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Domain-specific vocabulary, which is crucial in fields such as Information Retrieval and Natural 
Language Processing, requires continuous updates to remain effective. Incremental Learning, unlike 
conventional methods, updates existing knowledge without retraining from scratch. This paper 
presents an incremental learning algorithm for updating domain-specific vocabularies. It introduces 
DocLib, an archive used to capture a compact footprint of previously seen data and vocabulary terms. 
Task-based evaluation measures the effectiveness of the updated vocabulary by using vocabulary 
terms to perform a downstream task of text classification. The classification accuracy gauges the 
effectiveness of the vocabulary in discerning unseen documents related to the domain. Experiments 
illustrate that multiple incremental updates maintain vocabulary relevance without compromising 
its effectiveness. The proposed algorithm ensures bounded memory and processing requirements, 
distinguishing it from conventional approaches. Novel algorithms are introduced to assess the stability 
and plasticity of the proposed approach, demonstrating its ability to assimilate new knowledge while 
retaining old insights. The generalizability of the vocabulary is tested across datasets, achieving 
97.89% accuracy in identifying domain-related data. A comparison with state-of-the-art techniques 
using a benchmark dataset confirms the effectiveness of the proposed approach. Importantly, this 
approach extends beyond classification tasks, potentially benefiting other research fields.
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A domain-specific vocabulary comprises terms that are relevant, recurrent, and representative of the domain. 
Knowledge of such terms can be helpful in a variety of research areas, such as Information Retrieval, Machine 
Learning, Natural Language Processing, Artificial Intelligence, and Natural Language Generation1,2. Such 
a vocabulary, consisting of a concise selection of relevant text features representing a domain, can lower the 
computational cost of many applications that work on the text. For example, domain-specific vocabulary 
can significantly reduce the computational cost of training a classification model by reducing feature space 
dimensionality3. Other examples include applications such as Recommender Systems, Topic Identification, 
Name Entity Recognition, and Sentiment Analysis4–7. By integrating domain-specific terms, vocabulary can 
also be utilized for different specialized tasks in Text Analytics and Natural Language Processing applications 
such as Semantic Analysis, Text Summarization, and Topic Modeling. It can also improve the comprehension 
and interpretation of text within specific fields such as medicine8,9, law, finance, and technology. A domain-
specific vocabulary can help to choose the right terms to generate content for a particular industry or subject 
area. This ensures that the content is accurate, reliable, and relevant to the target audience within a particular 
domain. Such vocabularies are also integral to the training and fine-tuning of Large Language Models (LLM). 
LLMs equipped with domain-specific terminology can generate contextually more appropriate and domain-
relevant text, making them valuable tools for a wide range of applications. Domain-specific terminology is even 
more important for technical documents, specifications, manuals, and guidelines. This can assist in maintaining 
consistent and precise content. However, simply creating a vocabulary is insufficient until it is updated after 
encountering new data related to the domain. Continual updates ensure that the vocabulary is effective and 
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useful for various tasks. This work aims to present a technique that incrementally updates a domain-specific 
vocabulary.

Conventional machine-learning models generally assume that all training data are available before model 
building. Thus, the model can be trained by identifying the patterns, structures, and distributions of the entire 
dataset under the assumption that the data are static. In contrast, incremental learning is a paradigm in which 
model learning is a continuous task, as the data continue to be added. Incremental learning does not assume that 
all the training data are available before the learning step. Learning occurs as new samples are added, and the 
model adapts according to the new data. The model-building process requires scanning add-on datasets without 
forgetting previously learned knowledge10–12. Incremental learning is essential for various applications in the 
modern digital era, as detailed in “Related work” section. Examples include autonomous and interactive systems 
that behave according to input situations, such as robots and autonomous cars13–17.

An incremental learning model addresses many challenges, such as the stability-plasticity dilemma11, 
concept drift, and catastrophic forgetting18,19. Stability refers to a model’s ability to conserve previously acquired 
knowledge. Plasticity is the ability of a model to acquire new knowledge about an ongoing task. Focusing only 
on stability may impact the learning ability of the model, whereas targeting plasticity may lead to catastrophic 
forgetting, implying forgetting already acquired knowledge. Therefore, an incremental model must strike a 
balance between the two to be effective and useful. Concept drift is a scenario in which the distribution of the 
add-on datasets does not match the initial datasets used in model building.

The primary objective of this research is to introduce a novel algorithm designed for incrementally updating 
domain-specific vocabularies. This algorithm aims to seamlessly integrate new terms from additional datasets 
while efficiently removing obsolete terms, and optimizing processing time and memory requirements. Unlike 
conventional one-time learning methods that necessitate the entire data to be available statically before building 
the model, this new approach facilitates ongoing updates, ensuring the vocabulary remains current without 
excessive resource consumption. An efficient repository will be maintained to store vocabulary terms and 
compact representations of previously seen labeled training sets to streamline the vocabulary update process 
by eliminating the need to store entire datasets and re-train models from scratch. Furthermore, the research 
aims to establish algorithms for assessing the incremental model’s consistent performance over time, ensuring 
it can adapt and learn from new data without compromising previously acquired knowledge. This automated 
evaluation process addresses a significant research gap, providing a robust framework for assessing incremental 
vocabulary learning methods.

The following are the primary contributions of this work:

	(1)	� A novel algorithm for incrementally updating a domain-specific vocabulary that can incorporate new terms 
from add-on datasets and remove obsolete terms. The proposed technique outperformed the convention-
al one-time learning method by keeping the processing time and memory requirements bounded. The 
proposed approach demonstrated a better F1 score than the state-of-the-art approach using a benchmark 
dataset.

	(2)	� Introduction of DocLib, an efficiently designed archive for storing vocabulary terms, and a compact foot-
print of previously seen labeled training sets. This eliminates the need to store previously observed datasets 
in their entirety and train the model from scratch.

