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Integrating electronic health records and
GWAS summary statistics to predict the
progression of autoimmune diseases from
preclinical stages

Chen Wang 1,2,11, Havell Markus1,11, Avantika R. Diwadkar1,2,
Chachrit Khunsriraksakul 1, Laura Carrel3, Bingshan Li 4, Xue Zhong5,
Xingyan Wang2, Xiaowei Zhan 6,7,8, Galen T. Foulke2,9, Nancy J. Olsen10,
Dajiang J. Liu 1,2,12 & Bibo Jiang 2,12

Autoimmune diseases often exhibit a preclinical stage before diagnosis. Elec-
tronic health record (EHR)based-biobanks contain genetic data anddiagnostic
information, which can identify preclinical individuals at risk for progression.
Biobanks typically have small numbers of cases, which are not sufficient to
construct accurate polygenic risk scores (PRS). Importantly, progression and
case-control phenotypes may have shared genetic basis, which we can exploit
to improve prediction accuracy. We propose a novel method Genetic Pro-
gression Score (GPS) that integrates biobank and case-control study to predict
the disease progression risk. Via penalized regression, GPS incorporates PRS
weights for case-control studies as prior and forces model parameters to be
similar to the prior if the prior improves prediction accuracy. In simulations,
GPS consistently yields better prediction accuracy than alternative strategies
relying on biobank or case-control samples only and those combining biobank
and case-control samples. The improvement is particularly evident when
biobank sample is smaller or the genetic correlation is lower.Wederive PRS for
the progression from preclinical rheumatoid arthritis and systemic lupus
erythematosus in the BioVU biobank and validate them in All of Us. For both
diseases, GPS achieves the highest prediction R2 and the resulting PRS yields
the strongest correlation with progression prevalence.

Many autoimmune diseases have a preclinical phase where early
symptoms or serology precede the manifestation of complete disease
state1,2. In the preclinical stage, the immune system is activated, and
autoantibodies can be detected. For example, in patients with rheu-
matoid arthritis (RA), circulating auto-antibodies such as anti-
citrullinated protein antibodies or rheumatoid factor (RF) can be
detected 5 years prior to the onset of symptoms2. Joint pain and swelling
are also reported for preclinical RA patients2. Patients who progress to

systemic lupus erythematosus (SLE), may develop anti-nuclear antibody
(ANA), antiphospholipid, anti-Ro (SS-A), and anti-La antibodies (SS-B) in
the preclinical phase2,3. Only a fraction of preclinical individuals will
advance to complete disease states, while others may remain in a stable
preclinical phase or remit without clinical consequence4. Developing
biomarkers to inform disease progression from preclinical stage will
facilitate early intervention, which is critical for mitigating symptoms,
slowing down the progression, and improving the quality of life3,5–8.
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Electronic health record (EHR)-based biobanks contain rich
information of genetic variants, lab tests, and clinical diagnosis, which
can be used to identify preclinical individuals at risk for progression9.
As germline genetic information usually does not change during the
lifetime, it is an ideal instrument for early diagnosis. Our previouswork
shows that genetic risk scores for SLE, when used together with ANA
and anti-dsDNA tests, improve disease diagnosis and help stratify
patients at risk for progressions10. Notably, the progression from pre-
clinical stage to full-blown SLE may have shared yet distinct genetic
basis from the case-control (CC) phenotype comparing SLE cases vs
controls. PRSmodels constructed fromCC studiesmay notbe ideal for
predicting disease progressions. Novel PRS models that integrate
information from EHR-based biobanks and CC studies can more
accurately predict preclinical to disease progressions.

Compared to standard CC genome-wide association studies
(GWAS), EHR-based biobanks have fewer disease cases and fewer
number of individuals in the preclinical phase. Progression PRSmodels
constructed using biobanks only will have limited accuracy. Integrat-
ing large CC studies and biobanks will borrow strengths from the large
sample sizes of CC studies and improve prediction accuracy.

Different methods exist to combine studies measuring CC and
progression phenotypes. These methods include (1) cross-trait meta-
analysis (e.g., MTAG)11 to get more precise genetic effect estimates for
progression and use them to construct PRS for progression pheno-
types; (2) methods based on transfer learning which refines PRS
models constructed from CC studies for predicting progression
phenotypes12; (3) methods based on weighted combination (i.e.,
stacking) of PRS models from biobank and CC studies; and (4) meth-
ods based on multivariate extension of regression methods13,14, which
also require genetic correlation between traits as input.

While existingmethods canpotentially improve accuracyover the
methods that rely on CC or biobank datasets only, they all have lim-
itations. For example, existing multivariate methods that jointly con-
sider CC and progression phenotypes often lack the flexibility of
accommodating different genetic architectures for the trait, e.g.,
sparse or polygenic. Current stacking and transfer learning-based
methods may not be effective in combining the CC and biobank
datasets, and may perform worse than using either dataset alone in
certain scenarios. There is considerable room and needs for further
improvements.

In this article, to combine the large sample sizes of CC GWAS
studies and detailed phenotypes in EHR-based biobanks, we propose a
novel method called Genetic Progression Score (GPS) to predict dis-
ease progressions from preclinical stages. GPS incorporates PRS
weights for the CC phenotype as prior via a penalty term. The penalty
term forces the model parameters to be similar to the prior if it helps
improve the prediction accuracy. As a result, GPS can borrow strength
from the large sample sizes of CC studies, while accommodating
potential genetic effect differences between CC and progression
phenotypes.

Via extensive simulations, we show that GPS consistently achieves
the highest or comparable prediction accuracy. The improvement
offered by GPS is particularly significant, leading to more than two
folds improvements in the prediction R2, when genetic correlation
between CC and progression trait is low or when the biobank has a
limited sample size. Furthermore, as applications, we constructed PRS
models in the Vanderbilt University biobank (BioVU) to predict pre-
clinical to disease progressions for RA and SLE. For RA, we focus on the
progression frompreclinical RAwith positive RF antibody. For SLE, we
study the progression from preclinical SLE with positive antinuclear
antibody (ANA). We validate the progression risk scores in the All of Us
biobank. For both autoimmune disorders, GPS demonstrated much-
improved prediction R2 compared to alternative methods. Resulting
risk scores from GPS models also showed the strongest association
with the progression phenotype in the All of Us biobank.

Results
Overview of GPS
GPS is a penalized regression method aiming to improve the predic-
tion accuracy by integrating information from both biobanks and CC
studies. Toborrow information from large-scaleCC study,wefirst train
a PRS model for CC phenotype using summary statistics. Any PRS
method can be used. This allows using the best-performing PRS
models as weights which is critical for the accuracy of predicting
progression phenotypes. GPS then takes the trained PRS models as
prior and uses a penalty term to penalize the deviation of the para-
meter estimates from the prior. The model hence forces the model
parameters to resemble the prior, if the prior helps improve the pre-
diction accuracy for progression. Besides, it also uses extra L1 and L2
penalty terms to impose shrinkage and sparsity of the model
parameters.

There are three tuningparameters in theGPSmodel, including the
parameters that control the shrinkage (λ), themixing ratio of L1 and L2
penalty (α), and the tuning parameter controlling the contribution of
prior (η). These tuning parameters will be estimated using a validation
dataset with individual-level genotype and phenotype data. We use
three established PRS methods as baseline methods, i.e., Lassosum15,
LDpred216, and PRS-CS17, to construct priors from CC study and use
them in GPS to improve prediction accuracy. A workflow for GPS is
presented in Fig. 1. Detailed methodology about GPS can be found in
Methods.

We compare GPS with a few alternative PRS strategies for pre-
dicting the progression from preclinical to disease stage:
1. using CC study alone to calculate a PRS and use it to predict

preclinical to disease progressions (CC).
2. using biobank data alone to calculate a PRS for preclinical to

disease progression phenotype (PROG).
3. using cross-trait meta-analysis (e.g., MTAG18) to improvemarginal

genetic effect estimates for the progression phenotype and use
improved marginal genetic effects to construct PRS models for
progression.

