse, hetero-
synapse, and somamodule wiring assembly was adjusted based on the
task requirements to process the signal transmission. By co-encoding
the inner-states and inter-connections of all modules, the high adapt-
ability and plasticity of RAH allowed the realization of diverse linear
and nonlinear computing functions and effective handling of varying
task requirements. TheproposedRAHrealized the functions of analog-
to-digital converter (ADC) and digital-to-analog converter (DAC), with
reconfigurable resolutions to match different tasks, a bandwidth of
50 kHz, and a maximum power consumption (8-bit ADC and DAC) of
~750μW in a converting period. Given its adaptability and flexibility,
RAH can also support multiple computing functions. For instance, it
was employed in sparse coding and a convolutional computing, which
was then used to reconstruct and image sharping from pathological
regions in computed tomography (CT) images to facilitate easy iden-
tification and assessment by medical professionals. In addition, it
imitated attention switching and visual persistence in visual systems
through designed circuit configurations, which enabled the detection
of distance and velocity in autonomous driving applications. This 2D
MoS2-based RAH implemented the key degrees-of-freedom of the
inner states and inter-connections of devices andmodules. It can pave
the way for the development of future brain-like general-purpose
machines with high adaptability and plasticity for multitasking.

Biology-inspired reconfigurable hardware
Figure 1a illustrates the complex structures and functions of biological
neural circuits formed by synapse, heterosynapse, soma, and their
inter-connections. Motivated by biological principles, we developed
an RAH by employing 2D MoS2 FETs to translate the biological con-
cepts in Fig. 1a to a concrete electronic hardware design (Fig. 1b). RAH
has synapse, heterosynapse, and soma modules, for which diverse

computing functions can be built through connection adaption within
or between thesemodules.As shown in Fig. 1b, (II), the synapsemodule
constructed with multiple cascaded MoS2 FETs achieves synaptic-like
plasticity by modulating the gate voltage to perform the FET con-
ductance state (Gn). Each transistorMn follows a customizable discrete
equation marked as subfunction jx. The heterosynapse module fabri-
cated with MoS2 FET-based OPA units and six MoS2 FETs (T1-T6) con-
trols heterosynaptic-like inter-connection among different neural
circuits by encoding the on/off state of the MoS2 FETs and is known as
subfunction px. The connection encoding table of on/off status for 6
MoS2 FETs programs the heterosynaptic-like inter-connection under
different environment-interactive requirements, as shown in Table S1.
The soma module, composed of MoS2 FET-based OPA and diverse
feedback loops, integrates the front-end transmitted signals and gen-
erates a soma-like response, thus forming subfunction kx33–35. The
manufacturing details are given in the Methods section and Note S1.
The optical images, SEM image, STEM image, and schematic of the
hardware are shown in Fig. S1 and S2, which incorporates over 600
MoS2-based FETs, with an impressive yield rate exceeding 95%. The
performance of the MoS2 FET arrays in the synapse module was
measured and is presented in Figs. S3 and S4. The MoS2 FET-based
OPA’s design details are shown in Note S3, and the corresponding
feedback circuits formed with diverse feedback loops are shown in
Figs. S5–S12. In consideration of the wiring–assembling degree of
freedomcommonly existing in the brain, theflexible combinationof jx,
px, and kx realizes diverse functions for the hardware (Table 1).

To demonstrate the functionalities experimentally, we encoded
eight square-wave signals in eight input channels, with an amplitude of
0.1 V and frequencies of f n =2

n�1 × f 1ðn= 1, 2, . . . , 8Þ, where f1 = 5 Hz
and n represents different input channels (Fig. 1c, (I)). The gate vol-
tages applied to each device in the synapse module could fix the
conductance of M1–M8 to the desired values to satisfy geometric
sequence equation j1:Gn =G1=2

n�1 (G1 is the conductance state of the
first transistor, M1). Here, the conductance of M1 was G1 = 6.06μS at
Vg = 3.62 V (Fig. 1c, (II)). Subfunction p1 was realized by a transimpe-
dance amplifier with a feedback resistor (Rf = 300 kΩ) and an on-state
MoS2 FET and was connected to the voltage follower of subfunction k1
(Fig. 1c, (III) and (IV)). Figure 1d shows the performance of the 8-bit
DAC, with the adjacent transformed analog voltage levels discerned
distinctly. Versatile functions were achieved in RAH by programming
different combinations of subfunctions jx, px, and kx, which were then
utilized to imitate the synapse, heterosynapse, and soma modules,
respectively, leading to RAH’s ability tomimic the adaptive behavior of
organisms in different environments.