	(3)	� Introduction of algorithms to assess the stability and plasticity of the proposed incremental learning-based 
approach. This study bridges a notable research gap by automating incremental updates to domain-specific 
vocabularies and demonstrating the stability and plasticity of incremental learning models.

	(4)	� The generalization ability of the obtained vocabulary is illustrated by using the vocabulary obtained from 
one dataset to identify domain-related documents in an alternate dataset.

The effectiveness of the updated vocabulary is assessed using a task-based evaluation technique. Vocabulary 
terms are used to perform a downstream task of text classification. The accuracy of this task is used as a metric 
to measure the effectiveness of the vocabulary. A comparison of the proposed technique with state-of-the-art 
methods on a benchmark dataset demonstrates a better F1 score, with significantly lower memory requirements. 
Since a continually maintained domain-specific vocabulary can precisely capture the specialized terminology 
of a specific subject area or domain, it can be pivotal for a variety of tasks and applications in diverse research 
domains. This emphasizes the significance of this study.

The remainder of this paper is organized as follows. “Related work” section describes the related work in 
this area. “Methodology” section details the methodology of the proposed algorithm. “Experiments and results 
discussion” section discusses the experimental setup and the obtained results. “Conclusion and future work” 
section concludes the paper and discusses the scope of future work.

Related work
A domain model extracts relevant and useful knowledge from a related set of information sources1. Different 
terminologies have been used to refer to domain models, such as ontology20,21, Dictionary, Vocabulary, Lexicon, 
and Conceptual Graph22. Domain models are used in various research fields, such as Artificial Intelligence, 
Natural Language Processing, and Information Retrieval23,24. Many applications deploy domain models to 
efficiently store and use domain knowledge. Examples include text generation25, Risk Management26, financial 
distress prediction27, and building information modeling28.

Incremental learning is the process of accommodating new knowledge in an existing data model without 
having to retrain the model from scratch11. Incremental learning is applied to a variety of applications in which 
either new data continue to be added or the available data need to be divided into small chunks. Reference29 
proposed an incremental bagging technique to detect a crypto-ransomware attack in the initial phase before 
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the target files are encrypted. Because the information available in the early stages of an attack is incomplete 
and continues to add to the progression of crypto-ransomware behavior, an incremental learning technique 
is employed. Reference30 proposed an incremental summary generation algorithm that swaps sentences 
from the current summary and a new document to generate an improved summary. Reference31 proposed a 
Chunk Incremental Cost-Sensitive Hinge Loss SVM model that distinguished the cost of false positives and 
false negatives in the loss function. The proposed algorithm updates an already trained model incrementally 
upon receiving the chunks of new data samples. Reference32 critically reviews the current state of incremental 
learning in large language models (LLMs). It examines the challenges and methodologies associated with 
integrating new knowledge without forgetting previously acquired information. The review highlights the 
importance of balancing plasticity and stability to prevent catastrophic forgetting. The paper suggests further 
exploration into hybrid models that combine architectural and regularization strategies to improve incremental 
learning capabilities in LLMs. Reference33 provides a comprehensive overview of recent advances in deep class-
incremental learning, where models learn new classes without forgetting old ones. The paper identifies the primary 
challenge of catastrophic forgetting and suggests future research directions such as developing memory-efficient 
strategies. Reference34 reviews various incremental learning methods, comparing architectural, regularization, 
and rehearsal strategies. The authors discuss the strengths and weaknesses of each method, emphasizing the 
need for more robust models capable of handling non-stationary data distributions. Reference35 highlights the 
need for specialized LLMs to overcome the heterogeneity of domain data and suggests future research into 
more sophisticated domain adaptation techniques. Despite progress, domain specialization for LLMs still lacks 
standardized evaluation frameworks.

Incremental learning can be applied to update existing data models to accommodate new data. This method 
is more efficient than creating new models from scratch. Reference36 partitioned streaming social network data 
into old and updated training tasks and incrementally learned the representation of dynamic social network 
data. They used GloVe to generate term vectors by building a term-context co-occurrence matrix. Any change 
in the frequency of the terms also requires a change in the co-occurrence matrix. The co-occurrence matrix is 
updated by retaining the dimensions of the matrix and performing incremental iterations on the values added 
between the new and old matrices. Reference10 proposed an incremental feature selection method that updated 
an optimal feature subset from added-in data without forgetting previously learned knowledge. Reference37 
proposed an incremental text classification model for scenarios in which the data are not static and are possibly 
updated and added. Owing to the changing data, conventional methods need to retrain the model, which is 
a lengthy process. The proposed model required approximately 80% less training time than the conventional 
models. Over the past decade, the literature has extensively explored the classification of data streams using 
incremental learning strategies. Recent studies have highlighted persistent challenges, such as timeliness, 
computational complexity, and concept drift, in stream classification. To address these issues, Ref.38 introduced 
a cuckoo search-based incremental binary classifier (CS-IBC). It defines class labels, accelerates class searches, 
and periodically updates classifiers. Testing on KDDCUP data shows CS-IBC’s robustness and scalability of CS-
IBC, demonstrating its effectiveness in classifying data streams. Reference39 proposed a multidomain adaptation 
model based on incremental learning to transfer knowledge from the source domain to multiple target domains. 
Reference40 presented HILATSA, a hybrid Arabic Twitter sentiment analysis system that adapts the lexicon to 
current language changes by employing both lexicon-based and machine-learning approaches to identify tweet 
sentiment polarities. Reference41 addresses the universal challenge of creating adaptive models and introduces 
a novel incremental learning framework for an IoT-based smart water quality classification system. The model 
achieved state-of-the-art accuracy and low validation loss by utilizing a modified deep-learning neural network 
with hyperparameter tuning.

The reviewed papers reveal the following research gaps that the proposed objective can address:

	(1)	� Balancing plasticity and stability: Incremental learning requires methods to balance acquiring new knowl-
edge with retaining existing knowledge, preventing catastrophic forgetting.

	(2)	� Memory efficiency: Current methods often overlook the importance of memory efficiency, which is critical 
for real-world applications.