4. using transfer learning12 to refine PRS models constructed from
CC studies by integrating preclinical to disease progression phe-
notype and genetic data in a biobank (TL-PRS).

5. using stacking to create a weighted combination of PRSs from
biobank and CC datasets (STACKING).

6. using multivariate Lassosum13, a PRS method that extends the
original Lassosum method. It combines multivariate linear mixed
model andL1penalty to jointlymodel genetically correlated traits.
The multivariate Lassosum method is referred to as MVL
throughout this paper.

7. Super stacking methods: Besides, for each combination strategy,
we further consider stacking the PRS from different baseline
methods (i.e., LDPred2, PRS-CS, and Lassosum), which we call
super-stacking. Specifically, super-stacking includes stackingof all

Fig. 1 | Detailed workflow of GPS. GPS combines CC GWAS data and EHR-based
biobanks to construct PRS models for predicting the risk of preclinical → disease
progression.
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GPS PRSs (GPS_stacking), stacking of all MTAG PRSs (MTAG_-
stacking), stacking of all TL-PRSs (TL-PRS_stacking) models, and
stacking all baseline methods (ALL-BASE_stacking).

In total, 23 PRS models (3 GPS-based models and 20 alternative
models) are evaluated. Further details can be found in Supplemen-
tary Data 1.

Connections with other methods
Our method has connections with existing approaches. Broadly
speaking, our method is conceptually similar to the methods that
incorporate priors, including transfer learning. Yet, it differs from
other methods in the way prior information is modeled and incorpo-
rated. It has some similarities with fused lasso and its adaptations19–21.
Fused lasso jointly fits themodel for multiple traits using an L1 penalty
to impose sparsity and another L2 penalty to enforce similarity of
weights. In comparison, our method uses PRS weights estimated from
a CC study as input. It can flexibly accommodate more accurate risk
scores as prior instead of sticking with a pre-specified model, e.g.,
lasso/elastic net-basedmodel13 or Bayesian linearmixedmodel14. Given
that not a single baseline PRS performs consistently the best, the
flexibility of incorporating different baseline methods is critical for
improving the prediction accuracy, which is evident from our simu-
lation evaluations and real data analysis. Instead of using L1 penalty for
the prior, we use L2 penalty to enable continuous shrinkage toward the
prior if the prior is helpful for improving the prediction accuracy.
Finally, our approach can analyze summary statistics as input while the
fused lasso, in its original form, requires individual-level data.

Overview of simulation studies
We simulate progression and CC summary statistics as training data.
We also simulate individual-level validation and test data for hyper-
parameter tuning and model evaluation. Briefly, we assume the pro-
gression and CC phenotypes to be genetically correlated with possibly
different effect sizes or possibly different causal variants. We vary the
sample sizes for biobank datasets with progression phenotype, the
genetic correlations and proportions of shared causal variants
between CC and progression phenotypes, and the number of causal
variants. The sample size for the simulated CC study is fixed and
assumed to be at least more than ten times larger than the number of
preclinical individuals from biobanks, which reflects the sample sizes
we observe for commonly studied autoimmune diseases. We simulate
20 replicates for each simulation scenario. In total, 23 different PRS
models are included in the comparison (see Methods). For strategies
that combine biobank and CC studies, they can be used with different
baseline PRS methods, so we name them after both the integration
strategy and the baseline PRS methods. For example, for the stacking
method that combines PRS-CS risk scores from CC and progression
cohorts, we name it as STACKING-PRS-CS. Detailed explanations of all
models can be found in Supplementary Data 1.

Simulation comparison of different PRS strategies for predict-
ing progressions
Prediction accuracy is evaluated using prediction R2. Figure 2 shows
the simulation results for all non-super-stacking PRSmodelswhen 200
variants are causal for the trait. Simulation results with 500 causal
variants are presented in Supplementary Fig. 1. All causal variants are
shared between two traits in these simulations. The results when CC
and progression traits have different causal variants remain similar.
They are shown in Supplementary Fig. 2. PRS from CC study only
performs well when genetic correlation is high. The sample size of
progression phenotype is small (Fig. 2A, with genetic correlation =
0.8). In contrast, PROG models usually have lower accuracy than
models that borrow strength from CC studies, unless genetic

correlation is low and the sample size of progression cohort is large
(Fig. 2D, with genetic correlation =0.2).

GPS, TL-PRS, and STACKING models use different strategies to
incorporate PRS from CC studies. GPS models have the highest or
comparable prediction accuracy in all simulation scenarios. When the
sample size of progression cohort is fixed, GPS’s advantage in pre-
diction accuracy is larger when genetic correlation is smaller. For
example, when the sample size of biobank cohort is set as 500 and
genetic correlation is set as 0.2, among models using PRS-CS as the
baselinemethod, GPS has prediction R2 0.067, which is 2.4-fold higher
than the second-best model MTAG-PRS-CS (0.028) (Fig. 2A). In con-
trast, when genetic correlation is 0.8 and progression cohort sample
size as 500, GPS-PRS-CS’s predictionR2 (0.20) becomes comparable to
CC-PRS-CS (R2 =0:21) (Fig. 2A). This is not surprising, as when genetic
correlation between CC and progression phenotype is high, the
genetic effects for the two traits will become very similar (up to a
scalar) and CC risk scores would by itself be sufficient for predicting
the progression phenotype.

When genetic correlation is fixed, the advantages of GPS over
alternative methods is larger when sample size of the biobank study is
smaller. For example, when the genetic correlation is 0.4 and sample
size of biobank cohort is 500, the prediction R2 is 0.10 for GPS-PRS-CS
and0.061 for the second-bestmodelMTAG-PRS-CS. GPS-PRS-CS’sR2 is
1.6-fold of that of the second-best method MTAG-PRS-CS (Fig. 2A).
However, when the sample size of progression cohort is 3000 and
genetic correlation remains to be 0.4, the prediction R2 of GPS-PRS-CS
is only 1.1-fold of that of the second-best method MTAG-PRS-CS i.e.,
0.17 vs 0.15 (Fig. 2D). It should be noted that for the current sample
sizes, most biobanks contain fewer than 3000 preclinical individuals.
The presented scenario with 3000 preclinical individuals may be
viewed as an uncommon and worst-case scenario for GPS.

MTAG analysis requires reliable genetic correlation estimates for
jointly analyzed traits. As expected, applying baselines PRSmethods to
MTAG results yields lowprediction accuracywhen the biobank dataset
with progression phenotype is small (Fig. 2A). MTAGmodels only yield
higher or comparable prediction accuracy when genetic correlation is
high or when the biobank cohort is large (Fig. 2B–D). Our results show
that cross-trait meta-analysis strategy usingMTAGmay not be suitable
for predicting preclinical phase to disease stage progressions.

TL-PRS is a recently proposed transfer learning-based PRS
method. By integrating data from a smaller target sample, it can fine-
tune pretrained PRS models constructed from large samples. Our
simulation results indicate that TL-PRS models perform worse than
models trained using biobank only, when the genetic correlation is low
orwhenprogression cohort is large (Fig. 2D).Whengenetic correlation
is high (e.g., genetic correlation = 0.8), TL-PRS models also perform
worse than models trained using CC studies only, across all sample
sizes of progression cohorts (Fig. 2A–D). Similarly, the STACKING
models only perform well when genetic correlation between CC and
progression phenotype is high (Fig. 2A–D), demonstrating a lack of
robustness of the stacking method.