Eight-bit DAC/ADC
RAH implemented the functionalities of 8-bit ADC andDAC to show its
signal conversion capabilities. The related simplified circuit is pre-
sented in Fig. 2a. The detailed circuit design and operationmechanism

Table 1 | Multiple functions with reconfigurable hardware configuration

Hardware function Synapse module (subfunction jx) Heterosynapse module (sub-
function px)

Soma module (subfunction kx)

Function 1: DAC Geometric sequence equation j1: Gn =G1=2
n�1 (n = 1–8) Sustained on-state p1: on state T1 Operational state k1: Voltage

follower

Function 1: ADC Sustained on-state p2: on state T3 Operational state k2: Voltage
comparator

Function 2: activation function
(step function)

Non-linear sequence equation j2: G1 = 100*Gj (j = 2–8) Sustained on-state p2: on state T3 Operational state k2: Voltage
comparator

Function 3: Convolution kernel Sharpness convolutional kernel j3: G5 =�9*Gj (j = 1–4, 6–9) Sustained on-state p1: on state T1 Operational state k1: Voltage
follower

Function 4: attention switching Gaussian distribution j4 (activation):
G1, 8 =G2, 7=2=G3, 6=4=G4, 5=8
Universal off states j5 (inactivation): Gn =Goff

Sustained on-state p1: on state T1 Operational state k1: Voltage
follower

Function 5: visual persistence Sustained on-state p2: on state T3 Operational state k2: Voltage
comparator
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of ADC and DAC are given in Notes S3 and S4. In a differential mode
configuration, low-frequency sine waves (1 V peak to peak) were
inputted to the MoS2 FET-constructed OPA in the soma module to
characterize the frequency responses. The gain and phase response
plots related to the input frequency are depicted in Fig. 2b, c. The
maximum gain achieved was 6 dB because the reference resistor was
set to twice the input resistor, leading to a 0dB gain bandwidth cutoff
frequency (fT) at 50 kHz. The high-frequency operation can be
improved by reducing the MoS2 FET sizes36–40.

Furthermore, to characterize the performance of RAH working as
an 8-bit ADC and DAC, we chose six specific pixels from a grayscale
image of the digit 5 containing 256 different levels as inputs (Fig. 2d).
Digital pixels were converted into analog signals by DAC and con-
verted back to digital outputs by ADC (the procedure is in Fig. 2e, and
the conversion details are in Note S6). The analog voltage output
values of DAC were measured (Fig. 2f), and the inset magnified the
signal and noise curves within the dashed red box. The unit quanti-
zation voltage (UQV) reached 14.15mV, and the noise level remained at
24 μV. The UQV-to-noise ratio of the 8-bit DAC was 55.4 dB, indicating
that the converted results could be distinguished clearly. Subse-
quently, the six analog voltage signals were sent to the 8-bit ADC, and
the converted digital number was determined by the corresponding
converting time width t, as shown in Fig. 2g. Simultaneously, we

recorded the Vload value when the output voltage switched to a low
voltage level. Given that the load resistor of ADC and the reference
resistor of DAC shared the same value, Vload and |VDAC_OUT| had nearly
similar values, with the difference being below 1mV, which is much
lower than UQV. This result confirms that the hardware has excellent
fidelity in signal conversion (Fig. 2h), and the DAC/ADC resolution is
reconfigurable. The 4- and 6-bit ADC/DAC functions are presented in
Notes S4 and S5 and Figs. S13–S18, which indicate that RAH can fit the
resolution requirements to avoid resource wastage.

Reconstruction and feature extraction of medical images
The adaptability of RAH makes it applicable to various practical
situations. Here, it was implemented to perform the reconstruction
and feature extraction ofmedical computed tomography (CT) images,
with the aim of improving the identification of pathological regions
and enhancing the accuracy of medical diagnosis. To achieve the
image restoration process, the hardware was used to construct Func-
tion 1 (DAC/ADC) and Function 3 (convolutional kernels) for signal
conversion and convolution calculation, as shown in Fig. 3a. A
256× 256 pixel original CT image containing bleeding spots in the
brain was segmented into 8 × 8 pixel patches for image processing, as
shown in the red dotted box in Fig. 3a (I). First, the hardware working
under ADC and DAC functions was employed for a sparse coding