	(3)	� Domain adaptation: Applications (for example, LLMs) utilizing incremental learning need more effective 
domain adaptation techniques to handle specific domains’ diverse and sophisticated requirements.

	(4)	� Automated evaluation: There is a lack of robust frameworks for automated evaluation of incremental learn-
ing models, particularly in terms of their long-term performance and adaptability.

The proposed approach aims to facilitate ongoing updates while ensuring that the vocabulary remains current 
without excessive resource consumption. This approach inherently balances plasticity (learning new terms) and 
stability (retaining and efficiently managing old terms) by continuously updating the model incrementally rather 
than relying on one-time learning methods. This directly addresses the need for effective domain adaptation as 
it allows the model to integrate new terms from additional datasets seamlessly, ensuring that the vocabulary 
and model remain relevant and specialized to specific domains. The repository to store vocabulary terms and 
compact representations of previously seen labeled training sets reduces the need to store entire datasets and 
re-train models from scratch, optimizing memory usage and processing time. The research aims to establish 
algorithms for assessing the incremental model’s consistent performance over time. This automated evaluation 
process ensures the model can adapt and learn from new data without compromising previously acquired 
knowledge, providing a robust framework for assessing incremental vocabulary learning methods.
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Methodology
This paper proposes an incremental learning technique to update a given domain-specific vocabulary. For the 
experiments, the vocabulary is first created using an initial dataset. The created vocabulary is then incrementally 
updated using an add-on dataset. The high-level steps are illustrated in Fig. 1. The labeled dataset (both initial 
and add-on) may contain documents from multiple categories. These categories are treated as different domains. 
Step 1 in the figure shows that the initial dataset is split into training and test sets at an 80:20 ratio, and the 
training set is used to create an initial domain-specific vocabulary (Vocab) from scratch. The created vocabulary 
(Vocab) is stored in the DocLib archive. Using Vocab, the relevant information is extracted from the training set 
and stored as a category-specific Repository in the DocLib archive (details are provided in “Storing information 
in the DocLib archive” section). The vocabulary must be updated when a new dataset (referred to as an add-on 
dataset) related to a domain is encountered. This update may add new terms and/or delete obsolete terms. These 
steps are depicted in Step 2 of the figure (details are provided in “Incremental update to Vocab and Repository” 
section). Algorithm 1 concisely describes these steps.

“Vocabulary creation” and “Structure of DocLib archive and its usage” sections detail the precursor steps 
for the proposed methodology: vocabulary creation, the DocLib archive structure, and its usage. “Incremental 
update to Vocab and Repository” section presents the proposed incremental learning technique for updating 
the created vocabulary and repository. “Evaluating incrementally updated vocabulary” section describes various 
aspects of evaluating incremental vocabulary.

Algorithm 1.  High-level steps for creating a vocabulary and incrementally updating it.

Vocabulary creation
The vocabulary is created by extracting selected unigrams and bigrams from a labeled domain-specific text 
dataset2. Vocabulary creation involves the following steps.

Pre-processing
The raw data in the training set are refined using the following preprocessing steps in the given sequence: 
Lowercase the contents; Remove accented diacritic characters, non-ASCII characters, and punctuations such as 
‘ï,’ ‘ ∈ ,’ and ‘!’, respectively; Apply Lemmatization to convert terms to their root form such as ‘created’ is converted 
to ‘create;’ and Apply Named Entity Recognition to remove names of persons to avoid mapping names of people 
to a domain.

Extract terms and their frequency
Part-of-Speech (PoS) tagging is used to extract <noun >-tagged unigrams and <noun, noun>-tagged bigrams 
as terms from a document. The noun tag is used because it provides a better representative term than other tags, 
such as adjectives and adverbs. Trigrams or other higher-order n-grams are not used because adding trigrams 
increases the vocabulary size manifold but does not significantly improve vocabulary quality for tasks such as 
classification42. For every document, the extracted terms and their occurrence frequencies in the document are 
recorded.

Apply frequency threshold
The frequency threshold (u, b) is used to filter unigrams and bigrams that occur at least u and b times across all 
the documents of a labeled category. u = 3 and b = 3 are used in this study according to the results obtained in 
Ref.2.
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Apply stochastic gradient descent (SGD) with L2 regularization
The input feature set for vectorization is formed by combining the filtered terms from all the documents in 
the training set. Term Frequency times Inverse Document Frequency (Tf-IDF) is then utilized to vectorize the 
training set, using these features as input. Tf-IDF assigns higher importance to terms that are frequent in a 
specific document but rare in the entire corpus. This helps highlight unique terms crucial for distinguishing 
domain-specific documents. In contrast, semantic-based techniques like word embeddings create dense vector 
representations based on word context and co-occurrence statistics and excel at capturing semantic similarities 
between words. Additionally, pre-trained embeddings might not precisely capture domain-specific relevance. 
Tf-IDF with its interpretable weights, remains valuable for understanding term importance within both the 
document and the entire corpus. After vectorization, the SGD model43 with L2 regularization is trained on 
the obtained feature vectors using multiclass hinge loss or max-margin loss function (Eq. 1). This is equivalent 
to training a linear-SVM model. Ridge regularization (L2) adds the squared Euclidean norm of the model 
parameters (Eq. 2) as a penalty term to the loss function. This approach shrinks the model parameters toward 
the zero vector, thereby providing a sparse model. All features that are allocated a nonzero parameter value 
(coefficient) by the SGD model for a particular category c constitute the vocabulary Vocabc of that category. 
Vocab (domain-specific vocabulary) contains Vocabc (vocabulary for a particular category c) for all categories c 
in the labeled training set. This section uses word features and terms interchangeably.

	 Hinge Loss = max (0,1 − y_i × f(x_i)) ,� (1)

where y_i is the true label of the data point x_i, f(x_i)—predicted output for data point x_i, max (a, b)—
maximum of a and b.