Similar to MTAG, MVL also requires genetic covariance estimates
to jointly analyzemultiple traits. It extends the Lassosum framework to
estimate joint effects of multiple SNPs. It thus cannot accommodate
other PRS methods as priors. Compared to other combination strate-
gies using Lassosum and LDpred2 as baselinemethods,MVL hasmuch
lower prediction R2 unless the genetic correlation is high (e.g., genetic
correlation =0.8). MVL has lower prediction R2 than methods using
PRS-CS as the baseline method in almost all scenarios (except for TL-
PRS when genetic correlation is low and sample size of progression
cohort is large) (Fig. 2). The results remain similar for scenarios with
500 causal variants (Supplementary Fig. 1). This comparison further
demonstrates the importance of having the flexibility of using differ-
ent PRS methods as the baseline.
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Fig. 2 | Prediction accuracy of different PRS models in simulations (200 causal
variants). All causal variants are shared between progression and case-control
phenotypes in this simulation. The prediction accuracy is evaluated by the mean
prediction R2 across 20 simulated replicates. The error bar indicates the standard
deviation of prediction R2 across 20 simulation replicates. Each row represents
different PRS models using the same baseline PRS method. MVL uses Lassosum as
baseline framework, so it cannot accommodate alternative baseline PRS methods.
To facilitate comparisons, we estimate the prediction R2 of MVL by repeating

across the scenarios indifferent rows and taking the average. The sample sizeof the
progression cohort is 500 in (A), 1000 in (B), 2000 in (C), and 3000 in (D). The
number of causal variants is set as 200. gcor genetic correlation, Nprog sample size
of biobank study of progression phenotype. Super-stacking models are not inclu-
ded here but are shown in Supplementary Fig. 3. Scenarios with different causal
variants between case-control and progression phenotypes are given in Supple-
mentary Fig. 1.
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Prediction accuracy results of super-stackingmodels are shown in
Supplementary Figs. 3 and 4. The accuracies of these super-stacking
methods are similar to the best-performing models that are stacked.
GPS-stacking remains the best-performing super-stacking method.

Lastly, when only a portion of causal variants are shared between
the CC phenotype and progression phenotype (Supplementary Fig. 2),
GPS models continue to outperform alternative models which is con-
sistent with scenarios where CC and progression phenotype share the
same set of causal variants.

Constructing and evaluating different PRS models for
progression risk of autoimmune disorders
We apply GPS as well as other PRS methods in the BioVU biobank to
construct PRS for predicting the progression from RF positive to RA
and the progression from ANA positive to SLE. To evaluate the pre-
diction accuracy of the trained PRS models, we further build pro-
gression patient cohort using the All of Us biobank as the test dataset.
The sample sizes and demographics of the BioVU and the All of Us
cohorts can be found in Supplementary Data 2. Further details of the
analyses can be found in Methods.

GPSgives thehighestprediction accuracy forprogression riskof
autoimmune diseases
We evaluate the accuracy using Nagelkerke’s R2 on the liability scale22.
We need disease prevalence as input when converting the observed
scale R2 to liability scale. In our analysis, the disease progression is set
to be the fraction of individualswith positive biomarkerswho progress
to the disease states. According to published studies of RF test and
ANA test23,24, we set the progression prevalence estimates to be 25% for
RA and 15% for SLE.

Table 1 summarizes the performance of different PRS models for
predicting the risk of progressing fromRFpositive toRA in theAll of Us
biobank. The GPS models yield the top three R2 estimates, with GPS-
lassosum model being the best performing model for predicting RA
progression risk (R2 = 0.124). All GPS models have R2 significantly
greater than zero. Among all other 16 models, only CC-PRS-CS, PROG-

Lassosum, STACKING-Lassosum, and STACKING-PRS-CS give R2 esti-
mates that are significantly larger than zero. For RA, we find that the
STACKING-Lassosum score is exactly the same as PROG-Lassosum
score as the weights assigned to CC risk scores is zero. It indicates that
the stacking fails to borrow strength from CC study of RA. GPS, on the
other hand, presents itself as a more effective approach to integrate
prior and improves over CC risk scores. All MTAG-based models, TL-
PRS-based models, and the MVL model fail to yield R2 that are statis-
tically significantly different from 0.

GPSmodels also outperform other PRS models for predicting the
risk of progression fromANApositive to SLE. As shown inTable 2, GPS-
Lassosum and GPS-PRS-CSmodels yield the top two R2 estimates, with
GPS-lassosum model giving the highest R2 estimate (0.044). All GPS
models for SLE progression have statistically significant R2 estimates.
Models based on stacking improves over single source models that
rely on the biobank or CC data alone. STACKING-PRS-CS model yields
the best R2 estimate (0.039) among non-GPSmodels. However, similar
to the observations in RA,MTAG, TL-PRS, andMVL-basedmodels yield
lower R2 estimates for ANA positive to SLE progressions and both
MTAG and MVL models fail to yield R2 that are significantly different
fromzero. AlthoughTL-PRS-LassosumandTL-PRS-PRS-CSmodels give
significantly positive R2 estimates (0.028 and 0.027), they both have
lower accuracy compared to the PRS constructed using only CC stu-
dies (R2 0.033 forCC-LassosumandR2 0.032 forCC-PRS-CS).WhileTL-
PRS seeks to refine CC-Lassosum and CC-PRS-CS, it fails to outperform
these baseline methods. For both RA and SLE, we also calculated the
area under the precision-recall curve (AUPRC) as additionalmetrics for
evaluating PRS models for progression risk (Tables 1–2). We observe
that GPS-LDpred2 model yields the best AUPRC for RF positive to RA
progression and GPS-Lassosum model gives the best AUPRC for ANA
positive to SLE progression.

The prediction accuracies of super-stackingmodels are presented
in Supplementary Data 3 and 4. Among these four models, GPS-
stacking yields the highestR2 estimates for predicting progression risk
of RA (0.119) and SLE (0.042). ALL-BASE_stacking model achieves the
second-best prediction R2 (0.107 for RA and 0.0385 for SLE). For both

Table 1 | The accuracy for predicting RF positive to RA progressions in the All of Us biobank

Method R2 AUPRC AUC

CC-Lassosum 0.038 (−0.003, 0.079) 0.312 (0.234, 0.419) 0.571 (0.495, 0.653)

CC-LDpred2 0.043 (0, 0.086) 0.296 (0.225, 0.393) 0.576 (0.508, 0.659)

CC-PRS-CS 0.053 (0.005, 0.1) 0.33 (0.248, 0.445) 0.586 (0.512, 0.666)

PROG-Lassosum 0.118 (0.052, 0.184) 0.366 (0.273, 0.462) 0.638 (0.557, 0.711)

PROG-LDPred2 0.011 (−0.012, 0.034) 0.272 (0.212, 0.365) 0.535 (0.455, 0.608)

PROG-PRS-CS 0.011 (−0.012, 0.034) 0.26 (0.205, 0.342) 0.538 (0.464, 0.612)

GPS-Lassosum 0.124 (0.057, 0.191) 0.376 (0.279, 0.486) 0.634 (0.557, 0.706)

GPS-LDpred2 0.119 (0.053, 0.185) 0.397 (0.294, 0.499) 0.634 (0.558, 0.707)

GPS-PRS-CS 0.122 (0.055, 0.188) 0.384 (0.289, 0.494) 0.635 (0.559, 0.708)

MTAG-Lassosum 0 (−0.002, 0.003) 0.239 (0.188, 0.315) 0.497 (0.421, 0.573)

MTAG-LDpred2 0.001 (−0.007, 0.01) 0.259 (0.201, 0.348) 0.513 (0.439, 0.587)

MTAG-PRS-CS 0.001 (−0.006, 0.008) 0.242 (0.191, 0.315) 0.509 (0.434, 0.583)

TL-PRS-Lassosum 0 (−0.004, 0.005) 0.24 (0.186, 0.309) 0.513 (0.439, 0.582)

TL-PRS-LDpred2 0.001 (−0.005, 0.007) 0.261 (0.204, 0.346) 0.513 (0.434, 0.589)

TL-PRS-PRS-CS 0.025 (−0.009, 0.058) 0.284 (0.215, 0.361) 0.56 (0.486, 0.629)

STACKING-Lassosum 0.118 (0.052, 0.184) 0.366 (0.273, 0.462) 0.638 (0.557, 0.711)

STACKING-LDpred2 0.011 (−0.012, 0.034) 0.272 (0.212, 0.365) 0.535 (0.455, 0.608)

STACKING-PRS-CS 0.053 (0.005, 0.1) 0.33 (0.248, 0.445) 0.586 (0.512, 0.666)

MVL 0.009 (−0.011, 0.03) 0.275 (0.213, 0.371) 0.533 (0.460, 0.615)

We report the Nagelkerke’s R2, AUPRC (area under the precision recall curve), and AUC (area under the receiver operating characteristic curve). The 95% confidence intervals for different estimates
are listed in the parenthesis. The top two methods for each metric are displayed in bold and italic font.
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autoimmune diseases, the GPS-stacking model does not outperform
the top two GPS models, i.e. GPS-PRS-CS and GPS-Lassosum, in pre-
dicting their progression risk.

