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π-PrimeNovo: an accurate and efficient non-
autoregressive deep learning model for de
novo peptide sequencing

Xiang Zhang1,2,9, Tianze Ling3,4,9, Zhi Jin1,9, Sheng Xu 1,5,9, Zhiqiang Gao1,
Boyan Sun4, Zijie Qiu1,5, Jiaqi Wei1,6, Nanqing Dong1, Guangshuai Wang1,5,
Guibin Wang4, Leyuan Li4, Muhammad Abdul-Mageed2,7,
Laks V. S. Lakshmanan 2, Fuchu He 4,8, Wanli Ouyang1 ,
Cheng Chang 4 & Siqi Sun 5

Peptide sequencing via tandem mass spectrometry (MS/MS) is essential in
proteomics. Unlike traditional database searches, deep learning excels at de
novo peptide sequencing, even for peptides missing from existing databases.
Current deep learning models often rely on autoregressive generation, which
suffers from error accumulation and slow inference speeds. In this work, we
introduce π-PrimeNovo, a non-autoregressive Transformer-based model for
peptide sequencing. With our architecture design and a CUDA-enhanced
decodingmodule for precisemass control,π-PrimeNovo achieves significantly
higher accuracy and up to 89x faster inference than state-of-the-art methods,
making it ideal for large-scale applications like metaproteomics. Additionally,
it excels in phosphopeptide mining and detecting low-abundance post-trans-
lational modifications (PTMs), marking a substantial advance in peptide
sequencing with broad potential in biological research.

Protein identification is essential in proteomics, with shotgun pro-
teomics via mass spectrometry recognized as the primary method1.
This approach involves enzymatically digesting proteins into peptides
for tandem mass spectrometry analysis, providing spectra that reveal
peptide sequences and structures. Decoding amino acid sequences
from these spectra is key to protein identification2. Currently, database
searching is the main method, with tools like SEQUEST3, Mascot4,
MaxQuant/Andromeda2, PEAKS DB5, and pFind6. However, these
methodsdependoncomprehensive sequencedatabases, limiting their
applicability in areas like monoclonal antibody sequencing7, novel
antigen identification8, and metaproteome analysis without estab-
lished databases9.

Over the past two decades, various de novo peptide sequencing
tools have advanced the field8,10–21. These algorithms infer amino acid
compositions and modifications by analyzing mass differences
between fragment ions in spectra. Early methods like PepNovo11 and
PEAKS10 used the graph theory and dynamic programming approach.
DeepNovo12 introduced a deep learning-based model, integrating
CNNs for spectral peak analysis with LSTMs for sequence processing.
PointNovo13 enhanced prediction precision with an order-invariant
network, while Casanovo15 applied Transformer architecture, treating
sequencing as a translation task. Casanovo V216 was later trained on a
30 million spectra dataset to further scale up the model performance.
Recent innovations like PepNet19 use fully convolutional networks for
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speed, and GraphNovo22 uses graph neural networks to address
missing-fragmentation issues. Despite these advances15–22, deep
learning-based de novo sequencing in shotgun proteomics still
achieves low peptide recall rates of 30–50% on standard benchmark.

Currently, all deep learningmodels for de novopeptide sequencing
are basedon the autoregressive framework23,meaning the generation of
eachaminoacid is heavily relianton itspredictedpredecessors, resulting
in a unidirectional generation process. However, the significance of
bidirectional information is paramount in peptide sequencing, as the
presence of an amino acid is intrinsically linked to its neighbors in both
directions21. In autoregressive models, any errors in early amino acid
predictions can cascade, affecting subsequent generations. Auto-
regressive decoding algorithms such as beam search lack the capability
to retrospectively modify previously generated content, making it
challenging to control the total mass of the generated sequence. This
limitation arises because each token is produced based on its

predecessor, meaning that altering any previously generated token
would consequently shift the distribution of subsequent tokens and,
therefore, require a re-generation of the whole sequence24.

In this research, we introduce π-PrimeNovo (shortened as Pri-
meNovo) (Fig. 1), representing a significant departure from conven-
tional autoregressive approaches by adopting a non-autoregressive
approach to effectively address the unidirectional problems of auto-
regressive methods. This innovation stands as the pioneer non-
autoregressive transformer-based model in this field. Such design
enables a simultaneous sequenceprediction, granting each amino acid
a comprehensive bidirectional context. Another key advancement in
PrimeNovo is the integration of a precise mass control (PMC) unit,
uniquely compatible with the non-autoregressive framework, which
utilizes precursormass information to generate controlled andprecise
peptide sequences. This precise mass control, coupled with bidirec-
tional generation, significantly enhances peptide-level performance.
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Fig. 1 | PrimeNovo stands as the pioneering biological non-autoregressive
Transformer model, delivering precise peptide sequencing. a Model archi-
tecture overview: Our model takes MS/MS spectra as input and generates the
predicted peptide sequence. It comprises two key components: (1) a non-
autoregressive Transformer model backbone optimized with connectionist tem-
poral classification (CTC) loss, enabling simultaneous amino acid prediction at all
positions. (2) The precise mass control (PMC) decoding unit, which utilizes pre-
dicted probabilities to precisely optimize peptide generation to meet mass
requirements. b Applications and biological insights: PrimeNovo’s capabilities
extend to downstream tasks and offer valuable insights for various biological

investigations. c Average performance comparison: This chart illustrates the
average performance of PrimeNovo alongside four other top-performing models
on the widely utilized nine-species benchmark dataset (93,750 tested spectrum
samples across all 9 species). Each bar represents the mean peptide recall for the
respective approach. The black line indicates the 95% confidence interval (n = 9).
Notably, results for DeepNovo, Casanovo, and Casanovo V2 are based on model
weights released by the original authors, while PointNovo’s results are cited from
the published work, as the original model weights were not shared by PointNovo’s
authors. Source data are provided as a Source Data file. Some figures were created
in BioRender56.
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PrimeNovo consistently demonstrates impressive peptide-level
accuracy, achieving an average peptide recall of 64% on the widely
used nine-species benchmark dataset. This performance significantly
surpasses the existing best model, which achieves a peptide recall of
54%16. Across a diverse range of other MS/MS datasets, PrimeNovo
consistently maintains a notable advantage in peptide recall over the
state-of-the-art model, achieving relative improvements from 16% to
even doubling the accuracy, which highlights its exceptional perfor-
mance and reliability. Moreover, by avoiding the sequential, one-by-
one generationprocess inherent in autoregressivemodels, PrimeNovo
also substantially increases its inference speed. This acceleration is
further enhanced through the use of dynamic programming and
CUDA-accelerated computation, allowing PrimeNovo to surpass the
existing autoregressive models by up to 89 times. This speedup
advantage enables PrimeNovo to make accurate predictions on large-
scale spectrum data. We have demonstrated that PrimeNovo excels in
large-scale metaproteomic research by accurately identifying a sig-
nificantly greater number of species-specific peptides compared to
previous methods, reducing the processing time from months, as
required by Casanovo V2 with beam search, to just days. Furthermore,
PrimeNovo’s versatility extends to the identification of PTMs, show-
casing its potential as a transformative tool in proteomics research.