	
L2 Regularization = α1/2

∑m

i=1
w2

i ,� (2)

where α is a regularization parameter that controls the strength of the regularization, m—total number of 
weights in the model, wi—individual weight parameters of the model.

Structure of DocLib archive and its usage
Structure of DocLib archive
The structure of the DocLib archive is illustrated in Fig. 2. For each category c of the labeled training set, the 
DocLib archive stores the following:

Fig. 1.  Proposed methodology to create and incrementally update a domain-specific vocabulary.
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•	 Vocabc: vocabulary for each category c (referred to as category-specific vocabulary) containing terms Termi, 
where i = 1, 2, …, Nc and Nc denotes the total number of terms in Vocabc.

•	 Repositoryc: For each category c, there exists a dedicated repository containing a set number of records S. 
Each record holds relevant information extracted from one or more documents within the same category. 
This information represents the consolidated frequency of each term in the vocabulary Vocabc across multiple 
documents within that category. Initially, the frequency of each term in Vocabc is set to zero. “Storing infor-
mation in the DocLib archive” section provides further details of computing these consolidated frequencies 
and storing them in a record.

The vocabulary and repository of all categories stored in the DocLib archive are collectively referred to as Vocab 
(Eq. 3) and Repository (Eq. 4), respectively.

	
V ocab =

∪k

c=1
V ocabC ,� (3)

	
Repository =

∪k

c=1
RepositoryC ,� (4)

where k—number of predefined categories in the training set.

The maximum memory requirement for storing the entire DocLib archive can be estimated using Eqs. (5), (6), 
(7), and (8).

	 Memory required to store vocabC = MaxT ermLen × NC ,� (5)

	 Memory required to store S records in Repositoryc = S × F reqSize × NC ,� (6)

	 Memory required per category c = (eq.5) + (eq.6) = (MaxT ermLen + S × F reqSize) × NC ,� (7)

	
Total Memory for k categories = (MaxT ermLen + S × F reqSize) ×

∑k

c=1
(Nc) ,� (8)

where Nc—number of terms in Vocabc, MaxTermLen—maximum possible length of a term in Vocab, FreqSize—
number of bytes used to store the frequency of a term, S—number of records in a repository of the DocLib 
archive.

Storing information in the DocLib archive
Storing domain-specific vocabulary in Vocab  The domain-specific vocabulary Vocab (containing catego-
ry-specific vocabularies Vocabc for all k categories in the dataset) is stored in the DocLib archive (where each 
Vocabc stores the representative terms selected for category c).

When the vocabulary for each category c (Vocabc) is updated incrementally, the updated Vocabc replaces the 
already stored Vocabc in the DocLib archive.

Fig. 2.  Structure of the DocLib archive.
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Storing footprint extracted from training set in repository  To store a training set document d from category c 
in the record of the Repositoryc, compute the frequency of each term t ∈ Vocabc (referred to as freqt,d) in docu-
ment d. Document d is then stored in the Repositoryc record in the form of these computed frequencies.

The ith document of category c is stored in the i%S record of the Repositoryc. This implies that the first S 
training set documents of category c are stored in S records of Repositoryc. Subsequently, the next S training set 
documents of the category are merged into these S records again, continuing until all training set documents 
of category c are stored in the Repositoryc. Thus, a record in the Repositoryc stores the information regarding 
multiple documents in the corresponding category. While storing a document d of category c in record r of 
the Repositoryc, add the frequency of each term t ∈ Vocabc in d (denoted as freqt,d) to the existing frequency 
of t in record r. This process merges document d into record r, consolidating the frequencies of all terms 
t ∈ Vocabc across multiple training set documents now contained in r. This method efficiently stores all category 
c documents from the training set within S records of Repositoryc.

When updating the vocabulary for each category c (Vocabc) incrementally, certain terms may be added 
or deleted from the updated Vocabc. If a term is added, each record in the Repositoryc is extended to include 
the frequency of the newly added term. If a term is deleted, its frequency is dropped from each record of the 
Repositoryc.

Algorithm 2 presents high-level steps for storing information in the DocLib archive.

Algorithm 2.  Storing information in the DocLib archive.

Retrieving information from the DocLib archive
Retrieving domain-specific vocabulary from Vocab  This simply requires accessing the terms stored in Vocabc 
for each category c.

Construct TrainSet from Repository stored in the DocLib archive  To update the vocabulary incrementally, a 
TrainSet with S documents per category is derived from the Repository (which stores the footprint of the previ-
ously seen training datasets). To construct the TrainSet, each record r in Repositoryc is converted into a document 
d belonging to category c within the TrainSet. This involves adding each term t with a nonzero frequency f in r 
to d, repeating each term f times in d.

Incremental update to Vocab and Repository
This subsection explains the methodology depicted in Step 2 of Fig. 1. When encountering a new dataset (referred 
to as an add-on dataset) related to the domain, the created domain-specific vocabulary must be updated. This 
update may add new terms and/or delete obsolete terms.

To perform an incremental update, an augmented TrainSet is created by appending the derived TrainSet 
generated from the DocLib Archive (refer to “Retrieving information from the DocLib archive” section) to the 
training set of the newly received add-on dataset. This augmented TrainSet is then used to create the updated 
vocabulary Vocab following the steps listed in “Vocabulary creation” section. This updated Vocab is referred to as 
an incrementally updated vocabulary. The updated Vocab replaces the existing Vocab in the DocLib archive, and 
the relevant information from the augmented TrainSet (extracted using the steps listed in “Storing information 
in the DocLib archive” section) is merged in the Repository in the DocLib archive for any upcoming future 
incremental updates. Algorithm 3 describes these steps:
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Algorithm 3.  Incrementally update a vocabulary using DocLib archive and add-on dataset.

The traditional approach, known as the conventional one-time model, involves retraining the model from 
scratch. This process utilizes the combined training sets of both the initial and add-on datasets. As more add-
on datasets are introduced, the combined training set grows continuously, leading to escalating memory and 
processing demands without limits.