Moreover, it is understood now that genetic risk scores can be
more informative for identifying individuals with high and low-risk
scores. We also confirmed this observation in GPS. According to the
best performing GPS, preclinical patients with progression PRS scores
in the top 10th percentiles have ~3.8 and ~2.3 folds elevated progres-
sion risk for RA and SLE compared to the medians among preclinical
individuals. These significantly elevated risks underscore the impor-
tanceof early interventions to slowdown the progression andmitigate
the disease risk, as autoimmunity canquickly lead to irreversible organ
damages.

Association with progression prevalence of autoimmune
diseases in All of Us
Next, we evaluated the associations between the different PRS scores
and the progression prevalence for RA and SLE in the All of Us study.
We plot deciles of PRS scores versus the progression prevalence and
calculate Pearson’s correlation coefficients (ρ) between them. As
shown in Fig. 3, for RA, GPS-Lassosum, GPS-LDpred2, and GPS-PRS-CS
yield the top three most significant correlations, [i.e., ρ = 0.87
(p-value = 0.0012), 0.83 (p-value = 0.0029), and 0.86 (p-value =
0.0015)]. Alternative methods have much lower accuracy, among
which, PROG-Lassosum and STACKING-Lassosum yield the highest
accuracy (ρ=0:75, p-value = 0.013). This is consistent with the com-
parison using liability scale R2. For SLE, GPS-PRS-CS model yields the
strongest correlation between PRS and observed progression pre-
valence (ρ =0:78, p-value = 0.0074), whereas TL-PRS-Lassosum yields
the second-best yet much lower correlation (ρ=0:68, p-value = 0.03)
(Fig. 4).

Among the four super-stacking models, similar to when evaluat-
ing with liability scale R2, GPS_stacking demonstrates the strongest
correlation (ρ=0.83 for RA and ρ=0:78 for SLE) while ALL-
BASE_stacking being the second best super-stacking method

(ρ =0.82 for RA and ρ=0:56 for SLE) as shown in Supplementary
Figs. 5 and 6.

GPS models select variants that help distinguish preclinical
patients
We further investigate the advantage offered by GPS models over the
risk scores calculated using summary statistics from CC studies. To do
so, for variants selected by the GPSmodels and by themodels using CC
samples only, we plot the distributions of marginal association χ2 sta-
tistics testing for control → preclinical association and the marginal
association χ2 statistics testing for preclinical→ cases associations in the
All of Us biobank, which is an independent dataset not used for training
the risk scores. Figure 5A shows the comparison of risk scores calcu-
lated for RF positive to RA progressions. For each quantile, themarginal
χ2 statistics for variants in the GPSmodels are always bigger than those
in the risk scores based on CC samples. It indicates variants selected by
GPS models are more significantly associated with RF positive → RA
progressions, compared to variants in the models trained with CC data.
Variants selected by the GPS models are also more significantly asso-
ciated with control vs preclinical status (Supplementary Fig. 7A, B).
Overall, our comparison shows that GPS helps to select variants that can
better distinguish preclinical individuals from both case and healthy
controls. It helps explain why it yields better prediction accuracy. It
should also be noted that our study here only explores marginal asso-
ciation statistics. It remains to be explored using larger datasets and
more rigorous colocalizationmethods (e.g., coloc25) whether the causal
variants influencing control → preclinical progression and those influ-
encing preclinical → disease progressions are identical.

PheWAS analysis in the UK Biobank and All of Us
We conduct phenomewide association study (PheWAS) inUKBiobank
to explore which PheWAS codes are associated with PRS calculated
fromCC studies and fromGPSmodels (See “Methods”). PRS calculated
using GPS-Lassosum and CC-Lassosum models are denoted as GPS-
PRS and CC-PRS, respectively.

Table 2 | The accuracy of PRS models for predicting ANA positive to SLE progressions in the All of Us biobank

Model R2 AUPRC AUC

CC-Lassosum 0.033 (0.015, 0.052) 0.112 (0.088, 0.15) 0.568 (0.506, 0.628)

CC-LDpred2 0.01 (0, 0.021) 0.096 (0.077, 0.123) 0.540 (0.482, 0.596)

CC-PRS-CS 0.032 (0.014, 0.05) 0.11 (0.087, 0.146) 0.566 (0.508, 0.625)

PROG-Lassosum 0.001 (−0.002, 0.004) 0.093 (0.076, 0.127) 0.519 (0.465, 0.575)

PROG-LDpred2 0.019 (0.005, 0.033) 0.096 (0.079, 0.12) 0.554 (0.498, 0.606)

PROG-PRS-CS 0.01 (0, 0.021) 0.095 (0.078, 0.119) 0.543 (0.488, 0.592)

MTAG-Lassosum 0.001 (−0.002, 0.003) 0.091 (0.074, 0.116) 0.516 (0.455, 0.573)

MTAG-LDpred2 0.005 (−0.002, 0.012) 0.09 (0.075, 0.11) 0.533 (0.479, 0.583)

MTAG-PRS-CS 0.003 (−0.003, 0.008) 0.091 (0.076, 0.113) 0.528 (0.471, 0.576)

GPS-Lassosum 0.044 (0.023, 0.065) 0.124 (0.091, 0.171) 0.568 (0.511, 0.622)

GPS-LDpred2 0.037 (0.018, 0.056) 0.117 (0.089, 0.167) 0.566 (0.513, 0.623)

GPS-PRS-CS 0.042 (0.021, 0.062) 0.119 (0.09, 0.163) 0.566 (0.51, 0.623)

TL-PRS-Lassosum 0.028 (0.011, 0.044) 0.102 (0.084, 0.131) 0.561 (0.507, 0.612)

TL-PRS-LDpred2 0.007 (−0.002, 0.016) 0.093 (0.077, 0.118) 0.527 (0.477, 0.578)

TL-PRS-PRS-CS 0.027 (0.011, 0.044) 0.100 (0.083, 0.126) 0.558 (0.509, 0.605)

STACKING-Lassosum 0.034 (0.016, 0.053) 0.111 (0.088, 0.148) 0.570 (0.51, 0.63)

STACKING-LDpred2 0.028 (0.011, 0.046) 0.103 (0.082, 0.131) 0.558 (0.499, 0.611)

STACKING-PRS-CS 0.039 (0.019, 0.059) 0.112 (0.089, 0.149) 0.569 (0.51, 0.626)

MVL 0.0046 (−0.0025, 0.012) 0.090 (0.075, 0.113) 0.529 (0.476, 0.579)