Fig. 2 | RAH adapted as 8-bit DAC and 8-bit ADC. a Diagram of an 8-bit DAC and
ADC simplified circuit structure. Frequency responses of OPA, including gain
bandwidth (b) and phase bandwidth (c). d Grayscale image of the digit 5 with 256
levels, with 6 selected pixel points as the input signals for the 8-bit DAC. e Entire
data conversion process, including digital signal input Vin1–Vin8 (1), DAC output
signal Vout, DAC (2), reference threshold voltage Vth for ADC (3), and ADC output

signal Vout, ADC (4). f |Vout, DAC| of the 8-bit DAC corresponding to the signal input in
(d) and the noise level of the circuit. The inset compares the unit quantization
voltage (UQV) with noise. g Vout, ADC of the 8-bit ADC corresponding to the signal
input in (f) and the scanning Vth. h Error analysis by comparing |Vout, DAC| and Vth

when ADC finishes conversion.
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algorithm, inwhich the original imagewas reconstructed to reduce the
noise via data transfer and conversion within ADC and DAC (Fig. 3a,
(II)). Second, the hardware adapted as convolutional kernels was used
to sharpen the reconstructed image (Fig. 3a, (III)). The sparse coding
process that involves forward and backward DA/AD conversion (the
details are in Note S7) is shown in Fig. 3b. Signal 1 wasmapped to 0.1 V,
and Signal 0 was mapped to 0V. Last, 256 random coefficients were
constructed initially, and the forward and backward calculation results
of the first iteration are shown in Fig. 3c. In the sparse coding experi-
ment, the choice of regularization parameter λ was pivotal for the
sparse coding outcomes to balance sparsity and image quality. Various

λ values were applied experimentally to determine their effects. Fig-
ure S20 shows the corresponding activation level at λ = 2.2, in which
only a few dictionary vectors contributed considerably to image
reconstruction and captured the signal’s sparsity characteristics
effectively. After 100 iterations, the optimized sparse coefficients were
obtained and are shown in Fig. 3d. The small λ values could result in
low sparsity but could cause overfitting in image reconstruction
(Fig. S21 for λ =0.1), and the large λ values allowed for sparse encoding
but resulted in underfitting in image reconstruction (Fig. S22 for
λ = 3.5). In the experiment, λ = 2.2 achieved excellent sparsity and
image quality balance.

Fig. 3 | RAH configured for reconstruction and feature extraction of medical
images. a Image reconstruction by sparse coding and feature extraction by con-
volution realized with the ADC/DAC function and nonlinear convolution function
of RAH, respectively. b Process of sparse coding. c Output data of forward and
backward DA/AD conversion for the first iteration in the experiments. d Sparse
coding coefficients for all patches in the original image. e Image sharpening

(Function 3) in RAH, in which the synapse, heterosynapse, and somamodules were
configured as subfunction j3 (convolutional kernel), subfunction p1 (sustained on-
state), and subfunction k1 (voltage follower), respectively. f Electronic performance
to evaluate subfunctions j3 and k1. g Output current of a 6 × 6 patch from the
convolution operation. The 2D grayscale image of the 6 × 6 patch is given in
the inset.
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After image reconstruction, a convolution operation for image
sharpening was applied by configuring RAH as convolutional kernels
(Function 3, Fig. 3a (III)). The configuration of a hardware as con-
volutional kernels avoids additional accelerators, which supports effi-
cient large-scale convolution computations41. Such a configuration
enhances the speed of image sharpening, particularly when dealing
with extensive datasets. Initially, a 3 × 3 sharpening convolution kernel
was designed, and theweight of the central elementwas nine times the
weight of the surrounding elements. Accordingly, the weights of the
convolution kernel were represented by the conductivity of the tran-
sistors in the synapse module to encode subfunction j3 (Fig. 3e, left).
The conductance of M5 was 9 G0 (3.4 μS) under Vg = −0.7 V, and the
conductance of the remaining components was G0 (~0.37 μS) under
Vg = −2.4 V (Fig. 3f, left). The right panel of Fig. 3e shows a sustainedon-
state T1 in the heterosynapse module (subfunction p1). The soma
module worked as a voltage follower (subfunction k1), and its output
characteristics are shown in the right panel of Fig. 3f. The image patch
from the reconstructed image was encoded as 8-bit binary digital
signals, whichwere then converted into analog voltage signals through
the hardware working as an 8-bit DAC. These analog voltage signals
were fed into the reconfigured hardware (Function 3) working for
convolution operations. The convolution operation involved sliding a
convolution kernel over each patch of the same size and calculating
the convolution result in the corresponding region. Afterward, the
output voltages were obtained to represent the extracted features
from the respective regions. The experimental results are shown in
Fig. 3g, and the features from the 256 × 256 grayscale CT image were
extracted and are presented in Fig. 3a (III). The blood vessels and tissue
structures were displayed more clearly than those in the original
image. Thus, RAH can provide robust support for future medical
research and clinical applications. Additionally, image reconstruction
with additional noise was implemented using RAH (Figs. S23 and S24).
The peak signal-to-noise ratios of the noisy and reconstructed images
are 20.1026 and 27.1774 dB, respectively, in Fig. S25a (20.2940 and
28.5906 dB in Fig. S25b), confirming the high-quality reconstruction
under additional noise. Notably, the number and conductivity states of
cascaded transistors can be configured to form multifunctional con-
volution cores for flexible convolution operations.