Results
PrimeNovo sets a benchmark with 64% peptide recall, achieving
over 10% improvement in widely used nine-species dataset
Echoing the approach of Casanovo V2, we utilized the large-scale
MassIVE-KB dataset25, featuring around 30 million peptide-to-
spectrum matches (PSMs), as our training data. PrimeNovo was then
evaluated on the nine-species testing benchmark directly. It is crucial
to note, however, that baselinemodels like PointNovo, DeepNovo, and
Casanovo were originally trained using the leave-one-species-out
cross-validation (CV) strategy26 on the nine-species dataset. This
strategy involves training on eight species and evaluating on the ninth
each time. To facilitate a fair comparison, we also trained PrimeNovo
on the nine-species dataset using the same CV strategy, following the
data split used by all other baseline models. As shown in Fig. 2a, Pri-
meNovo CV outperformed other baseline models trained with this
strategy by a large margin. Notably, even when trained solely on the
nine-species benchmark dataset, PrimeNovo CV already matched the
performance of Casanovo V2, which is the model trained on the large-
scale MassIVE-KB dataset. When trained on the MassIVE-KB dataset,
PrimeNovo set state-of-the-art results across all species in the nine-
species benchmark (Fig. 2b and Supplementary Fig. 6). The average
peptide recall improved significantly, increasing from 45% with Casa-
novo to 54% with Casanovo V2, and further to 64% with PrimeNovo.
This marks a 10% improvement over Casanovo V2 and a 19% increase
over Casanovo. In the recall-coverage curve (Fig. 2a), PrimeNovo
consistently held the top position across all coverage levels and spe-
cies, reaffirming its status as a leading model in de novo peptide
sequencing. At the amino acid (AA) level, PrimeNovo demonstrates
significantly higher accuracy, as measured by both AA recall and AA
precision, compared to Casanovo V2. As shown in Fig. 2c, PrimeNovo
outperforms Casanovo V2 in AA recall across all nine species, with an
improvement ranging from 3% to 6%. This performance advantage is
consistent in AA precision, with a detailed comparison provided in the
Supplementary Information. Additionally, we tested PrimeNovo on a
revised nine-species test set introduced by Casanovo V216, which fea-
tured higher data quality and a larger quantity of spectra, covering a
wider range of data distributions for each species. In this updated test,
PrimeNovo’s average peptide recall soared to 75% across all species,
from the previous 65%byCasanovoV2. A detailed comparisonof these
results is available in Supplementary Fig. 4. The outcomes from both
the original and revised nine-species benchmark datasets highlight

PrimeNovo’s capability to accurately predict peptides across various
species, demonstrating its effectiveness and versatility.

PrimeNovo, leveraging its bi-directional information integration
and parallel generation process as a non-autoregressive model, con-
vincingly establishes its superiority across various facets of sequencing
tasks, transcending mere high prediction accuracy. Firstly, our non-
autoregressive model offers a substantial improvement in the infer-
ence speed compared to the autoregressive models of similar sizes,
thanks to its concurrent generation process. As depicted in Fig. 2d,
PrimeNovo, even without the Precise Mass Control (PMC) unit,
achieves a staggering speed advantage of 3.4 times faster over Casa-
novo V2 without beam search decoding under identical testing con-
ditions (i.e., using the same machine with identical CPU and GPU
specifications). Upon incorporating post-prediction decoding strate-
gies (PMC for PrimeNovo and beam search for Casanovo V2), Prime-
Novo’s advantage in inference speedbecomes evenmorepronounced,
making it over 28 times faster than Casanovo V2. Notably, considering
that PrimeNovo without PMC can already outperform Casanovo V2
with beam search by an average of 6% on the nine-species benchmark
dataset (as demonstrated in Fig. 2b), users can experience amaximum
speedupof 89 timeswhilemaking onlyminimal sacrifices inprediction
accuracy when PMC is not deployed. We further investigated other
factors, such as batch size on the speed and the results are included in
Supplementary Information.

Furthermore, PrimeNovo exhibits exceptional prediction
robustness across various challenges, including different levels of
missing peaks in the spectrum, varying peptide lengths, and amino
acid combinations that are prone to confusion. To illustrate this
robustness, we categorized predictions on the nine-species bench-
mark dataset based on the degree of missing peaks in the input
spectrum and the number of amino acids in the target peptide. The
calculation of missing peaks in each spectrum follows the metho-
dology outlined in a previous study by Beslic et al.7, where we com-
pute all the theoretical m/z values for potential y ions and b ions
based on the true label and determine howmany of these theoretical
peaks are absent in the actual spectrum. As presented in Fig. 2e, it is
not surprising to observe a decline in prediction accuracy as the
number of missing peaks in the spectra increases. However, Prime-
Novo consistently indicates superior performance across all levels of
missing peaks and consistently outperforms Casanovo V2. Similarly,
Fig. 2f illustrates that PrimeNovo maintains its higher accuracy
compared to Casanovo V2, irrespective of the length of the peptide
being predicted. In Fig. 2g, we further observe that PrimeNovo excels
in accurately predicting amino acids that are challenging to identify
due to their closely similar mass (<0.05Da) to other amino acids.
Specifically, the aa precision of all four similar amino acids is more
than 10% more accurate on average compared to that of Casanovo
V2. Specifically, the precision advantage is more than 18% on both K
and Oxidized M amino acids.

We then conducted an ablation study to investigate the perfor-
mance gains achieved by each component of our model on the nine-
species benchmark dataset. From Fig. 2h, we observe a 2% improve-
ment in peptide recall when transitioning from an autoregressive
model to a non-autoregressive model. The gain in performance is
magnified by a large amount (7%) when PMC is introduced, as con-
trollable generation is important in such tasks and improves the
accuracy of our generated sequence. Remarkably, the performance
boost from the non-autoregressive model is most pronounced when
transitioning from the CV training data to the MassIVE-KB dataset, as
the substantial increase in training data proves invaluable for learning
the underlying bi-directional patterns in the sequencing task. Lastly,
we see that utilizing PMC with augmented training data achieves the
highest prediction accuracy, which further demonstrates PMC’s
importance under different data availability situations.
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PrimeNovo exhibits strong generalization and adaptability
capability across a wide array of MS/MS data sources
As MS/MS data can vary significantly due to differences in biological
samples, mass spectrometer parameters, and post-processing proce-
dures, there is often a substantial degree of distributional shift across
various MS/MS datasets. To demonstrate PrimeNovo’s ability to gen-
eralize effectively across a wide spectrum of distinct MS/MS data for
diversedownstream tasks,we conducted an evaluationof PrimeNovo’s
performance on some of the most widely used publicly available MS/
MS datasets. We then compared the results with those of the current
state-of-the-art models, Casanovo and Casanovo V2. In addition to the
nine-species benchmark dataset discussed earlier, we selected three
prominent MS/MS datasets that represent varying data sources and
application settings: the PT27, IgG1-Human-HC26, and HCC28 datasets,

and the details of these datasets are included in the Supplementary
Information.