In contrast, the proposed incremental method stores the footprints of all previously observed datasets in the 
Repository of the DocLib archive using a set number of records (S) for each category. Whenever a new add-on 
dataset is received, the proposed technique generates a derived TrainSet with only S documents per category 
from the DocLib archive and appends it to the add-on training set to obtain an updated vocabulary. This specific 
step of representing the already observed TrainSets in terms of a fixed number of S documents per category (in 
contrast to the unbounded training-set size in the conventional approach) limits the processing and memory 
requirements of the proposed technique.

The overall memory requirement for the DocLib archive (refer to Eq. 8) is dependent on the number of features 
in the domain-specific vocabulary and not on the already seen training set sizes (as explained above). Hence, for 
a chosen value of S, MaxTermLen, or FreqSize, only Nc can vary (refer to Eq. 8) when the vocabulary is updated 
incrementally. The memory estimate for DocLib can change if Nc (the number of terms in the vocabulary of 
category c, Vocabc) changes. However, during the incremental update, new terms may be added, and/or obsolete 
terms might be deleted. This keeps Nc relatively stable, ensuring that the overall memory requirements of the 
proposed technique are bounded.

The proposed technique is said to incrementally update the vocabulary as it archives previously learned 
knowledge (in the form of Vocab and Repository in DocLib) and reuses it when an add-on dataset is encountered, 
keeping the processing and memory requirements bounded.

The number of records S in each Repositoryc is treated as a hyperparameter. Its impact is explored in “Varying 
number of records (S) in a repository” section, and its optimal value is suggested. Maintaining a fixed number of 
records S for each repository helps in bounding the memory and computational requirements of the proposed 
algorithm. This is further discussed in “Memory requirements” and “Processing requirements” sections 
respectively.

Evaluating incrementally updated vocabulary
For a given labeled training set, test set, and vocabulary to be evaluated, the terms in the vocabulary are used as 
input to vectorize the training and test sets into feature vectors. Term frequency-inverse document frequency 
(Tf-IDF) is used for vectorization. The Naïve Bayes (NB) classification model is trained using the training set 
feature vectors. This model is used to classify the test set into predefined categories. The classification accuracy 
obtained on the test set is used as a metric to establish the vocabulary effectiveness. This provides insight into the 
ability of vocabulary terms to identify domain-related documents.

A vocabulary created on an initial dataset is updated incrementally upon receiving an add-on dataset. 
Analyzing the stability and plasticity of the proposed approach offers insight into the effectiveness of the updated 
vocabulary. Stability indicates how well a model preserves its prior knowledge. In the context of incremental 
vocabulary updates with each add-on training set, stability means that the accuracy of the updated vocabulary 
when tested on the original test set should not decrease. The detailed experimental setup for analyzing the 
stability of the proposed technique is presented in “Stability evaluation” section.

Plasticity is the ability of a model to acquire new knowledge regarding an ongoing task. This implies that when 
updating the vocabulary incrementally with each add-on training set, the corresponding updated vocabulary 
performs better than the previous vocabulary on the collated set of the initial and add-on test sets. The detailed 
experimental setup for analyzing the plasticity of the proposed technique is presented in “Plasticity evaluation” 
section.

Experiments and results discussion
This section is divided into the following subsections. “Experimented datasets” section describes the datasets 
used to create and update the vocabulary incrementally. “Varying number of records (S) in a repository” section 
discusses the impact of varying the number of records in the repository of the DocLib archive on vocabulary 
effectiveness. “Impact of performing multiple incremental updates on effectiveness of vocabulary” section studies 
the impact of multiple increments on the effectiveness of vocabulary. “Memory requirements” and “Processing 
requirements” sections present the memory and processing requirements of the proposed technique, respectively. 
“Stability evaluation” and “Plasticity evaluation” sections describe the stability and plasticity of the proposed 
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technique, respectively. “Generalization of the conventional and incremental vocabulary” section discusses the 
generalization of the proposed technique. “Comparison with the state-of-the-art” section compares the results 
with those of state-of-the-art methods.

Experimented datasets
This study used two labeled benchmark text datasets: the BBC news dataset and AG’s corpus of news articles. 
Figure 3 shows the properties of the dataset obtained from Ref.2.

The BBC news dataset contains news articles from the BBC news website corresponding to five topics 
(business, entertainment, politics, sports, and technology) published from 2004 to 2005 (downloaded from 
http://mlg.ucd.ie/datasets/bbc.html). It is a small dataset of approximately 2000 articles with an average article 
size of approximately 400 words.

AG’s corpus contains news articles of four categories (World, Sports, Business, and Technology) gathered 
from more than 2000 news sources in more than one year of activity (downloaded from ​h​t​t​p​:​/​/​g​r​o​u​p​s​.​d​i​.​u​n​i​p​
i​.​i​t​/​~​g​u​l​l​i​/​A​G​_​c​o​r​p​u​s​_​o​f​_​n​e​w​s​_​a​r​t​i​c​l​e​s​.​h​t​m​l​​​​​)​. It is a large dataset compared to the BBC dataset and contains 
approximately 1.2 lakh articles. The average article size is approximately 30 words.

News articles belonging to the categories common to both datasets are used in the experiments. Articles 
corresponding to the three categories of Sports, Business, and Technology are used in the experiments.

AG’s corpus, which is a large dataset (~ 95 K articles in the experimental categories), is divided into equal 
chunks (the class balance for each chunk was maintained) to simulate multiple datasets for the creation and 
incremental update of the vocabulary. Each chunk is divided into training and test datasets at an 80:20 ratio. 
The first chunk is used as the initial dataset to create a vocabulary, and the remaining chunks are used as n 
add-on datasets to update the vocabulary incrementally. This is performed to simulate the real-time scenario 
of receiving multiple new datasets in a period and keeping the vocabulary updated with the new terminology. 
The BBC dataset is used to demonstrate the generalization accuracy of the incrementally updated vocabulary 
obtained from the AG dataset, as explained in “Generalization of the conventional and incremental vocabulary” 
section.