We report the Nagelkerke’s R2, AUPRC (area under the precision recall curve), and AUC (area under the receiver operating characteristic curve). The 95% confidence intervals for the estimates are
listed in the parenthesis. The top two methods for each metric are displayed in bold and italic font.
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InUKBiobank forRA, out of a total of 1405 PheWAScodes analyzed,
CC-PRS andGPS-PRS are significantly associatedwith 141 and 34PheWAS
codes, respectively, (Bonferroni corrected p-value <0.05, Supplemen-
tary Data 5, Fig. 6). PheWAS code for RA is significantly associated with
both CC-PRS (OR=3.49, p-value < 1 × 10−320) and GPS-PRS (OR= 1.82,
p-value = 2.66× 10−98). Among the 34 PheWAS codes significantly asso-
ciatedwith GPS-PRS, amajority (28) are also significantly associated with
RACC-PRS. Five of the six PheWAS codes uniquely associated to RAGPS-
PRS include nodular lymphoma (p-value =4.3 × 10−6), multiple sclerosis
(p-value = 1.0 × 10−41), glaucoma (p-value= 3.3 × 10−5), other inflammatory
spondylopathies (p-value = 1.2 × 10−6), and ankylosing spondylitis
(p-value =3.6× 10−6). Four out of five PheWAS codes were replicated for
RA GPS-PRS in All of Us: nodular lymphoma (p-value =0.0037), multiple
sclerosis (p-value = 1.09× 10−22), other inflammatory spondylopathies
(p-value =0.018), and ankylosing spondylitis (p-value =0.0002) (Sup-
plementary Data 6). All five of these PheWAS codes remained insignif-
icant for RA CC-PRS in All of Us (p-value>0.05). Patients with RA have

been reported to have a greater risk of lymphoma and glaucoma26–28 and
patients with multiple sclerosis are at an increased risk of developing
RA29. Lastly, various studies also suggestedRA and ankylosing spondylitis
have overlapping etiologies and are closely related30,31. In UK Biobank,
the 114 PheWAS codes uniquely associated with RA CC-PRS are either
related to other less similar diseases (e.g., SLE, osteoarthritis, primary
biliary cirrhosis, or idiopathic pulmonary fibrosis) or to comorbidities
frequently observed due to RA treatment (e.g., thyroid disease, anemias,
renal failure, or lung disease)32–34. Thus, phenotypes associated with GPS-
PRS are more specific to RA compared to those associated with CC-PRS.
Our results suggest thatGPS-PRSprovides better clinical utility to predict
patients who will progress to RA with positive RF test.

Similarly, in UK Biobank, for SLE, CC-PRS and GPS-PRS are sig-
nificantly associated with 64 and 23 PheWAS codes (with Bonferroni
corrected p-value < 0.05, Supplementary Data 7, Fig. 7). As expected,
SLE is among themost significantly associated PheWAS codes with SLE
CC-PRS (OR = 2.91, p-value = 2.35 × 10−274) and GPS-PRS (OR = 2.83,

Fig. 3 | The association between PRS and the prevalence of RF positive → RA
progressions in theAll ofUsdata.TheAll ofUsdata is not used to train genetic risk
scores. The Pearson correlation coefficient (and corresponding p-values from two-
sided t-test) between PRS and the progressionprevalence at each decile in theAll of
Us data are labeled on the plot. The error bands represent 95% confidence intervals
of fitted linear regression lines. MVL uses Lassosum as baseline framework. The

prediction accuracy of MVL is obtained by repeating across the scenarios of dif-
ferent rows and taking the average. It is clear that GPS consistently yields stronger
and more significant correlations between predicted and observed progression in
the independent test dataset, which demonstrates improved accuracy. Super-
stacking models are shown in Supplementary Fig. 5.

Article https://doi.org/10.1038/s41467-024-55636-6

Nature Communications |          (2025) 16:180 7

www.nature.com/naturecommunications


p-value = 3.31 × 10−31). All 23 PheWAS codes significantly associated
with SLE GPS-PRS are also associated with SLE CC-PRS, while SLE CC-
PRS is associated with an additional 41 PheWAS codes. Among the 23
PheWAS codes associated with SLE GPS-PRS in UK Biobank, 17 were
replicated for SLE GPS-PRS inAll of Us (p-value < 0.05) (Supplementary
Data 8). Furthermore, out of the 41 PheWAS codes uniquely associated
with SLE CC-PRS in UK Biobank, 15 were replicated for SLE CC-PRS in
All of Us (p-value < 0.05) and 27 remained insignificant for SLEGPS-PRS
inAll ofUs (p-value ≥0.05) (SupplementaryData 8). ThePheWAScodes
associated with both PRSs are often for closely related autoimmune
diseases (e.g., Celiac disease, RA, Systemic Sclerosis, Multiple Sclero-
sis, Sicca Syndrome, or Multiple Sclerosis)35–37. The 41 PheWAS codes
uniquely associated with SLE CC-PRS usually involve less related phe-
notypes (e.g., hypertension, anemias, gastroenteritis, myalgia/myosi-
tis, chronic ulcer of skin, or lymphoid leukemia). This suggests that
phenotypes associated with CC-PRS are less relevant for SLE when
compared to those associated with GPS-PRS. Thus, SLE GPS-PRS can

provide better clinical utility when compared to SLE CC-PRS, as its
higher specificity would allow increased certainty in eventual SLE
diagnosis in individuals with positive ANA test.

We also examine whether PheWAS effects in the All of Us and UK
Biobank are concordant (See Methods). Among the PheWAS results
with p-value < 0.05 in UK Biobank, we observed a significant correla-
tion between effect sizes in UK Biobank and All of Us (RA CC-PRS
r2 = 0.53, p-value < 2.2 × 10−16; RA GPS-PRS r2 = 0.6, p-value < 2.2 × 10−16;
SLE CC-PRS r2 = 0.70, p-value = <2.2 × 10−16; SLE GPS-PRS r2 = 0.44,
p-value = 5 × 10−9) (Supplementary Figs. 8 and 9, Supplementary
Data 5–8). These findings demonstrate that the PheWAS effect sizes
observed inUKBiobank are consistentwith that inAll of Us, supporting
the validity of the UK Biobank PheWAS results.

To ensureGPS-relatedPRS for bothRAandSLEweremore specific
to RA and SLE, respectively, when compared to other PRSmethods, we
conducted PheWAS in UK Biobank and All of Us for the PRS calculated
from the remaining 21 alternative methods for RA and SLE

Fig. 4 | The association between PRS and the prevalence of ANA positive → SLE
progressions in theAll ofUsdata.TheAll ofUsdata is not used to train genetic risk
scores. The Pearson correlation coefficient (and corresponding p-values from two-
sided t-test) between PRS and the progressionprevalence at each decile in theAll of
Us data are labeled on the plot. The error bands represent 95% confidence intervals
of fitted linear regression lines. MVL uses Lassosum as baseline framework. The

prediction accuracy of MVL is obtained by repeating across the scenarios of dif-
ferent rows and taking the average. It is clear that GPS consistently yields stronger
andmore significant correlations between the predicted and observed progression
prevalence in the independent test dataset, which demonstrates improved accu-
racy. Super-stacking models are shown in Supplementary Fig. 6.
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Fig. 5 | Cumulative distributions of marginal association statistics testing the
associationwith preclinical to disease progressions in the All of Us dataset.We
trained the progression risk scores in the BioVU biobank. We also performed
GWAS, comparing preclinical to disease cases, in the All of Us data, which is not
used in model training. For variants selected by GPS or the risk scores using CC
samples only, we compare the distribution of the marginal χ2 statistics testing
genetic associations with preclinical → disease progression. The cumulative dis-
tribution functions of the marginal χ2 statistics are plotted for A RF positive to RA
progressions and B ANA positive to SLE progressions, for the variants selected by

the risk scores. Two-sided Kolmogorov-Smirnov (KS) tests were performed to
compare the distributions and the p-values are labeled on each subpanel. At each
quantile, the variants selected by GPS are often more significantly associated with
the progression phenotype compared to variants selected by risk scores based on
CC studies. This comparison explains why GPS is more accurate for predicting
preclinical to disease progressions. Cumulative distributions of marginal associa-
tion statistics contrasting healthy control with preclinical disease are given in
Supplementary Fig. 7.
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(Supplementary Data 5–8). Overall, for both RA and SLE, GPS scores
continue to be associated with more biologically relevant PheWAS
codes that are specific to RA and SLE, respectively, when compared to
non-GPS PRS methods (See Supplementary Material for more details).
This observationwas similar inUKBiobank andAll of Us, whichprovide
further support of the specificity of GPS-related PRS (Supplementary
Figs. 10–13).