We start by evaluating PrimeNovo’s ability to perform well in a
zero-shot scenario, which means the model is tested without any
specific adjustments to match the characteristics and distribution of
the target dataset. As depicted in Fig. 3a and Supplementary Fig. 8,
PrimeNovo exhibits significant performance superiority over both
Casanovo V2 and Casanovo in terms of peptide recall when directly
tested on three distinct datasets. Specifically, PrimeNovo outperforms
Casanovo V2 by 13%, 14%, and 22% on PT, IgG1-Human-HC, and HCC
datasets, respectively. This performance gap widens to 30%, 43%, and
38% when compared to Casanovo. For the IgG1-Human-HC dataset,
following7, we present the evaluation results for each human antigen
type, as illustrated in Fig. 3b. PrimeNovo consistently outperforms
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Fig. 2 | A detailed comparison between PrimeNovo and previous deep learning-
based approaches on the nine-species benchmark dataset. a The performance
comparison between PrimeNovo and other de novo algorithms for recall-coverage
curves on the nine-species benchmark dataset. These curves illustrate recall (the
averaged peptide recall)—coverage (the proportion of the predicted spectra to all
annotated spectra ranked by the model’s confidence) relationships across all
confidence levels for each test species. PrimeNovoCV represents ourmodel trained
on the nine-species benchmark dataset using a cross-validation strategy. Prime-
Novo represents our model trained on the MassIVE-KB dataset. b The average
prediction performance on each individual species for PrimeNovo and comparison
models. PrimeNovo w/o PMC presents results obtained using CTC beam search
decoding without PMC. c Comparison of Amino Acid level prediction recall across
nine different species between Casanovo V2 and PrimeNovo. d Inference Speed
Comparison: A comparisonof inference speeds,measured in the number of spectra

decoded per second, between PrimeNovo and Casanovo V2. The speed tests were
conducted on the same computational hardware (single A100 NVIDIA GPU) and
averaged over data from all test species. e and (f) Influence of Missing Peaks and
PeptideLength: Theseplots reveal how thedegreeofmissingpeaks (less or equal to
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affect the predictions of PrimeNovo and Casanovo V2. We plot a central curve that
connects the mean values of the data points (n = 9714), with a light background
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Masses: A comparison of Casanovo V2 and PrimeNovo in predicting amino acids
with very similarmolecularmasses, suchasK (128.094963)withQ (128.058578) and
F (147.068414) with Oxidized M (147.035400). h Ablation study: An analysis of the
impact of adding each module of our approach on the overall performance (of the
nine-species benchmark dataset. (n = 9, data are presented as mean values ± sd).
Source data are provided as a Source Data file.
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Casanovo V2 across all six antigen types, achieving increased peptide
recall ranging from9% to 20%.We further examine the amino acid level
accuracy on the unseen dataset. From Fig. 3c, it’s notable that Prime-
Novo has a dominant AA level precision advantage over Casanovo V2
across all confidence levels of the model output. This indicates Pri-
meNovo’s better prediction of amino acids’ presence and locations.

To further assess the performance disparities under the zero-shot
setting, we leveraged identified PSMs from MaxQuant in each dataset

as the benchmark. Then we compared the number of overlapping
PSMs between the predicted PSMs generated by each de novo algo-
rithm and the PSMs identified by MaxQuant. As displayed in Fig. 3d,
Casanovo performed poorly on the HCC dataset, with only 8 PSMs
overlapping with MaxQuant. In contrast, Casanovo V2 identified 9050
overlapping PSMs, while PrimeNovo predicted up to 22499 PSMs that
perfectly matched those identified by MaxQuant. On the PT dataset,
PrimeNovo, Casanovo V2, and Casanovo had 34747, 26591, and 16814
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various biological sample sources. a Average peptide recall: This section details
the average peptide recall of PrimeNovo compared to baseline models across four
distinct large-scale MS/MS datasets. b Enzyme-specific performance: Performance
breakdown among six different proteolytic enzymes in the IgG1-Human-HC data-
set. c Amino acid-level precision: The chart depicts the amino acid-level precision
for PrimeNovo and Casanovo V2 on the IgG1-Human-HC (9719 tested spectrum
samples) and HCC datasets (56,000 tested spectrum samples). The x-axis shows
the coverage rate of predicted peptides based on each model’s confidence score.
For instance, 20%-40% indicate the 20%-40% least confident predictions based on
confidencescores. AAprecision is thencalculatedwithin each coverage range. Note
that data are presented asmedian values of each confidence level with interquartile
range (50% percentile interval). d A Venn diagram illustrates the number of over-
lapping peptides among three de novo sequencing models and a traditional data-
base searching algorithm. Each count represents identical peptides identified by
both MaxQuant and the respective model for the same spectrum. e Model fine-
tuning results: This chart demonstrates how performance on the HCC test dataset

changes with the addition of more HCC training data during fine-tuning. The left
side showsfine-tuningwithonly theHCCdataset, leading to catastrophic forgetting
of the original data distribution (nine-species benchmark dataset). The right side
shows fine-tuning with amix of HCC andMassIVE-KB training data. The data points
in the right figure show the performance of three different data ratios during the
fine-tuning stage.We plot a central curve that connects themean values of the data
points, with a light background representing the s.d. f A comparison of perfor-
mance between PrimeNovo and five other de novo models on a 3-species test
dataset. g This diagram demonstrates the model’s generalization capability when
trained exclusively with each training dataset. The left-hand side indicates each one
of the four training data PrimeNovo is trained on. The thickness of each line indi-
cates the performance on eachof the four testing sets on the right-hand side,with a
thicker line being better performance. The numbers on the stem indicate the
averaged peptide recall over all four testing sets, highlighting the distributional
transferability of each training data. The model trained on MassIVE-KB exhibited
the highest average peptide recall, 65% (bolded). Source data are provided as a
Source Data file.
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overlapping PSMs with MaxQuant search results, respectively. Prime-
Novo demonstrates a much more consistent prediction behavior,
aligning closely with high-quality traditional database-searching pep-
tide identification software.

Next, we examine howwell PrimeNovo generalizes under the fine-
tuning setting, which involves quickly adapting the model to new
training data from the target distribution without starting the training
process from scratch. This approach allows the model to leverage its
previously acquired knowledge from the large dataset it was originally
trained on and apply it to a more specific task or domain with only a
minimal amount of additional training. We fine-tuned PrimeNovo on
both the PT and HCC training datasets to assess the model’s adapt-
ability. In order to gauge the impact of the quantity of additional data
on fine-tuning performance, we conducted the fine-tuning with 100,
1000, 10,000, and 100,000 additional data points, respectively. We
also fine-tuned Casanovo V2 under identical settings to compare the
adaptability of the two models fairly. As depicted on the right side of
Fig. 3e, augmenting the amount of additional data for fine-tuning does
indeed enhance themodel’s prediction accuracyon the corresponding
test set, as themodel gains a better understanding of the distributional
nuances within the data. In comparison, PrimeNovo demonstrates a
more robust ability to adapt to new data distributions and achieves
higher accuracy after fine-tuning compared to the zero-shot scenario.
It consistently outperforms Casanovo V2 when subjected to the same
fine-tuning conditions, with 18% and 12% higher peptide level recall on
HCC and PT test sets respectively when the fine-tuning reaches the
best performance (Fig. 3e). It is noteworthy that a noticeable
improvement in prediction accuracy is only observed after incorpor-
ating 10,000 additionalMS data points during the fine-tuning process,
indicating a recommended data size for future fine-tuning endeavors
involving other data distributions.

It’s important to note that the fine-tuning process can lead the
model to forget the original data distribution from the training set,
which is referred to as catastrophic forgetting. As illustrated in the left
part of Fig. 3e, when fine-tuning is conducted exclusively with the
target data, the performance in the nine-species benchmark dataset
experiences a significant and gradual decline asmore data samples are
included (indicated by the dashed line). However,when the target data
is mixed with the original training data, catastrophic forgetting is
mitigated, as evident from the dashed line in the right part of Fig. 3e.
Indeed, fine-tuning exclusively with the target data does introduce a
relatively higher performance gain in the target test set compared to
fine-tuning with mixed data (solid line in Fig. 3e), where the difference
can be as much as 15% when the amount of the new data used for fine-
tuning is large.