Visual processing in bionic receptive fields
RAH also allows for brain-like multitasking to realize attention
switching and visual persistence in biological visual systems, so it has
potential for applications in autonomous driving (Fig. 4a)42–45. Atten-
tion switching allows visual systems to focus on information only
within the active receptive field (RF). The output signal changes
immediately when RF shifts. RF selection enhances data sparsity,
reduces redundancy, and effectively captures critical features45–47.
Meanwhile, visual persistence can utilize previous data acquired out-
side the present RF to predict future scenarios and infer the actions of
objects. The output signal that responded to the previous RF persists,
and its disappearance is delayed after RF shifts. The biological
mechanism is discussed in Note S7.

The functionality (Functions 4 and 5) of RAH was adjusted to
realize the abovementionedbiologicalmechanism, as shown in Fig. 4b.
The simplified hardware system used two synapse modules to repre-
sent the left and right RFs (markedwith orange and blue backgrounds,
respectively). A soma module with three OPAs (The electrical proper-
ties of individual FETare shown inFigs. S4, S26, andS27)was employed
to achieve RF switching and visual persistence, and a heterosynapse
module was used to realize the inter-connection of synapse/soma
modules by encoding the on/off switching ofMoS2 FETs. The active RF
(synapse module 1) encoded a Gaussian distribution with
G1, 8 =G2, 7=2 =G3, 6=4=G4, 5=8=3:76μSmarked as subfunction jlm, and
the inactive RF (synapse module 2) represented universal off-states
with Gof f =G1=14 =0:271μS marked as subfunction jrm. Signal

persistence was realized with a voltage follower circuit by connecting
thefirst-stageOPA (somamodules 1 and 2) circuit with a load capacitor
(Cload, 33 μf; subfunction kp

m). The second-stage OPA (somamodule 3)
served as a voltage comparator to generate the output (subfunc-
tion katt

m ).
After circuit configuration, the left RF was activated in 0–50ms,

and the right RF was activated in 50–100ms. A 20ms, 0.1 V voltage
pulse was sent to the input terminal’s Ll3 and Lr3 ports at the time of
25ms and inputted to the Ll6 and Lr6 ports at the time of 50ms (Fig. 4c,
(I)). When the attention was on the left RF, the left RF’s somamodule 1
generated a voltage output (Vout, l) that was higher than that of the
right RF’s soma module 2 (Vout,r), leading to positive output voltage
Vout,att for soma module 3 (Fig. 4c, (II)). Similarly, negative output
voltage Vout,att was generated for soma module 3, representing the
attention on the right RF (Fig. 4c, (II)). The output signal at soma
module 3 persisted for a longer time than the input pulse width,
indicating the visual persistence effect.

The distance and speed between the driving and target vehicles in
autonomous driving can be determined using the abovementioned
working principles. To simplify the testing, we focused on the detec-
tion of a single RF. The diagram is shown in Fig. 4d. M1–M8 represent
eight activation state encoders to program eight different locations
(marked #1–#8) centered around the driving vehicle. These locations
include four different distances to the driving vehicle that are dis-
tributed symmetrically at the front and back sides of the driving
vehicle, and the corresponding conductance distribution of M1–M8

follows jlm. Notably, the programming of conductance can be config-
ured based on actual road conditions to expand the detection range
and improve accuracy, also highlighting the advantages of the adap-
tive hardware. Each encoder can receive an activation voltage pulse
with a width of 4ms and amplitude of 0.1 V when a target vehicle is
detected at its correspondingprogrammed location. Byprocessing the
output signals of the hardware, we can obtain the distance and speed
of the driving vehicle relative to the target vehicle.