Discussion
In this article, we investigate different strategies to construct genetic
risk scores to predict the progression frompreclinical to disease states
and apply them to study several autoimmune diseases where we have
sufficient sample sizes. Using our newly developed method GPS, we
are able to synthesize information from both biobank studies that
measure progression phenotypes and large-scale studies for CC phe-
notypes. GPS outperforms other methods that analyze either biobank

or CC studies alone, methods that perform cross-trait meta-analysis,
methods that use transfer learning to refine risk scores from CC stu-
dies, methods based on multivariate extension of regression models,
and methods that combine risk scores from biobanks and CC studies
through stacking. Individuals with high GPS scores have much-
elevated risk of progressing to disease states and would benefit the
most from early interventions. Moreover, we showed via PheWAS that
GPS scores are more likely to be associated with closely related auto-
immune diseases compared to risk scores calculated from CC studies
and other methods, suggesting that the selected predictors in the
model may be more relevant to disease etiology.

Predicting the progression from preclinical stage to diseases can
be more clinically meaningful and actionable than predicting disease
outcomes alone. Progression PRS is conceptually different from most
PRS focused on predicting dichotomous disease status contrasting
disease cases and healthy controls. For relatively rare diseases such as

       Rheumatoid arthritis
Rheumatoid arthritis and other inflammatory polyarthropathies

Fig. 6 | PheWAS results for RA case-control and progression risk scores in UK
Biobank. A PheWAS results fromCC-PRS of RA.B PheWAS results fromGPS-PRS of
RA. The y-axis represents the −log10(p-value) for each PheWAS code, derived using
a two-sided Chi-square test after fitting a multivariate logistic regression model.

The x-axis displays different PheWAS code categories. Each point corresponds to a
specific PheWAS code, with downward and upward pointing triangles indicating
negative and positive associations between disease status defined by the PheWAS
code and the PRS, respectively.
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SLE (1 in 2500 among people of European ancestry), a 3× fold increase
in the risk is still low for the general population and cannot justify
clinical action for an at risk individual who is otherwise healthy.
Instead, decisions for clinical intervention are necessary for individuals
in the preclinical stage when early symptoms already start to show,
autoantibodies can be detected, and autoimmunity is already
activated38. As autoimmune diseases may quickly lead to irreversible
organ damages, early clinical interventions for individuals with high
progression risk scores are critical, as those individuals may have ~3×
elevated risk. Germline genetic variants usually do not change over the
lifetime, which can capture the underlying risk at very early stages39.
Stratifying patients by their risk of disease progression allows health-
care providers to give early intervention, targeted monitoring, perso-
nalized treatment decisions, which also helps improve clinical trial
designs40.

It is intriguing to see that CC studies comparing disease vs.
healthy (or population) controls yield suboptimal prediction

accuracy for the progression from preclinical phases even though it
measures the same end point (i.e., the disease states). The difference
lies in the control groups. Variants that separate healthy controls
from diseases cases tend to have different marginal effects com-
pared to variants that separate preclinical individuals from disease
cases. Our analysis indicates that GPS models for progression risk
prediction preferably select variants that distinguish preclinical
patients from patients with full-blown disease and healthy indivi-
duals. According to the results of PheWAS analysis, PRS for pro-
gression traits are more uniquely associated with related
autoimmune diseases. On the other hand, PRS scores calculated from
CC studies are more broadly associated with many traits, including
many diseases that may co-occur with SLE or RA treatment, e.g.,
infection, acute renal failure, or hypertension. At the current sample
size, there is not sufficient power to examine if the actual causal
variants differ between CC and progression phenotypes. Yet, the
results from our study underscore the importance of defining a
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Fig. 7 | PheWAS results for SLE case-control and progression risk scores in UK
Biobank. A PheWAS results for CC-PRS of SLE. B PheWAS results from GPS-PRS of
SLE. The y-axis represents the−log10(p-value) for eachPheWAScode, derivedusing
a two-sided Chi-square test after fitting a multivariate logistic regression model.

The x-axis displays different PheWAS code categories. Each point corresponds to a
specific PheWAS code, with downward and upward-pointing triangles indicating
negative and positive associations between the disease status defined by the Phe-
WAS code and the PRS, respectively.
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reference group for genetic studies (e.g., preclinical individual vs.
healthy controls), even when the end points (i.e., disease states) are
the same.

Our results suggest new direction of research using EHR-based
biobanks,whichhavebecome a valuable resource for genetic research,
owing to their extensive collection of lab tests, clinical diagnosis, and
medications41. Leveraging these comprehensive and detailed pheno-
typic data, researchers can effectively identify patients in preclinical
stages ofdiseases, enabling in-depth investigations into the genetics of
disease progression. While our research focuses on autoimmune
conditions, similar framework would benefit the study of other pro-
gression phenotypes.

As all other studies, our research also has limitations. Due to small
sample sizes, we do not have the power to analyze non-European
samples. Limited exploration of transferability of the GPS scores yields
noisy and inconclusive results (Supplementary Data 9 and 10). This is
an unfortunate omission. As bigger datasets of diverse ancestries start
to appear, our method can be similarly applied to non-European stu-
dies. Importantly, the same idea presented in GPS can be adapted to
improve PRS across ancestries, where PRS constructed from the Eur-
opean ancestry may serve as prior to improve the accuracy of non-
European PRS. Besides, we only use ANA and RF biomarkers to define
preclinical phase. In practice, the preclinical phase may also be char-
acterized by the presence of other autoantibodies including anti-rho,
anti-double-strand DNA, etc. Yet, those biomarkers are measured in a
very small number of individuals in current biobanks. As more EHR-
based biobanks become available, our studies can be extended to
include other biomarkers to more precisely define preclinical
individuals.

In summary, we explore the utility of PRS to predict the pro-
gression from preclinical phase to disease states. Early diagnosis,
treatment, and intervention can greatly alleviate disease symptoms,
slow down progression, and improve the quality of life. The GPS
method proposed in this paper outperforms alternative methods and
leads to more accurate prediction of progression. It will become a
useful tool for studying many diseases and will play a key role in
extending utility of PRS in the era of precision medicine.

Methods
Study approval
This study is deemed non-human subject research and approved by
Penn State College of Medicine IRB.

Below, we first provide themathematical details of the GPSmodel
and the details of model fitting algorithm. We then describe our
simulation study, the applications to autoimmune diseases, and the
follow-up PheWAS studies.

GPS model
We denote the progression phenotype as Y= y1, . . . , yn

� �0, which is a
n× 1 vector of 0–1 values, with 0 being the baseline preclinical status
and 1 being the disease state. X is a n×p matrix of genotypes. We
encode genotypes by the number of alternative alleles in each position
(i.e., 0, 1, or 2) or by allelic dosage for imputed genotypes. To facilitate
presentation of the methods, we assume the genotypes are mean-
centered. We use Xi� to represent the genotype vector for individual i.
β denotes p× 1 vector of prediction weights. The model for the pro-
gression phenotype is given by

logitðPðY i = 1jXi�ÞÞ=Xi�β

The likelihood function is given by

l YjX;βð Þ=
Y
i

σ Xi�β
� �I Y i = 1ð Þ 1� σ Xi�β

� �� �I Y i =0ð Þ

where σ is the logistic link function (or equivalently the sigmoid
function), i.e.,

σ Xi�β
� �

=
exp Xi�β

� �
1 + exp Xi�β

� �
Expanding the likelihood at β=0, the likelihood can be approxi-

mated by

l βð Þ � β0X0 Y� Y0

� �� 1=2 ×β0X0WXβ

Y0 is a vector of constant σ β0

� �
, representing the intercept of the

model. W is a diagonal matrix with diagonal entries being
Y0 � 1� Y0

� �
, where * is element-wise product. It is clear that

maximizing the approximate likelihood is equivalent to minimizing
the following loss function:

l* βð Þ= � β0X0Y+ 1=2×β0X0Xβ

To properly estimate the joint effects, we impose L1 and L2
penalties on the regression parameters, i.e., jjβjj11 and jjβjj22. To further
borrow strength from large genetic studies of CC phenotypes, we use
the PRS weights from CC studies as priors, i.e., β̂cc. We introduce
another L2 penalty term to penalize the deviation between the prior
and theparametersof the PRSmodel. It will force themodel parameter
to be similar to the prior, if it helps improve the prediction accuracy.
Together, the loss function of the model is given by

LGPS β;α, λ,ηð Þ

=
1
2N

�β0X0Y+ 1=2×β0X0Xβ
� �

+ λ×αjjβjj11 + 0:5 × λ× 1� αð Þjjβjj22 +ηjjβ̂cc � βjj22

λ denotes the shrinkage parameter and α denotes the mixing
parameter that controls the weight of L1 penalty relative to L2 penalty.
jjβ̂cc � βjj22 denotes the penalty term for the prior. The choice of L2
norm allows for small differences between prior and parameters of
progression PRSmodel.Here,η is the corresponding tuningparameter
for the new penalty term controlling for the contribution of the prior,
which can be determined by cross validation. If the prior is helpful for
improving progression risk prediction, the penalty term and the
optimization algorithm will force parameter estimates to be similar to
theCCprior. In contrast, if theprior does not help, the optimalηwill be
small, and the influence of the prior will be reduced. Established
methods exist to approximateX0Y andX0X using summary statistics of
marginal associations and a reference panel with matched
ancestries42,43. The solutions of LGPS β;α, λ,ηð Þ will be sparse as it uses a
combination of L1 and L2 penalty.