By fine-tuning the model using a single dataset and then testing it
on others, we can explore the similarities and disparities in data dis-
tributions among different pairs of datasets. This approach provides
valuable insights into how closely related eachMS/MS dataset is to the
others and the extent towhich amodel’s knowledge canbe transferred
when trained on one dataset. In Fig. 3g, it’s not surprising to observe
that the model exhibits the strongest transferability when the training
and testing data share the same data source. Notably, MassIVE-KB, the
training set for both our model and Casanovo V2, demonstrates the
highest average peptide recall of 65% across all other test sets. This can
be attributed to the diverse range of MS/MS data sources encom-
passed within the MassIVE-KB dataset, covering a wide spectrum of
distinct MS/MS data. The PT dataset, with an average peptide recall of
56%, is also considered a high-quality dataset with robust transfer-
ability. It has been employed in the training of numerous other denovo
models21. However, the models trained on the HCC and nine-species
benchmark datasets do not generalize well to other testing datasets.
The nine-species benchmark exclusively covers MS/MS data for the
included nine species and has a relatively small data size, while the
HCC dataset is specific to human hepatocellular carcinoma.

Additionally, we observe that models trained with the nine-species
benchmark dataset and MassIVE-KB datasets exhibit relatively poor
performance when applied to the HCC dataset, suggesting a notable
disparity in their data distribution.

Finally, we conduct a comparative analysis between PrimeNovo
and concurrent approaches in de novo sequencing to illustrate the
advancements and effectiveness of our method. Our comparative
models, namely GraphNovo, a graph-based neural network, and
PepNet, a CNN-based neural network, approach the problem from
distinct angles, utilizing the latest deep learning techniques. It’s
worth noting that both GraphNovo22 and PepNet19 are trained on
their own designated training and testing datasets for their respec-
tive model versions. Consequently, we adopt a zero-shot evaluation
approach, testing PrimeNovo on each of their test sets and com-
paring the results with their reported performances. We carefully
examined the used data and ensured that there was no overlap
between our training dataset and the test sets used by GraphNovo
and PepNet. For the 3-species test set employed by GraphNovo,
PrimeNovo demonstrates remarkable improvements in peptide
recall, surpassing GraphNovo by 13%, 13%, and 11% in the A. thaliana,
C. elegans, and E. coli species, respectively (see Fig. 3f). Furthermore,
when tested on the PepNet test set, PrimeNovo exhibits a notable
advantage of 14% and 24% in peptide recall over PepNet when pre-
dicting the peptide with charges of 2 and 3 respectively, detailed
results of which are in Supplementary Fig. 13.

PrimeNovo’s behavior analysis reveals an effective error cor-
rection mechanism behind non-autoregressive modeling and
PMC unit
To gain a comprehensive understanding of the model’s behavior and
to analyze how PrimeNovo utilizes the spectrum data to arrive at its
final results,we employ someof themost recentmodel interpretability
techniques, examining each component of our model in detail. We
commence by visualizing the attention behavior of the encoder net-
work in PrimeNovo and comparing it to that of Casanovo V2. The
encoder’s role is critical, as it is responsible for feature extraction from
the spectrum, significantly influencing how well the model utilizes
input spectrum data. As depicted in the attention map in Fig. 4a, it is
evident that Casanovo V2 predominantly assigns most of its attention
weights to the first input position (the special token added at the
beginning of the peak tokens). Attention weights for the remaining
tokens are sparse, insignificant, and primarily concentrated along the
diagonal direction. This behavior suggests that Casanovo V2 encodes
information primarily within its special token, with limited utilization
of other peak positions. In contrast, PrimeNovo exhibits a well-
distributed attention pattern across different input peaks, each with
varying levels of information density. Furthermore, we observe that
the attention of PrimeNovo is more heavily allocated to peaks corre-
sponding to the b-y ions of the true label, which are among the most
crucial pieces of information for decoding the spectrum (as detailed in
Supplementary Fig. 19). This highlights PrimeNovo’s capacity to
extract information more effectively from tokens it deems essential,
and this behavior remains consistently active across all nine layers.

Furthermore, we conducted a numerical comparison of the Value
matrices learned by the encoder networks of both models29. Each
column in the Value matrix projection represents a hidden feature. To
assess the diversity of features present in the Value matrix, we calcu-
lated the average cosine similarity between every pair of columns. As
illustrated in the bar plot in Fig. 4a, it is evident that PrimeNovo’s
feature vectors exhibit lower similarity to each other, as indicated by
the lower average cosine similarity values in theplot. This suggests that
our model’s Value matrix encompasses a broader spectrum of infor-
mation and a more diverse set of features30,31. This finding could pro-
vide an additional explanation for our model’s superior performance.
For a more comprehensive assessment of the orthogonality of the
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Value matrix projection, which is evaluated by measuring the norm of
the Gram matrix29–31 (see Supplementary Fig. 18).

Since our non-autoregressive model predicts the entire sequence
at once, we can examine how each of the nine model layers progres-
sively improves the overall sequence prediction. We decode the whole
sequence from each layer of our model and observe how the amino
acids evolve over time. As illustrated in Fig. 4c, amino acid-level
accuracy experiences a significant surge from layer seven to nine, with
a consistent increasing trend across each layer. This signifies a

continual improvement in prediction accuracy at each layer. By
examining the case study presented in Fig. 4b, we discern that this
increase in accuracy is achieved through a layer-wise self-correction
mechanism. In this process, each layer gradually adjusts the erro-
neously predicted amino acids throughout the entire sequence, mak-
ing them more reasonable and closer to the true answer. The non-
autoregressive model’s capability of enabling each amino acid to
reference the surrounding amino acids for information facilitates
accurate and effective correction across its layers. PMC, acting as the
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final safeguard against errors, rectifies model prediction errors by
selecting the most probable sequence that adheres to the mass con-
straint. This process yields a slightly modified sequence compared to
the output from the last layer, ultimately leading to the correct answer.

We also employed the feature contribution technique saliency
maps32 to analyze the impact of each peak on the prediction results.
This techniquegenerates contribution scores thatprovide a quick view
of the impact of each peak on the prediction. A higher contribution
score for a peak indicates a larger impact on the results. On the test set
of PT, the contribution scores for all peaks in each spectrum. Subse-
quently are calculated, we sorted all peaks in descending order based
on their contribution scores and selected the top 10 peaks. Using the
known peptide sequences associated with these spectra, all possible
fragment ions considering only 1+ and 2+ ions, are generated using the
in-house script (see Supplementary Note 7 for more details). We then
compared them/z values of the top 10 peaks with them/z values of all
possible fragment ions, considering a match if the difference was
within 0.05 Da. Finally, the percentage of the top 10 peaks that could
bematched is calculated. As shown in Fig. 4d, ~40%of the spectrahad a
matched percentage of above 50%. Importantly, our model not only
focused on the major peaks but also considered internal fragment
ions. For example (Fig. 4e), in the spectrum corresponding to the
peptide sequence SLEDLIFESLPENASHKLEVR, among the top 10 peaks
with the highest contribution scores, seven were b ions, while the
remaining three corresponded to intermediate fragment ions FE
((b8−c6)+), LIFES ((b9−b4)+), and PEN ((x11−x8)+), respectively. These
results demonstrate that our model learned a few informative peaks
from the spectra, which are useful for peptide inference.