During distance detection and processing, the current accumu-
lation in soma module 1 is determined by the encoded transistor
conductance, with high conductance resulting in a high output vol-
tage, as shown in Fig. 4e (I). The high output voltage of somamodule 1
can lead to a long pulse persistence timewidth for the output signal of
soma module 3, which also indicates a close distance to the driving
vehicle, as shown in Fig. 4e (II). Under the assumption that the target
vehicle is passing from locations #1 to #8 sequentially in the experi-
ment setup, the measured time widths of the output signals at #1–#8
are 44, 59, 73, 87, 87, 73, 59, and 44ms, respectively (Fig. 4g), indi-
cating that the target vehicle approaches the driving vehicle first then
leaves the driving vehicle afterward. The distance information of the
driving vehicle relative to the target vehicle can be distinguished
directly.

In speed detection and processing, the different speeds of the
detection vehicle result in different time intervals when the vehicle
moves from one programmed location to an adjacent one. Thus, the
time intervals of somamodule 3’s output voltage pulses can be used to
determine the speed, in which a short time interval indicates high
speed. As shown in Fig. 4f, to simplify the testing, we defined three
scenarios with high, medium, and low speeds. Pulse signals with three
different frequencies representing the three speeds were applied to
Ll1��Ll8 in sequence, as shown in Fig. 4f (I). The speed information
could be distinguished directly by analyzing the time interval of the
output signals (Fig. 4f, (II)). The output frequencies of high, medium,
and low speeds were ~12.04, ~6.02, and ~4.02Hz, respectively (Fig. 4h).

Discussion
In summary, the 2D MoS2-based RAH implemented the connection-
adaptable degree of freedom innovated from neural circuits in the
brain. The devices’ inner states and inter-connections were co-

Article https://doi.org/10.1038/s41467-024-55395-4

Nature Communications |          (2025) 16:101 6

www.nature.com/naturecommunications


MoS2 FETs for left-RF

MoS2 FET for right-RF

R
ig

ht
-R

F

-
+

-
+

Vout,att

···

-
+

···

M1 - M8

M9 - M16

Receptive field Left Receptive field Right

√ ×

√ √ √ √

× √ Stimuli Left

Time

4 ms
0.1 V

Moving direction

Moving direction

P
er

si
st

en
ce

A
tte

nt
io

n

Receptive field
right

Rec
ep

tiv
e f

iel
d

lef
t

a

b

Vout,r

Le
ft-

R
F

Stimuli Right

Output

Stimuli Left

Time

Stimuli Right

Output

jm1
l

jm1
r

km
p

km
att

V V
V1

V2

V1>V2

YES

NO

VH

VL

c

Vout,l

External signal

Voltage follower 

Voltage comparator

Persistence

AttentionL1  
l

L2  
l

L7  
l

L8  
l

L1  
r

L2  
r

L7  
r

L8  
r

Left attention

Autonomous vehicle

Active left-RF

e

L1 
l L2 

l L3 
l L4 

l L5 
l L6 

l L7 
l L8 

l

Detection target

Detection location

Time (ms)
0 50 100

V
ou

t (V
)

-5

5

0.3

0.0
Vout,l Vout,r

Vout,att

Time (ms)
0 50 100

0

1

1

0

V i
n 
(V

)

Stimuli Left

Stimuli Right

OutputInput d

Time (ms)
0 50 100

V
ou

t,l
 (V

) 0.1

0.0

Time (ms)
0 50 100

V
ou

t,a
tt 
(V

) 4

0

f
OutputInput

V i
n 
(V

)

0

1

0

1

0

1

Time (ms)

Detection location

0 50 100
Time (ms)

0 50 100

V o
ut

 (V
)

0

4

0

4

0

4L1 
l L2 

l L3 
l L4 

l

L1 
l L8 

lL2 
l L7 

l
L3 

l L6 
l

L4 
l L5 

l
···

L1 
l L2 

l L3 
l L4 

l ···

L1 
l L2 

l L3 
l L4 

l ···

Low Velocity

Moderate Velocity

High Velocity

Function 4

Function 5

Velocity state
1 2 3

1

44
59 59

73 73
87 87

44

3 52 4 76 80

100

50

P
ul

se
 w

id
th

 (m
s)