While our method is not Bayesian, it has a Bayesian interpretation
as in lasso or ridge regression models. Specifically, we can consider an

equal mixture of three distributions, i.e., N β̂cc,
1
λ I

� �
, which corre-

sponds to the prior from CC studies, N 0, 2
λ 1�αð Þ I

� �
which corresponds

to the L2 penalty, and a Laplace distribution (or double exponential
distribution) Laplace λð Þ, which corresponds to the L1 penalty. Mini-
mizing the loss function is equivalent to maximizing the joint
likelihood.

Model fitting for GPS
For notational convenience, we define Σ=XTX as a p×p matrix and
ϕ=XTY as a p× 1 vector. The prior weight for variant k is denoted by
β̂cck

. To minimize the loss function LGPS, we employ a coordinate
descent algorithm to find the solution by iteratively updating each
element in β = β1,β2, . . . ,βk , . . .βp

� �
.
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In iteration t, we update βk by

βðtÞ
k =

u tð Þ
k
�nλα

Σkk +nλ 1�αð Þ+nη , if u tð Þ
k >nλα

u tð Þ
k

+nλα
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For variants without corresponding prior PRS weights (e.g., when
the variant is not measured in the training data), we ignore the penalty
term in the loss function. The optimal combination of tuning para-
meters ðα, λ,ηÞ that minimize the loss function in a validation dataset
will be chosen and used in the final prediction model.

To improve computational efficiency, GPS models are fitted
separately for each linkage disequilibrium (LD) block. For samples of
European ancestry, we obtain the LD correlation matrix calculated by
using 1000 Genomes project phase 3 European samples and provided
by PRS-CS17. Variants in different LD blocks are considered indepen-
dent. The tuning parameters ðα, λ,ηÞ are assumed to be shared across
all LD blocks.

Generating simulation data
For validation and test cohorts, we simulate correlated quantitative
liability scores for progression phenotype and CC phenotype using
real genotypes in UK biobank. We focus only on individuals of Eur-
opean ancestry and use Hapmap3 variants in the simulation. We ran-
domly select 200 or 500 causal variants for each trait. The total
heritability h2 is set as 0.4 for both the CC and progression pheno-
types, mimicking the estimates from RA and SLE.

To generate genetically correlated liability scores, we first simu-
late pairs of causal variant effects from a bivariate normal distribution
denoted below,
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Where βprog
j and βcc

j are the true effects of a causal variant j for pro-
gression andCCphenotype, respectively. For non-causal variants, their
true effects are set to 0.M denotes the total number of causal variants
and ρ denotes the genetic correlation between the two phenotypes.
We vary the values of ρ between 0.2, 0.4, 0.6, and 0.8.

Next, to simulate individual-level phenotype information
(e.g., in the validation and test cohorts), the liability scores for
the CC and progression phenotypes are generated according to a

linear model, i.e., ycci , yprogi
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, where

Xij � Nð0, 1Þ, and ϵcci , ϵprogi � ð0, 1� h2Þ yi and Xi represent the
simulated liability and genotype vector of individual i. ϵi denotes
the residuals. βj ’s represent the causal effects from the progres-
sion or CC phenotypes. Binary disease outcomes can be obtained
by dichotomizing the liability score according to the disease
prevalence. For both phenotypes, we simulate a validation cohort
of 2000 unrelated individuals to estimate tuning parameters. For
the progression phenotype, we simulate an additional test cohort
of 2000 individuals to evaluate the prediction accuracy.

For training cohorts, summary level statistics ofmarginal effects are
simulated from normal distributions βprog

marginal � MVNðDβprog,D=Nprog Þ
and β̂

cc

marginal � MVNðDβcc,D=NccÞ, whereD denotes the LD correlation
matrix. In this paper, we used precalculated LD correlation matrices
based on the UK biobank samples of European ancestry, as provided by
Privé et al. 16. We set the sample size of CC dataset Ncc to be 50000.
Despite the large sample sizes of biobanks, the number of preclinical
individuals is often small. We vary the progression sample size Nprog

between 500, 1000, 2000, 3000, which mimics the sample sizes of
preclinical individuals in biobanks such as All of Us and BioVU.

We also consider scenarios whereonly a portion of causal variants
are shared by progression and CC phenotypes. For these scenarios,M,
ρ, and Nprog are set to be 200, 0.4, and 1000, respectively, and we vary
the proportion of shared causal variants between 0.25, 0.5, and 0.75.
For each simulation scenario, we simulate 20 replicates with
individual-level genotype and phenotype data and calculate the mar-
ginal association summary statistics.

Building PRS models on simulation data
We use three popular PRS methods, i.e., Lassosum, LDpred2, and PRS-
CS to construct baseline PRS from biobanks and CC studies. We also
combine them using GPS, MTAG, transfer learning, multivariate Las-
sosum, and stacking strategies, as in the “Overview of GPS” section of
the Results, to construct the progression PRS.

Different combinations of baseline PRSmethods and progression
PRS construction strategies are considered, resulting in 23 PRSmodels
to be compared, includingmodels from 6 combination strategies (CC,
PROG, GPS, MTAG, TL-PRS, STACKING) used together with 3 baseline
methods (Lassosum, LDpred2 and PRS-CS), the MVL model and four
super stacking models (GPS_stacking, MTAG_stacking, TL-PRS_stack-
ing, and ALL-BASE_stacking). More methodology details can be found
in Supplementary Data 1. As input to different PRS methods, we also
use the European LD correlation matrix calculated based on the 1000
Genomes project phase 3 samples, as provided by PRS-CS17. The pre-
diction R2 (i.e., the squared Pearson correlation coefficients between
observed and predicted progression outcome) is used to evaluate
model performance on independently simulated testing data.

GWAS summary statistics of case-control phenotypes of
autoimmune disorders
ForCCphenotypes,we assembledpublishedGWAS summary statistics
from studies of European ancestry for RA and SLE44–50. Non-European
individuals are excluded as the sample sizes are not sufficient for cal-
culating polygenic risk scores or because the number of preclinical
samples in biobanks is not sufficient for constructing progression
risk scores. Details about the included CC studies can be found in
Supplementary Data 11. We performed fixed-effectmeta-analysis using
rareGWAMA51,52 to synthesize results from multiple cohorts. The
resulting effective sample size is 37,828 for RA and 16,654 for SLE. We
use fixed effect meta-analysis results to construct genetic risk scores.

Sample selection in Vanderbilt University Biobank (BioVU) and
All of Us dataset
In the BioVU biobank, we first determined the ancestry of each sample
via ADMIXTURE53 using the 1000 Genome Project Phase 3 data as the
reference panel. We only included samples with >90% European
ancestry composition for subsequent analyses. In theAll of Usbiobank,
we utilized the pre-calculated genetic ancestry and only included
samples of European ancestry.