To analyze which peak in the spectrum led to the erroneous
generation of themodel, we visualized the spectrumby highlighting b-
y ion peaks corresponding to the model’s predictions. As shown in
Fig. 4f, Casanovo V2’s predicted sequence predominantly aligns its y-
ions with input spectrum peaks, with very few calculated b-ions
aligning with input peaks. This behavior is a consequence of the
autoregressive model’s prediction direction from right to left, making
it more natural to choose y-ion peaks for forming predictions. How-
ever, given the presence of noise in the spectrum, this prediction
approach can lead to errors when y-ions are inaccurately selected, as
demonstrated in Fig. 4f. In contrast, PrimeNovo’s predictions exhibit
an alignment with both b-ions and y-ions in the input spectrum. This is
due to our model’s prediction process, which leverages information
from both directions, allowing it to effectively utilize the peak infor-
mation fromboth ends of the sequence. Furthermore, we conducted a
detailed analysis to identify the specific peak responsible for predic-
tion errors in the last layer. This is achieved by calculating a gradient-
based contribution score for each input peak, serving as a robust
indicator of which input has a greater impact on the output, deter-
mined by themagnitude of the gradient. As observed in the left corner
of Fig. 4f, the highest contribution scores across the entire spectrum
coincide precisely with the peak corresponding to PrimeNovo’s

incorrectly predicted b-ion, and this critical information is captured
and corrected by our PMC unit.

PrimeNovo demonstrates exceptional performance in taxon-
resolved peptide annotation, enhancing metaproteomic
research
We conducted an evaluation to gauge PrimeNovo’s proficiency in
enhancing the identification of taxon-unique peptides, particularly in
the context of metaproteomic research. The field of metaproteomics
poses significant challenges when it comes to taxonomic annotation,
primarily due to the vast diversity within microbiomes and the pre-
sence of closely related species that share high protein sequence
similarity. Consequently, increasing the number of unique peptides
represents a crucial approach for achieving precision in taxonomic
annotations. In our assessment, we turned to a metaproteomic
dataset33 obtained from gnotobiotic mice, hosting a consortium of 17
pre-defined bacterial strains (as summarized in Supplementary
Table 2). Within this dataset, we applied PrimeNovo and Casanovo V2
to sequence unidentified MS/MS spectra through database search, all
without the need for fine-tuning33. It’s worth noting that we are using
Casanovo V2without BeamSearch (BS) due to the estimated inference
time with BS exceeding 4000 A100 GPU hours on this large-scale
dataset, which amounts to more than 21 days of inference with 8
A100 GPUs.

As illustrated in Fig. 5a, PrimeNovo exhibits superior performance
compared to Casanovo V2, identifying a significantly higher number of
PSMs (8446 vs. 4072) and peptides (3157 vs. 1412) following the rig-
orous quality control process T\U\D\DS, resulting in a relative increase
of 107% and 124%, respectively. Furthermore, PrimeNovo excels in
enhancing taxonomic resolution, outperforming Casanovo V2 in the
detection of taxon-specific peptides. Notable increases areobserved in
bacterial-specific (1047 vs. 520), phylum-specific (828 vs. 399), genus-
specific (511 vs. 241), and species-specific (215 vs. 92) peptides
(Fig. 5b–d). Particularly noteworthy is the high identification accuracy
achieved by PrimeNovo, where all identified peptides are correctly
matched to known species, while Casanovo V2 exhibits one incorrect
matching at the genus level (Fig. 5c).

We further conducted an analysis of high-confidence identifica-
tion results under the quality control process T\U\D. PrimeNovo
demonstrated a significant increase in both PSM and peptide identifi-
cations, with a 66% increase (513,590 vs. 308,499) in PSMs and a 46%
increase (58,392 vs. 39,866) in peptides. This result is further empha-
sized by the higher identifications of taxon-unique peptides achieved
by PrimeNovo, surpassingCasanovoV2 in several categories, including
bacterial-specific (36,704 vs. 24,349), phylum-specific (30,652 vs.
19,866), genus-specific (17,332 vs. 10,906), and species-specific (6848
vs. 4209) peptides (Fig. 5e). Subsequently, we assessed the models’
performance in taxonomic annotation at the protein level, which is
crucial for enhancing the taxonomic resolution and contributing to
subsequent research in the taxon-function network. As depicted in

Fig. 4 | Error analysis and model explainability offer valuable insights into the
performance of PrimeNovo. a Attention map and feature vector similarity: This
section showcases the visualization of attention maps between the Transformer
encoders of Casanovo V2 and PrimeNovo. It also includes a detailed similarity
analysis of each column in the feature vector from the valuematrix projection. The
boxplot displays the minimum, maximum, median, and quartiles of the similarities
scores (n = 421,232, outliers omitted). b Layerwise prediction refinement: A case
study demonstrates how PrimeNovo’s non-autoregressive model progressively
refines predictions layer by layer, highlighting the model’s capacity for self-
correcting its predictions as a whole. Note that * represents the Glutamine dea-
midationmodification on amino acidQ. cThepoints display the averageprediction
accuracy at the amino acid level across each layer in PrimeNovo, with the boxplot
showing theminimum,maximum,median, andquartiles of the prediction accuracy
(n = 88,236). d This diagram illustrates the proportion of peaks corresponding to

b-y ions, as determined from predictions, based on all peaks within the PT test set
ranked within the top 10 by their contribution scores. e Alignment between the
model’s contribution scores and the theoretical b-y ion peaks derived from pre-
dictions is presented. The diagram’s lower half shows the magnitude of all con-
tribution scores, emphasizing thosematching the b-y ions. The upper half provides
a comparisonwith the original spectrum. fAcase studyonhow the theoretical ions,
calculated from the predicted peptide, align with the input spectrum. Thematched
theoretical b-y ions are distinctly marked in red and blue for predictions made by
PrimeNovo andCasanovo, respectively. This comparison seeks to identify potential
sources of error in incorrect predictions. The diagram’s bottom left section high-
lights a high contribution score assigned to an incorrect peak, corresponding to a
b-ion peak linked to an erroneous amino acid prediction in PrimeNovo’s final layer.
Source data are provided as a Source Data file.
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Fig. 5 | The advantages of PrimeNovo inmetaproteomicanalysis. a Identification
of PSMs and peptides through the quality control process T\U\D\DS, which involves
the following steps: first, we identify sequences present in the target database.
Then, we filter out results that are (1) unmatched with the precursor mass (mass
error >0.1 Da); (2) foundwithin the decoy database; (3) identified in database search
results. Both the target and decoy databases were provided in the original study33.
Additionally, the T\U\D approach is similar but does not entail a comparison with

the database search results. b The Venn diagram illustrates the overlap between
peptides identified by PrimeNovo and Casanovo V2, as well as the bacterial-specific
peptides (PrimeNovo-B and Casanovo V2-B). c The treeview representation of
species-level identification. d The number of peptides identified at the phylum,
genus, and species levels, with the note that taxa identified by fewer than three
unique peptides are excluded. e The number of peptides at the phylum, genus, and
species levels after the quality control process T\U\D.
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Supplementary Fig. 23, proteins identified by PrimeNovo and Casa-
novo were correctly assigned to 10 genera, 14 species, and 20 COG
(Clusters of Orthologous Groups of proteins) categories. On the genus
level, PrimeNovo identified a total of 6,883 proteins assigned to the 10
genera, with 6709 of them annotated to specific COG functions. In
contrast, Casanovo V2 identified only 5028 proteins, with 4896 of
them annotated. Thus, PrimeNovo achieved a 36.89% and 37.03%
increase over Casanovo V2 in taxon and functional annotations.