Varying number of records (S) in a repository
The DocLib archive maintains a separate repository (with S records) for each category to store the relevant 
information from the labeled training set. This number S is an important hyperparameter because its choice 

Fig. 4.  The varying number of records (S) in a Repository of DocLib archive (for n = 9): Impact on accuracy 
and memory requirement.

 

Fig. 3.  Dataset properties.
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directly influences the accuracy of the vocabulary and memory requirements. Different experiments are 
performed by splitting the AG dataset into initial and nine add-on datasets, with S varying from 1 to 15,000. The 
accuracy of the final vocabulary obtained for each value of S after nine incremental updates is evaluated. For 
evaluation, the training set is derived from the stored Repository (obtained after nine incremental updates), and 
the test set is the collated set of the initial and nine add-on test datasets. Algorithm 4 shows the sequence of the 
steps performed for a particular value of n and S. This sequence is repeated for different values of S.

Algorithm 4.  Steps for splitting the AG dataset into initial and add-on datasets and using them to update the 
vocabulary incrementally.

Figure 4 presents a graph depicting the accuracy values of the final vocabularies for different values of S along 
with the memory requirements for storing the DocLib archive for each of these experiments. The conventional 
one-time model achieved an accuracy of 92.31%, with a memory requirement of 28  MB. The following 
observations can be made from Fig. 4.

•	 Accuracy—increases with the increasing number of records (S) in the Repository of the DocLib archive. With 
increased S, the accuracy of the final vocabulary built after n = 9 increments increases, but with an increased 
memory requirement. The accuracy increased with increasing S because a higher value of S results in a small-
er number of documents merged per record in the repository, thereby making it a comparatively closer ap-
proximation of the actual training sets used to create and update the vocabulary incrementally.

•	 Optimal number of records in the Repository of the DocLib archive: S = 5000 yielded a good accuracy of 91.65% 
(0.66% less than that of the conventional one-time model) for a bounded memory requirement of 478 MB. 
Smaller values of S = 1 and 100 did not provide encouraging accuracy values because of the high compaction 
factor in the DocLib archive. Larger values of S = 10,000 and 15,000 have a slightly higher accuracy but require 
significantly more memory. Therefore, n = 10 and S = 5000 are used for further experiments.

Impact of performing multiple incremental updates on effectiveness of vocabulary
To evaluate the effectiveness of a vocabulary updated incrementally with new add-on datasets, an experiment is 
conducted by splitting the AG dataset into an initial dataset and n = 9 add-on datasets. The number of records (S) 
in a Repository is 5000 (the choice of S is explained in “Varying number of records (S) in a repository” section). 
Algorithm 5 (Steps 1–5) evaluates the effectiveness of each vocabulary obtained after performing individual 
incremental updates. Figure 5 presents a graph depicting the accuracy of these vocabularies (BaselineAcci of 
Algorithm 5). The effectiveness of the vocabularies obtained after performing incremental updates increased 
during the first few increments and was then maintained in subsequent increments. The final incrementally 
updated vocabulary obtained after incorporating all add-on datasets has an accuracy of 91.65%, which is 
marginally lower (0.66%) than the accuracy of the vocabulary created using the conventional one-time approach 

Fig. 5.  Evaluating incrementally updated vocabularies with 9 add-on datasets.
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(92.31%). However, vocabulary updated incrementally has the benefit of bounded memory and processing 
requirements in comparison to the vocabulary created using a conventional one-time approach (see “Memory 
requirements” and “Processing requirements” sections).

Memory requirements
For each category, the corresponding repository of the DocLib archive has a fixed number of records S. The 
memory requirements for storing the DocLib archive for different values of S are shown in Fig. 4 in “Varying 
number of records (S) in a repository” section. The salient points related to the memory requirements of the 
proposed technique are as follows:

•	 Benefit of bounded memory requirement: The memory requirement for the DocLib archive increases with 
an increase in S. However, for a given value of S, the memory requirement for the DocLib archive remains 
bounded. This is because relevant information from the training set of any future add-on dataset is merged 
into S records only. The DocLib archive is designed in such a way (refer to “Structure of DocLib archive” 
section) that, irrespective of the number of add-on datasets merged, its memory requirements remain rela-
tively bounded for a given number of records (S) in a repository. Only a slight change in the overall memory 
requirement can occur because of the additional terms encountered in the add-on dataset and/or the removal 
of obsolete terms from the vocabulary.

•	 Comparison with the memory requirement of the conventional one-time model: The conventional one-time 
model must store all the training sets of previously used datasets for any future update to the vocabulary. 
The vocabulary is then recreated from scratch using all the training sets as a single dataset. As new add-on 
datasets are encountered, the training set size continues to grow, and accordingly, the memory requirements 
grow unboundedly.

Processing requirements
The vocabulary creation steps, as explained in “Vocabulary creation” section, involve preprocessing the dataset, 
extracting features and their frequencies, applying a frequency threshold, and finally, performing feature 
selection using SGD with L2 Regularization. The processing time for these steps is directly proportional to the 
number of documents in the training set used to create the vocabulary.

When the new add-on datasets are received, using the conventional one-time method, the size of the training 
set continues to increase. Hence, the processing time for vocabulary creation continues to increase.

The proposed technique involves combining the training set derived from the DocLib archive, which contains 
a fixed number of records (S) for each category, with the training set of the add-on dataset. This ensures that the 
total number of documents in the combined training set is bounded. Hence, the processing time for vocabulary 
creation using the proposed incremental technique (for any fixed value of S) for multiple add-on training sets 
remained bounded.

Stability evaluation
Stability is the ability of a model to conserve the previously learned knowledge of old tasks. This means that by 
incrementally updating the vocabulary with the add-on datasets, the accuracy of the updated vocabulary on the 
previous test datasets should not be adversely impacted. Different experiments are performed by splitting the AG 
dataset into initial and n = 9 add-on datasets with S = 5000.