We then performed quality control following the recommenda-
tion by Marees et al. 54. Specifically, with PLINK, we excluded (1) SNPs
with low genotyping rate (--geno 0.01), (2) individuals who have high
rates of genotype missingness (--mind 0.01), (3) SNPs with low minor
allele frequency (--maf 0.05), (4) SNPs that deviate from Hardy-
Weinberg equilibrium (--hwe 1e-6), (5) individuals with high or low
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heterozygosity rates, (6) individuals that have first or second-degree
relatives in the sample (--rel-cutoff 0.125), and (7) SNPs not within the
HapMap3 SNP set. Next, we select seropositive individuals from the
biobanks to construct genetic risk scores, i.e., the individuals with
positive ANA biomarker for SLE3,8 and with positive RF biomarker for
RA5–7, respectively. For ANA and RF test results reported as titers, we
considered titers ≥ 1:80 (e.g., 1:80, 1:160, 1:320, etc.) as positive, and
the other values as negative (e.g., negative status, 1:40, 1:20, and etc.),
following established protocols10,55. For binary ANA and RF test results
(i.e., reported as either positive or negative), we considered positive
tests as positive and negative tests as negative. Lastly, for RF reported
in the unit of IU/mL, we considered values > 15 IU/mL as positive and
values ≤ 15 IU/mL as negative.

Defining individuals with preclinical and disease status and
GWAS analysis
To define progression phenotypes for RA and SLE in BioVU and All of
Us, we use patients who had positive biomarker test results (RF posi-
tive for RA and ANA positive for SLE) and relevant PheWAS codes for
SLE or RA phenotype as progressed cases, following established
algorithms56 (Table 3). The remaining seropositive individuals that
were followed up in the biobank but without the disease PheWAS code
were used as non-progressed. The summary of sample size and
demographic information for diseased andpreclinical individuals from
BioVU and All of Us cohorts are provided in Supplementary Data 2.

Given the diseased andpreclinical status definition, weperformed
GWAS analysis in the training dataset using REGENIE v2.2.457, adjusting
for sex, year of birth (YOB), YOB2, sex × YOB, sex × YOB2, and 20
genotype principal components. The resulting GWAS summary sta-
tistics are used to construct progression risk scores.

Building PRS models for progression risk of autoimmune
disorders
As in simulation studies, 23 different PRS models are used to predict
the progression risks for two autoimmune disorders, i.e., RA and SLE.
Models were constructed in the same way as in simulation studies. For
methods that need tuningparameters,we randomly split BioVUcohort
into training samples (70%) and validation samples (30%). Training
samples are used to generate GWAS summary statistic for progression
phenotype and validation samples are used for selecting tuning para-
meters. After tuning parameters are selected, we retrain the model
using thewholeBioVUdataset anduse theAll ofUsdata as our testdata
to evaluate the accuracy of different risk scores.

To evaluate different PRS models, Nagelkerke’s R2 on the liability
scale22 are calculated. 95% confidence intervals of the Nagelkerke’s R2

estimates are calculated using the CI.Rsq function in the psychometric
R package (version 2.3). This function constructs confidence intervals
for R2 based on an approximated standard error estimates58. We also
calculated area under the precision recall curve (AURPC) and area
under the receiver operating characteristic curve (AUC) using ROCR59

package (version 1.0-11). 95% confidence intervals for AUPRC and AUC
are calculated by 1000-fold bootstrapping on the testing dataset.

Comparing marginal association statistics of progression phe-
notypes in All of Us
GWAS analysis of progression phenotypes in the All of Us biobank was
conducted in the same way as the analysis of the BioVU biobank. For
variants selected by GPS and PRS models trained with CC studies, we
examined how strongly they are associated with the control → pre-
clinical and preclinical → disease progression phenotypes in the inde-
pendent test dataset All of Us. We plotted the cumulative distribution
functions of the marginal χ2 statistics testing for the genetic associa-
tion with control vs preclinical states and with preclinical → disease
progressions. Two-sided Kolmogorov-Smirnov tests were conducted
to compare the distributions of marginal χ2 statistics.

PheWAS analysis in UK biobank and All of Us
PheWAS was conducted in the UK Biobank and All of Us data. We
obtained the 23 trained PRSmodels of preclinical to disease progressions
for RA and SLE. For 16 non-stacking-based PRSmodels, we calculated risk
scores for all UK Biobank and All of Us individuals using the “score”
function of plink2. For 7 stacking-based PRS models, we calculated their
risk score by weighted sum of individual non-stacked PRS models inclu-
ded within each stacked-based PRSmodel. PheWAS codes were assigned
to each participant based on the reported ICD-9 and ICD-10 codes from
the EHR, using the createPhenotypes function from the PheWAS R
package (https://github.com/PheWAS/PheWAS). Default parameterswere
used.We limit our analyses to samples of European ancestry (UKBiobank
n=458,878 and All of Us n=97,016) and only analyze PheWAS codes that
occur in at least 0.1% of individuals. In total, we included 1405 and 1282
PheWAS codes in the UK Biobank and All of Us analysis, respectively. We
estimated the association between PheWAS codes with PRS using logistic
regression models, controlling for sex, year of birth (YOB), YOB2,
sex × YOB, sex × YOB2, and the top 20 genotype PCs as covariates.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The GWAS summary statistics for CC studies of autoimmune diseases
are publicly available and their corresponding PubMed IDs can be found
in Supplementary Data 11. GWAS summary statistics constructed in this
study from data of the BioVU and the All of Us biobank will be available
upon request from the author. The individual-level EHR lab test, diag-
nosis and genotype data of patients from the All of Us (https://www.
researchallofus.org) biobank can be accessed upon application. The
individual-level EHR lab test, diagnosis, and genotype data of patients
from the BioVU biobank (https://victr.vumc.org/biovu-description) can
be accessed via collaborations with Vanderbilt University. All other data
supporting the findings described in this manuscript are available in the
article and its Supplementary Information files.

Code availability
Code for constructingbaseline PRSmodels or combiningdifferent PRS
models can be found at https://github.com/wangc29/GPS_paper_
script. We also use the following software to construct PRS, includ-
ing Lassosum (version 0.4.5), LDpred2 (version 1.12.2) and PRS-CS
(version 1.1.0),MTAG (version 2017-04-07), TL-PRS (version 1.0.0), and
multivariate Lassosum (version 1.0.0). All other methods were imple-
mented with their default settings and tuning parameters are selected
by optimizing the prediction R2 in validation dataset. An R package
implementing the GPS method can be found at https://github.com/
wangc29/gps and the linked Zenodo repository (https://doi.org/10.
5281/zenodo.14176980)60. As presented in Fig. 1, GPS takes four pieces
of information as input including the weights of a pretrained CC PRS
model, GWAS summary statistics of a progression phenotype, a vali-
dation dataset with individual level genotype and phenotype

Table 3 | ICD codes used to define RA and SLE disease status

Disease ICD codes

Rheumatoid Arthritis (RA) ICD9: 714.0, 714.1, 714.2, 714.81
ICD10: M05*, M06.8*, M06.9

Systemic lupus erythematosus (SLE) ICD9: 710.0
ICD10: M32.8, M32.9, M32.1*

Seropositive (ANA or RF positive) Individuals with relevant diagnostic codes are defined as
disease cases56, following established algorithms. The remaining seropositive individualswithno
diagnostic codes for the disease at any time in the EHR but being followed up are considered
non-progressed controls.
ICD codes ending in “*” includeall sub-level codes. e.g.,M32.1* code contains all sublevel codes
such as M32.10, M32.11, M32.12, M32.13, M32.14, etc.

Article https://doi.org/10.1038/s41467-024-55636-6

Nature Communications |          (2025) 16:180 14

https://github.com/PheWAS/PheWAS
https://www.researchallofus.org
https://www.researchallofus.org
https://victr.vumc.org/biovu-description
https://github.com/wangc29/GPS_paper_script
https://github.com/wangc29/GPS_paper_script
https://github.com/wangc29/gps
https://github.com/wangc29/gps
https://doi.org/10.5281/zenodo.14176980
https://doi.org/10.5281/zenodo.14176980
www.nature.com/naturecommunications


information for the progression phenotype, and an LD correlation
matrix from the matched ancestry. The final output is a trained GPS
model that can be used to predict disease progression risk.
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