Furthermore, a detailed examination at the genus level revealed
that PrimeNovo increased the number of proteins assigned to each
genus compared to Casanovo V2: Bacteroides (4926 vs. 3623), Clos-
tridium (3 vs. 2), Collinsella (486 vs. 383), Escherichia (91 vs. 62),
Monoglobus (294 vs. 197), Odoribacter (297 vs. 204), Parabacteroides
(576 vs. 425), Phocaeicola (204 vs 130), Ruminococcus (3 vs. 1),
Ruthenibacterium (3 vs. 1). Similarly, PrimeNovo exhibited significant
potential for taxonomic annotation at the species level. Compared to
Casanovo V2, PrimeNovo identified an additional 45.32% (3136 vs.
2158) of proteins assigned to the 14 species, with 45.03% (3034 vs.
2092) of these proteins annotated to specific COG functions. These
results demonstrate that PrimeNovo significantly enhances taxonomic
resolution at both the peptide and protein levels, highlighting its
substantial potential in metaproteomic research.

PrimeNovo enables accurate prediction of a wide range of dif-
ferent post-translation modifications
PTMs play a crucial role in expanding the functional diversity of the
proteome34, going well beyond the inherent capabilities of the genetic
code. The primary challenge lies in the underrepresentation of mod-
ified peptides within the dataset, especially those that have not been
enriched for certain modifications. The detection of such peptides is
often overshadowed by the more prevalent unmodified peptides.
Moreover, the distinct physical properties of modified residues—
namely their mass and ionization efficiency—further complicate the
detection35–39. The capabilities of current database search engines are
limited, permitting the consideration of only a select few modifica-
tions. This scarcity leads to a low presence of modified peptides in the
training data, thereby making it difficult for models to accurately
identify diverse PTMs from spectral data.

To address these challenges, PrimeNovo has been advanced in
predicting peptide sequenceswithmultiple PTMs, establishing itself as a
foundational model divergent from conventional methods that start
anew for each PTM type. By fine-tuning enriched PTM data, PrimeNovo
gains extensive exposure to multiple PTM types while retaining its
ability to recognize standard peptides. Architectural adjustments, as
illustrated in Fig. 6a, including the addition of a classification head above
the encoder to identify specific PTMs and a newly initialized linear layer
above the decoder, enhance PrimeNovo’s ability to decode peptides
with PTMs, broadening the model’s token repertoire. The final loss is
formulated in a multi-task setting, combining the peptide decoding loss
with a binary classification task for PTM identification loss.

Our training methodology employed a dataset encompassing 21
distinct PTMs, referred to as the 21PTMs dataset, as detailed in ref. 40.
We fine-tuned PrimeNovo for each PTM to ascertain its proficiency in
peptide generation and PTM classification, in accordance with pre-
viously describedmethods. To ensure dataset balance, we included an
approximately equal number of peptides with and without PTMs,
culminating in a total of 703,606 PSMs for the dataset. The compre-
hensive fine-tuning endeavor across the 21 PTMs allows PrimeNovo to
discern a broad spectrum of PTMs, a capability evidenced by the
exemplary performance metrics for each PTM category depicted in
Fig. 6c. Specifically, the classification accuracies for all PTMs exceeded
95%, except asymmetric and symmetric Dimethylation at Arginine (R),
and Monomethylation at Arginine (R), which have classification
accuracies of 77%, 77%, and 69%, respectively. Excluding Mono-
methylation at Arginine (R), which recorded a peptide recall rate of

48%, the de novo sequencing recall for peptides with the other 20
PTMs exceeded 61%. Such peptide recall levels are on par with per-
formance in other datasets without special PTMs, such as an average
peptide recall of 64% across nine-species datasets. Detailed insights
into the classification accuracy and peptide recall for each PTM are
provided in the supplementary Fig. 20.

To assess PrimeNovo’s inference performance on PTMs within a
more applied context, we selected a phosphorylation dataset from Xu
et al.41 (denote as the 2020-Cell-LUAD dataset), which concentrates on
Human Lung Adenocarcinoma with 103 LUAD tumors and their cor-
responding non-cancerous adjacent tissues. It offers both
phosphorylation-enriched and non-enriched data. We randomly
selected a portion (3389 PSMs) of the enriched data for testing and the
rest for training, checking of no overlapping peptide sequence
between the training and testing sets. We fine-tuned PrimeNovo on
such training data and the test results demonstrate that PrimeNovo
distinguishes between phosphorylated and non-phosphorylated
spectra with a classification accuracy of 98% and achieves a peptide
recall rate of 66% on both cancer tissue data and non-cancerous
adjacent tissues test data, as detailed in Supplementary Table 9.

To assess PrimeNovo’s capability to identify modified peptides
within non-enriched proteomic datasets, we deployed it for the ana-
lysis of unidentified MS/MS spectra from the non-enriched 2020-Cell-
LUAD dataset, notably without conducting dataset-specific fine-tun-
ing. Given the absence of peptide identifications from existing data-
bases in this dataset, we relied on the model’s confidence scores to
select 300 high-quality predicted peptides. We then undertook a
comparative analysis between the theoretical spectrum, as generated
by DeepPhosPho42, and the original input spectrum corresponding to
these peptides, as illustrated in Fig.6b. Through this process, we pin-
pointed 12 peptides as candidates for synthesis validation and further
functional investigation. The details of the selection methodology are
elaborated upon in Supplementary Note 8.

All 12 phosphopeptides predicted by PrimeNovo from non-
enriched data were validated using their synthetic counterparts, as
depicted in Fig. 6 and Supplementary Figs. 21 and 22. In Fig. 6d, e, they
showcase the alignment between theoretical and experimental spectra
for two representatives of 12 synthesized phosphorylated peptides.
The comparison reveals a strong correspondence between the pre-
dicted b-ions and y-ions peaks and the experimental spectrum’s signal
peaks, evidenced by a Pearson correlation exceeding 0.90 for nine
paired spectra, and 0.70, 0.72, and 0.86 for the remaining three pairs.
This correlation underscores the model’s high predictive precision.
Further investigation into the proteins associated with these phos-
phopeptides highlighted their relevance to lung adenocarcinoma
(LUAD). For example, the peptide LGpSGFSLTR (2+) (Fig. 6d) from
Filamin-C (FLNC) aligns with findings that the ITPKA and Filamin C
interaction fosters a dense F-actin network, enhancing LUAD cell
migration43. Another identified peptide, HGpSDPAFAPGPR (2+) from
FAM83H (Fig. 6e), is noted for being upregulated in LUAD, indicating a
potential prognostic marker of LUAD44,45. Additionally, peptides
WLDEpSDAEMELR, GPAGEAGApSPPVR, and AQpTPPGPSLSGSK reveal
proteins (HACD3, SNTB2, and SRRM2) not previously associated with
LUAD, but there are studies suggesting potential relevance between
these three proteins and other cancer types. This offers directions for
potential biological research on the disease by examining the above-
relevant proteins. For detailed results concerning the remaining pep-
tides and the comprehensive experimental methodologies used for
their synthesis and analysis, please see Supplementary Note 8.