0

300

200

100

P
ul

se
 in

te
rv

al
 (m

s)

g

h
Low Velocity

Moderate Velocity

High Velocity

-3

0

3

0-0.1 0.1
Vds (V)

I ds
 (μ

A
) Vg = 2.1 V

Vg = 1.0 V
Vg = 0.3 V
Vg = -0.2 V

Vg = -0.2 V
Vg = 0.3 V

Vg = 1.0 V
Vg = 2.1 V

-3

0

3

0-0.1 0.1
Vds (V)

I ds
 (μ

A
) Vg = -3.8 V

Vg = -3.8 V
Vg = -3.8 V
Vg = -3.8 V

Vg = -3.8 V
Vg = -3.8 V

Vg = -3.8 V
Vg = -3.8 V

400 80
Time (ms)

V
ou

t (
V

)

0

0.6

0

1

V
in
 (V

)

Vin

Vout

100 20
Time (ms)

V
 (V

)

0

5

L3  
l L6  

l

L3  
r L6  

r

(I) (II)

(I) (II)

(III)

(I) (II)

Voltage follower 

Cload

Cload

Inactive right-RF

Fig. 4 | RAH configured for visual processing in bionic receptive (RF) fields.
a Diagram of RF attention. Without visual residual, only signals within the active RF
(left or right RF) are received.With visual residual, signals from the previously active
RF persist for a short time and can be processed after the active RF is switched.
b The left panel shows the simplified circuit connection for both RFs. The right
panel presents the basic functional characteristics. The MoS2 FET conductance of
the active RF satisfies the Gaussian distribution with G1 =G8 =G2/2 =G7/2 =G23

/4 =G6 /4 =G4/8 =G5/8 = 3.76μS (jlm1), and theoutput characteristics of each FET are
shown in anorangebackground. The FET conductanceof the inactiveRF is in theoff
statewithGoff ofG1/14 = 0.271μS (jrm1), and theoutput characteristics of eachFETare
shown in a cyan background. The subfunction kp

m of the first-stageOPA constructed
from MoS2 acts as a voltage follower, and its output characteristics are shown in a
gray background. The subfunction katt

m of the second-stage OPA constructed from
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programmed location. The output time interval indicates the speed (h).
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encoded to enhance adaptability, thus endowing RAH with multiple
functions and potential as a solution for general-purpose machines.
Notably, the MoS2 FETs used in this work could be replaced with
floating gate transistors, charge-trapping transistors, or memristors to
achieve a non-volatile hardware structure and reducing reliance on
gate control strategies41,48. RAHworking under ADC andDAC functions
exhibited reconfigurable resolutions (maximum of 8 bits), which can
match different tasks to avoid resource wastage. ADC and DAC also
realized a bandwidth of 50 kHz and amaximumpower consumption (8
bits ADC and DAC) of ~750μWduring a converting period. In addition,
wide-ranging computing applications, such as AI-assisted diagnoses
and autonomous driving, were discussed to directly prove that the
high-level adaptability and flexibility of RAH can appropriately meet
the linear and nonlinear computing requirements of different tasks. As
one potential scheme for future brain-like general-purpose machines,
this hardware is expected to be used in many other practical applica-
tions, such as speech recognition and decision making. This design
strategy opens an avenue to create other intelligent, efficient, flexible
general-purpose hardware solutions for complex problems.

Methods
This study complied with all the relevant ethical regulations. The
Clinical CT image sample used in this research were obtained from
Huangshi Central Hospital after written informed consent was
obtained from patients. This research was approved by the Ethics
Committee of Huangshi Central Hospital (K(2023)-46). All methods
were implemented following the relevant guidelines and regulations
stipulated in the Declaration of Helsinki.

Fabrication details of RAH
The CVD-MoS2 thin films supplied by Six Carbon Shenzhen as channel
materials. The complete fabrication process encompassed all litho-
graphic steps via UV lithography using an MA8 system. The gate,
source, anddrainmetal contacts (Au andPt)weremanufacturedwith a
Leybold electron-beam evaporation system at a pressure of
<3 × 10−5 mbar. The gate dielectric, which was 30nm Al2O3, was
deposited via atomic layer deposition from trimethylaluminium and
water at 250 °C. CVD MoS2 was lifted off the growth substrate by
spinning a thick polymethyl methacrylate (PMMA) film. The polymer/
MoS2 stackwas then rinsed indeionizedwater. After drying at a slightly
elevated temperature, CVDMoS2 was transferred in a dry-air glovebox
to the prebaked target substrate, which was heated slowly from room
temperature to ~150 °C to soften PMMA and facilitate proper contact
between the film and substrate. PMMA was subsequently dissolved in
acetone. MoS2 and Al2O3 were etched using Ar/SF6 plasma etching in
an Oxford Cobra reactive ion etching system.