Figure 6 shows the baseline and stability curves. The computational details of these curves are presented in 
Algorithm 5. It can be observed from the figure that the accuracy values on the stability curve are quite close to 
the baseline curve in Fig. 6, with a maximum decrease of just 0.72%, across all incremental updates. Hence, the 
vocabulary has been learned from the add-on datasets without losing much of its effectiveness on the previous 
datasets. This indicates that the proposed approach is stable.

Algorithm 5 details the sequence of the steps performed to evaluate the stability of the proposed technique.

Fig. 6.  Evaluating stability as the vocabulary is updated incrementally with add-on datasets.
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Algorithm 5.  Steps for evaluating the stability of the proposed incremental learning technique.

Plasticity evaluation
Plasticity is the ability of a model to acquire new knowledge about an ongoing task. This implies that when 
updating the vocabulary incrementally with each add-on training set, the corresponding updated vocabulary 
performs better than the previous vocabulary on the collated test set of the initial and add-on test sets. Different 
experiments are performed by splitting the AG dataset into initial and nine add-on datasets, with S = 5000.

Algorithm 6 details the sequence of the steps performed to evaluate the plasticity of the proposed technique.

Algorithm 6.  Steps for evaluating the plasticity of the proposed incremental learning technique.

Fig. 7.  Evaluating plasticity as the vocabulary is updated incrementally with add-on datasets.
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Figure 7 plots the plasticity accuracy values described in Algorithm 6. The accuracy of the incrementally 
updated vocabularies obtained after learning from each add-on dataset improves consistently. Hence, the 
vocabulary has been learned from each add-on dataset, which establishes the plasticity of the proposed approach.

Generalization of the conventional and incremental vocabulary
To showcase the generalization ability of the incremental vocabulary generated through the proposed method, 
the AG dataset is divided into an initial dataset and nine add-on datasets. Initially, a vocabulary is created using 
the initial dataset and subsequently updated incrementally with the nine add-on datasets. After nine iterations, 
the resulting vocabulary is then evaluated using the training and test sets of the BBC dataset (see “Evaluating 
incrementally updated vocabulary” section for evaluation specifications).

This experiment yielded an accuracy rate of 97.89%, comparable to the accuracy achieved by creating a 
vocabulary solely from the BBC dataset’s training set and evaluating it on the BBC test set. This suggests that the 
obtained incremental vocabulary effectively captures key terms from the domain, enabling it to discern domain-
related documents from diverse sources.

Comparison with the state-of-the-art
In the proposed technique for incrementally updating a domain-specific vocabulary, the AG corpus is divided 
into an initial dataset and nine add-on datasets. The updated vocabulary obtained after nine increments 
is evaluated by building a Naïve Bayes (NB) classification model using the steps described in “Evaluating 
incrementally updated vocabulary” section. The training set used to build the NB model is derived from the 
DocLib archive, which is obtained after nine incremental updates. The test set is a collated set of nine add-on test 
datasets. Different experiments are performed by varying the number of records in the repository of the DocLib 
archive to S = 100, 5000, and 15,000. Table 1 presents the F1 scores of the Naïve Bayes classification models and 
the storage requirements of the corresponding DocLib archive in different experiments.

These NB models are compared to Learn# models in terms of F1 score, with the Learn# models requiring 
a similar range of memory as the corresponding DocLib archive needed to create the NB models. Learn# has 
the following four components. First, the Student model (S) extracts text features and makes predictions. 
Second, a Reinforcement Learning module (R) filtered the predictions. Third, the Teacher model (T) reclassified 
the results of the student models to improve classification. Finally, the discriminator model (D) eliminates 
similar student models. Learn# outperforms many conventional one-time methods on the AG corpus. The 
effectiveness of Learn# for classification is validated by experimenting with different models, such as S (TF-
IDF + XGBoost) + R + T − XGBoost classifier based on TF-IDF features used as the student model (S) for text 
classification, followed by R and T models, S (Word2Vec + LSTM) + R + T—100-dimensional Word2Vec vectors 
used with LSTM as the Student model, S (BERT) + R + T—BERT model used for paired-sentence classification 
as the student model, and S (BERT) fed into the R and T models to obtain the final predictions. Table 1 lists the 
F1 scores and memory requirements for the three models.

The classification models built using incremental vocabulary demonstrated better F1 scores with significantly 
lower memory requirements than the Learn# models. Learn# used a discriminator model to control the number 
of student models by deleting similar ones. This implies that as the number of student models increases, they 
might lose many previously learned models to keep the memory and processing requirements bounded. 
However, the proposed technique stores the relevant information from all previously observed training sets in 
the DocLib archive.

Reference44 introduces a novel optimization method, MAS (mixing ADAM and SGD), which simultaneously 
combines the strengths of two different optimizers, ADAM, and SGD. MAS leverages both optimizers 
concurrently, capitalizing on their respective advantages. A neural architecture based on BERT (renowned as 
one of the most effective methods for processing text documents) is utilized for experiments. A pre-trained 
iteration of BERT is leveraged to expedite the training, allowing fewer epochs to be executed. The accuracy 
results of the BERT model pre-trained on AG news (10 epochs) after five runs using the SGD optimizer are 
reported, with a maximum accuracy of 91.39%.

The accuracy achieved by our proposed approach is 91.65% with S (number of records) = 5000, requiring a 
reasonable and bounded memory of 478 MB. The accuracy increased further with increasing S. This indicates 
that the vocabulary generated and maintained using the proposed approach can identify domain-related 
documents with reasonably good accuracy. In addition, integrating advanced optimizers, such as MAS, into the 
proposed approach can further improve the effectiveness of vocabulary and can be pursued in the future.