These results demonstrate that PrimeNovo has a high sensitivity
in detecting PTMs from proteomic datasets, especially those non-
enriched ones, which provides a solution for low-abundance PTM
discovery.

Peptide sequencing is vital for understanding protein structures
and functions. This work introduces PrimeNovo, a Transformer-based
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Fig. 6 | De novo sequencing of peptides with PTMs. a A fine-tuning pipeline for
PrimeNovo’s PTM prediction. b The methodology for selecting high-quality phos-
phopeptides predicted by PrimeNovo. c Performance metrics on the 21PTMs
dataset (n = 21), including classification accuracy, amino acid-level recall, and
peptide-level recall. d and (e) A comparative analysis of the actual input spectrum
and the spectrum of the synthesized peptide predicted by PrimeNovo. The

diagrams' upper sections display the original input spectrum, whereas the lower
sections illustrate the spectrum generated from the predicted peptide sequence.
Overlapping peaks are highlighted in red and blue for b-y ions. The cosine similarity
is calculated based on spectrum encoding using the GLEAMS package. Source data
are provided as a Source Data file. Some figures were created in BioRender56.
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model for fast, accurate de novo peptide sequencing. Using a non-
autoregressive architecture46 and a precise PMC decoding unit, Pri-
meNovo achieves state-of-the-art performance across spectrum data-
sets. Its speed and adaptabilitymake it ideal for large-scale sequencing,
with robust performance in zero-shot and fine-tuning scenarios. Pri-
meNovo excels in metaproteomic peptide annotation, aiding micro-
organism identification and functional analysis, while its PTM
detection capability after finetuning enables the discovery of peptides
beyond traditional methods.

Methods
Training datasets
The dataset used for training our model is the MassIVE Knowledge
Base spectral library version 1 (MassIVE-KB)25, which we obtained from
the MassIVE repository. This extensive dataset comprises over 2.1
million precursors originating from 19,610 proteins. These precursors
were distilled froma vast pool of humandata, amounting tomore than
31 terabytes, gathered from 227 public proteomics datasets within the
MassIVE repository.

Overview and notation
In the de novo sequencing task, we are provided with a spectrum
instance denoted as S = {I, c, m}, which is generated by a mass spec-
trometer when analyzing biological samples. Here, I = {(m/z1, i1),
(m/z2, i2), ⋯ , (m/zk, ik)} represents a set of mass-to-charge ratio and
corresponding intensity pairs. These pairs are retained after being fil-
tered by the mass spectrometer threshold. Additionally, c denotes the
measured charge of the peptide (precursor), and m represents the
measured total mass of this peptide. Our primary objective in this
context is to derive the correct amino acid sequence denoted as
A = {a1, a2, ⋯ , an} from the information contained within S.

Non-autoregressive transformer backbone
We adopt the transformer encoder–decoder network as our founda-
tional model, following the work of Casanovo16. In the encoder net-
work, we handle the mass-to-charge ratio m/z and the intensity
information i from set I separately beforemerging them. To represent
each m/z value, we employ a sinusoidal embedding function, which
effectively captures the relative magnitude—an essential factor in
determining the peptide fragments:

gðm=z, jÞ=

sin 2π m=z

ρmin
ρmax
ρmin

� �2j=d

0
B@

1
CA, for j ≤ d

2

cos 2π m=z

ρmin
ρmax
ρmin

� �2j=d

0
B@

1
CA, for j > d

2

8>>>>>>>><
>>>>>>>>:

Here, j signifies the position in the d-dimensional hidden embedding.
The parameters ρmax and ρmin define the wavelength range for this
embedding. In contrast, we handle intensity values through a linear
projection layer.

In the non-autoregressive model, the only architectural distinc-
tion between the encoder and decoder lies in the cross-attention
mechanism. Therefore, we employ identical notations for both com-
ponents. In a formal sense, each layer computes a representation R,
based on the preceding feature embeddings. For the kth layer, the
representation is

RðkÞ =Attention LayerðkÞðRðk�1ÞÞ ð1Þ

Here, R(0) signifies the spectrum embedding for the encoder, while for
the decoder, it represents the summation of positional and precursor
embeddings. To maintain consistency, we keep the generation length

fixed as t for the decoder. Consequently, the output of the final
decoder layer undergoes a softmax operation, which calculates the
probability distribution over tokens for each position.

Peptide reduction strategy for our non-autoregressivemodeling
Our strategy for non-autoregressive modeling deviates from conven-
tional autoregressive generation, which predicts each token’s prob-
ability as P(a(i+1)∣a1). This approach, however, restricts bidirectional
information, contrasting with protein structures where each amino
acid is informed by both neighbors. To address this, wepropose a non-
autoregressive model where all amino acids are generated simulta-
neously, allowing each position to access bidirectional context. In this
framework, each amino acid probability, P(a), is independently mod-
eled, but this independence can lead to weak global coherence,
resulting in nonsensical sequences despite locally accurate regions.
For instance, a phrase like “au revoir"might ambiguously split into “see
bye" in non-autoregressive translation with cross-entropy loss due to a
lack of sequence-level cohesion. To mitigate this, we employ CTC
loss47, which improves global consistencybyenhancing sequence-level
coherence, leading tomore accurate and cohesive peptide generation.

To address cases where the generated token sequence, with a
maximum length t, exceeds the target length,we introducea reduction
function, Γ( ⋅ ), in non-autoregressive generation. This functionmerges
consecutive identical amino acids, for example:

ΓðAAGGGTYYYWWRWWÞ=AGTYWRW ð2Þ

However, simple reduction is unsuitable for sequences with con-
secutive identical amino acids. Inspired by Graves et al.47, we use a
blank token ϵ during generation. Identical amino acids separated by ϵ
are not merged, and ϵ is later removed, resulting in

ΓðAϵϵAGGϵGTYYYWWRWϵϵϵϵWÞ=AAGGTYWRWW ð3Þ

For a visual representation of this process, please refer to the Sup-
plementary Fig. 1.

Definition of CTC loss
Following the CTC reduction rule described above, it’s possible to
obtainmultiple decoding paths denoted as y, which can all be reduced
to the target sequence A. For instance, both CCGT and CGϵT, among
many others, can be transformed into the target sequence CGT. Con-
sequently, the probability of generating the target sequence A is the
sumof the probabilities associatedwith all paths y that can be reduced
to A:

PðAjSÞ=
X

y:ΓðyÞ=A
PðyjSÞ=

X
y:ΓðyÞ=A

X
yi2y

logðPð yijSÞÞ ð4Þ

Here, y = (y1, y2, ⋯ , yt) represents a single decoding path in the non-
autoregressive model output, satisfying the condition Γ(y) =A. The
overall probability of generating the target sequence A, denoted as
P(A∣S), is then computed as the sum of the probabilities of generating
each y, with yi at each position. Since the probability is modeled
independently, the probability of each y can be calculated as the
multiplication of the probabilities of generating all yi∈ y. This
multiplication can be expressed as the sum of the logarithm of the
probabilities of each yi.