Electrical measurements
The electrical characteristics of the MoS2 FETs are measured in a
cryogenic probe station at room temperature. The Agilent
B1500 source measurement unit (SMU) was used to apply gate and
drain voltages and to measure the drain current as a function of gate
voltage and drain voltage. The testing evaluates key parameters such
as transfer and output characteristics and threshold voltage. For the
MoS2 FET-based operational amplifier (OPA) circuits, the measure-
ments of individual FETwere performed using a B1500 semiconductor
analyzer in conjunction with a cryogenic probe station. For integrated
device measurements, bias voltages were supplied by the
B1500 semiconductor analyzer and source meter. Input and output
signals were generated and measured using an Agilent 33220A func-
tion generator and a Keysight Infiniivision oscilloscope, respectively.
This setup ensures precise control of the device conditions and
accurate characterization of the amplifier’s performance.

For the digital-to-analog conversion (DAC) functionality testing,
encoded digital signals (square waves with varying frequencies) are

applied across multiple input channels. The conductance values of
these channels are programmed by the NI PXI equipment according to
the required formula. The output analog signals are then measured
using a Keysight Infiniivision oscilloscope to verify the accuracy of the
digital-to-analog conversion. For analog-to-digital conversion (ADC)
functionality testing, an Agilent 33220A function generator provides
an analog signal to one input of the operational amplifier, while
reference conductance channels receive periodic square waves. The
analog signal is compared to the reference voltages, and the digital
output is monitored with a Keysight Infiniivision oscilloscope. The
diagram of experimental setup is shown in Fig. S29.

For Convolutional Kernel testing, a convolution kernel was pro-
grammed by adjusting the conductance values of the transistors using
an external controller (NI PXI system). The central FET is set to a
conductance of 9 ×G0, while the surrounding FETs are set to G0. The
resulting output was recorded using a Keysight oscilloscope. The
convolution process is applied to extract key features from the
reconstructed CT image, enabling image sharpening and enhancing
the clarity of important details. The Clinical CT image sample used in
this research were obtained from Huangshi Central Hospital and
approved by the Ethics Committee of Huangshi Central Hospital
(K(2023)-46).

Sparse coding
Thepurposeof sparse coding is tofinda sparse representationof input
X that must be as similar as possible to the features of the input and
whose coefficients are sparse. In optimal sparse approximation, we
determined the coefficients with the fewest nonzero entries by solving
the minimization problem

min jjαjj0s:t:Dα =X ,

where jjαjj0 denotes the number of nonzero elements of
α = α1,α2, � � � ,αm

� �
and D represents the feature dictionary. To solve

this NP-hard problem, we used locally competitive algorithms to
obtain the sparse coefficients.

The localized competitive algorithm (LCA) draws inspiration from
observed properties in neural systems: the inputs cause themembrane
potential to accumulate like a leaky integrator, the membrane poten-
tials exceed the threshold-generated action potentials for extracellular
signaling, and the positive responses inhibit neighboring units through
horizontal connections. The internal state of the units is denoted by
umðtÞ. When the internal state um of a node is considerably large, the
node becomes active and produces output signal αm that represents
the stimulus inhibiting other nodes. This output coefficient results
from the application of an activation function to the membrane
potential, αm =TλðumÞ, with system threshold λ as a parameter.
Through the combination of these components, the dynamics of LCA
nodes can be expressed by a nonlinear ordinary differential equation.

dum

dt
=
1
τ

�um + Xm � X̂m

� �T
D+αm

� �
,

αm =
umif um > λ

0 if um ≤ λ

�
,

where um is the membrane potential of neuronm, τ is a time constant,
αm is the mth column coefficient of D, and X̂m =Dαm.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
All data that support the findings of this study are available in the
Figshare database at the following https://doi.org/10.6084/m9.
figshare.27642318.

Code availability
All codes used in this study are available from the corresponding
author (L. Y.) upon request.
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