Reference35 emphasizes the need for domain specialization in LLMs to handle the heterogeneity of domain 
data, sophisticated domain knowledge, and unique objectives. Reference32 discusses using incremental learning 

Memory range

Learn# model
Classification model (vocabulary from 
proposed technique)

Learn# technique (varying student model) F1 score Proposed technique F1 score

1 to 50 MB S (TF-IDF + XGBoost) + R + T − XGBoost (Memory 30 MB) 0.7741 100 records (Memory 4 MB) 0.89823

50–500 MB S (Word2Vec + LSTM) + R + T (Memory 500 MB) 0.8381 5000 records (Memory 478 MB) 0.91621

500–4200 MB S(BERT) + R + T (Memory 4150 MB) 0.9436 15,000 records (Memory 1660 MB) 0.92189

Table 1.  Comparison of the F1 scores of the models (Learn# model vs proposed technique) with similar 
memory requirements.
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for designing LLM-based learning systems. It describes various challenges associated with incremental learning, 
such as maintaining high accuracy while learning from streaming data without accessing the entire dataset, 
balancing plasticity, and stability to prevent catastrophic forgetting, efficiently managing memory resources 
to handle continuous data inflow, and developing methods for sequential data processing to handle big data 
effectively. Our proposed method’s continual incremental updates and efficient resource management offer a 
practical solution to the challenges discussed. The proposed algorithms for stability-plasticity analysis provide 
robust frameworks for monitoring and maintaining the performance of incremental learning-based models. 
The method demonstrates reasonably good accuracy after processing the AG dataset in chunks (“Impact of 
performing multiple incremental updates on effectiveness of vocabulary” section), balances stability and 
plasticity effectively (“Stability evaluation” and “Plasticity evaluation” sections), and generalizes well to the BBC 
dataset (“Generalization of the conventional and incremental vocabulary” section). These results validate the 
method’s effectiveness in real-world incremental learning scenarios, addressing key challenges and contributing 
to robust and efficient LLMs.

Key findings and relevance
The following are the key findings of this work:

•	 The incremental vocabulary generated by the proposed method using the AG dataset demonstrated strong 
generalization, achieving a high accuracy rate of 97.89% on the BBC dataset, comparable to vocabulary cre-
ated from the BBC training set.

•	 The Naïve Bayes models built with the incremental vocabulary have shown better F1 scores and significantly 
lower memory requirements in comparison to the state-of-the-art model like Learn#. The proposed tech-
nique efficiently stored relevant information from all previous training sets in the DocLib archive, avoiding 
the loss of learned models, unlike the memory management approach in Learn#.

•	 Using the SGD optimizer with a BERT-based architecture on the AG dataset yielded an accuracy of 91.39%. 
However, the accuracy achieved by our proposed approach is 91.65% with S (number of records) = 5000.

•	 The proposed method effectively balanced stability and plasticity, preserving previously learned knowledge 
while successfully acquiring new knowledge, as demonstrated by its performance on incremental updates and 
generalization to the BBC dataset.

•	 The proposed approach addressed key challenges in incremental learning, such as maintaining accuracy, 
managing memory and computation requirements, and handling continuous data inflow, supported by ro-
bust stability-plasticity analysis frameworks.

To generalize the proposed approach to more recent architectures like deep neural networks in the future, the 
proposed incremental vocabulary updates can be integrated with the embedding layers to incorporate new 
vocabulary rather than updating the entire model. This can enable scalable training by processing data in small 
batches as they arrive, reducing computational demands and making it feasible for large-scale applications. Static 
models may struggle with personalized or context-specific data, whereas the proposed incremental approach 
can be used to adapt by continuously learning from the relevant data. Using the footprint of the previously seen 
datasets from DocLib can reduce the training times and memory requirements of deep neural networks when 
receiving new data. It can prevent catastrophic forgetting by retaining old knowledge while integrating new 
information and handles concept drift by adapting to changes in data distribution over time.

Conclusion and future work
This study proposed a technique for incrementally updating domain-specific vocabularies. This technique 
applies the principles of Incremental Learning to update a given domain-specific vocabulary. It stores previously 
observed training sets using vocabulary terms in a compact archive named, DocLib. This paper presents an 
algorithm to store relevant information in the DocLib archive and then incrementally update the vocabulary 
using the DocLib archive and the add-on dataset. The structure of the DocLib archive is meticulously designed 
to keep the memory requirements and processing time bounded. The updated vocabulary is evaluated using its 
terms as inputs to create a text classifier. The classification accuracy is used as a metric to evaluate the effectiveness 
of the vocabulary. The impact of varying the number of records (S) in the repository of the DocLib archive on 
the accuracy and memory requirements of the incrementally updated vocabularies is evaluated, and an optimal 
value of S = 5000 records per category is proposed. Experiments are conducted to study the impact of multiple 
increments on vocabulary effectiveness. Incorporating incremental updates from multiple add-on datasets keeps 
the vocabulary updated with the latest domain terminology and maintains its effectiveness. Experiments on 
the benchmark AG dataset demonstrate that the proposed technique outperforms the conventional one-time 
method, which recreates vocabulary from scratch by keeping the processing time and memory requirements 
bounded. Subsequently, the stability and plasticity of the incremental vocabulary obtained using the proposed 
technique are validated. The generalization of the incrementally updated vocabulary obtained from the AG 
dataset is demonstrated using the BBC dataset. A task-based evaluation of the proposed technique and its 
comparison with the state-of-the-art incremental classification model (Learn#) built on AG’s corpus demonstrate 
the effectiveness of the proposed technique.

This work can be extended in the future to include collaboration with other classification algorithms, such 
as decision trees and random forests. Also, the incrementally learned vocabulary can be applied to build a deep 
neural network-based multiclass text classification model. The model’s performance can be compared when 
built with the incrementally obtained vocabulary versus learning the vocabulary at once using a benchmark 
method. This will further validate the effectiveness of the proposed technique in contrast to the conventional 
one-time learning methods and demonstrate its applicability. Other applications, such as sentiment analysis 
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and blog categorization, can be explored for task-based evaluation of the updated vocabulary. Additionally, the 
generalization accuracy of the vocabulary can be evaluated using additional datasets.
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