During the training process, our objective is tomaximize the total
probability of generating the target sequence A for each input spec-
trum S. Since we are utilizing gradient descent to optimize our model,
this goal is equivalent to minimizing the negative total probability.
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Therefore, our loss function is simply defined as:

Lctc = � PðAjSÞ ð5Þ

One could theoretically enumerate all possible paths y for each target
sequenceA in order to calculate the total probability (loss) for training
our network. However, this approach becomes impractical as the
number of paths grows exponentially with respect to the maximum
generation length. This would result in an unmanageable amount of
computation time. Instead, we adopt a dynamic programming
method, as detailed in the Supplementary Information, to optimize the
calculation of this loss efficiently. This approach allows us to train our
model effectively without the computational burden of exhaustively
enumerating all possible paths.

Knapsack-like dynamic programming decoding algorithm for
precise mass control
The generated de novo peptide sequence should be strictly grounded
by molecular mass measured by the mass spectrometer. Specifically,
the molecular mass of the ground truth peptide, mtr falls in the range
of [m−σ, m + σ], where m is precursor mass given by mass spectro-
meter, and σ is measurement error, usually at 10−3 level, of used mass
spectrometer. However, neural network models are of low explain-
ability and controllability, making it difficult to control the generated
results to cater to certain desires. To allow accurate generation, we
reformulate the non-auto regressive generation as a knapsack-like
optimization problem48, where we are picking items (amino acids) to
fill the bag with a certain weight constraint, while the value (predicted
log probability) is maximized. Such optimization problem can be for-
mulated as:

maximize
Xt

i = 1

logPðyijSÞ constrainedwith L≤
X

8aj2ΓðyÞ
wðajÞ≤U,

ð6Þ

where L and U are the desired lower bound and upper bound for
decoded peptide mass. We denote L=m� tol and U =m+ tol where
tol is decoding tolerance within which we think the true massmtr falls
in, after taking into measurement error.

Inspired by a similar idea by Liu et al.48, we propose a dynamic
programmingmethod to solve such an optimization task.We denote e
as the decoding precision to construct a two-dimensional DP table. For
each time step, we would have dU=ee cells with being the ceiling
function. The lth cell can only store the peptide with mass precisely
within [e*(l−1), e*l]. Specifically, the lth cell at τth time step dτ,l stores
the most probable, calculated by the sum of log probability by non-
autoregressive model, τ tokens sequence y1:τ satisfying the mass con-
straint of

P
8aj2Γðy1:τ ÞwðajÞ 2 e � ðl � 1Þ, e � lÞ�

.
We first initialize our DP table by filling the first time step, τ = 1, as

follows:

d1, l =

ϵ, if l =0S
8aj , s.t. , wðaj Þ2 e � ðl�1Þ, e � lÞ½

fajg, if 9wðajÞ 2 e � ðl � 1Þ, e � lÞ�
;, otherwise :

8>><
>>:

ð7Þ

In the first case, d1,1 stores the one-token sequence with the total mass
in the range of [0, e], where e is usually a very small number (e < 1) for
higher decoding accuracy, therefore no amino acid other than ϵ can
fall under this mass limit. On the other hand, when l ≠ 1, theremight be
multiple amino acids whose mass falls within e � ðl � 1Þ, e � lÞ�

. We
store all of them in lth cell to avoid overlooking of any possible starting
amino acid.

We then divide the recursion steps into three cases,
Hð1Þ

τ, l ,Hð2Þ
τ, l and Hð3Þ

τ, l , each storing its corresponding set of sequences
following the rules below:

(1) When yτ = ϵ, we know Γ(y1:τ−1) = Γ(y1:τ) due to CTC reduction,
therefore the mass stays the same. This gives the set of candi-
date sequences :

Hð1Þ
τ, l = y� ϵ j 8y 2 dτ�1, l

n o
ð8Þ

where ⊕ is the concatenation.
(2) When the newly decoded non-ϵ token is the repetition of the last

token, the reduced sequence still remains the same with the
mass unchanged, due to the CTC rule. We get the second set of
potential sequences:

Hð2Þ
τ, l = fy� yτ�1 j 8y 2 dτ�1, l , s:t:, yτ�1≠ϵg ð9Þ

(3) When the newly decoded non-ϵ token is different from the last
token in the already generated sequence, the mass will be
increased. We select the potential sequence by examining the
total mass that falls in the mass constraint:

Hð3Þ
τ, l =

(
y� yτ j 8 1≤ l0<l, 8y 2 dτ�1, l0 ,

8yτ ≠ ϵ, if e � ðl � 1Þ≤
X

8aj2Γðy�yτ Þ
wðajÞ< e � l

) ð10Þ

The we update the cell dτ,l using all candidates from the above
three sets:

dτ, l = topB
8y2Hð1Þ

τ, l

S
Hð2Þ

τ, l

S
Hð3Þ

τ, l

X
yj2y

Pðyj jSÞ
0
@

1
A ð11Þ

where topB is taking the top B most probable sequences
according to generated probability. We then select the most
probable sequence at dt,∣A∣ cell as our final result.

CUDA acceleration for proposed mass control decoding
algorithm
The time complexity of our proposed mass control dynamic pro-
gramming algorithm, when executed sequentially, is O(Nat(U/e)2),
where Na represents the total number of tokens (which, in our case,
corresponds to the number of amino acids plus one).

To implement the parallel algorithm for the PMC unit, we employ
the compute unified device architecture (CUDA). CUDA is a parallel
computing programming framework developed by NVIDIA, which
allows programs to leverage the computational power of NVIDIA gra-
phics processing units (GPUs) for a wide range of general-purpose
computing tasks. Detailed information regarding our CUDA algorithm
is provided in the Supplementary Information.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The nine-species benchmark dataset12 was directly downloaded as
Mascot Generic Format (MGF) files from the Mass Spectrometry
Interactive Virtual Environment (MassIVE) repository (identifier:
MSV000081382), shared by the authors of the DeepNovo paper. The
dataset was searched using PEAKS DB5 software [version 8.0] with a
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false discovery rate (FDR) of 1%. The MassIVE-KB dataset25 was
obtained by downloading the raw files and the filtered identification
results from the All Candidate Library Spectra section of theMassIVE
Knowledge Base spectral library v1 (https://massive.ucsd.edu/
ProteoSAFe/static/massive-kb-libraries.jsp). The PT27, 21PTMs40, and
PXD01948349 datasets were obtained by downloading the raw files
and MaxQuant2 identification results from the PRIDE50 repository by
PXD00473227, PXD00944940, and PXD01948349, respectively. The
HCC28 and 2020-Cell-LUAD41 datasets were obtained by downloading
the raw files and MaxQuant identification results from the iProX51

repository (identifier: IPX0000937000 and IPX0001804000,
respectively). The IgG1-Human-HC26 dataset was obtained by down-
loading the combined identification results of the database algo-
rithms MS-GF+52 and X!Tandem53 with an FDR rate of 1% from the
MassIVE repository (identifier: MSV000079801). The three-species
dataset22 was obtained by downloading the SEQUEST3 search results
with a 1% false positive rate for these three species datasets from the
data shared by the GraphNovo authors on Zenodo (identifier:
zenodo.8000316). The revised nine-species benchmark dataset16 was
obtained by downloading the raw files and Crux54 identification
results from the MassIVE repository (identifier: MSV000090982).
The cell-metaproteome dataset33 was obtained by downloading the
raw files and MyriMatch55 identification results from the MassIVE
repository (identifier: MSV000082287). Source data are provided
with this paper.

Code availability
We have open-sourced the codebase and trained model weights for π-
PrimeNovo on GitHub: https://github.com/PHOENIXcenter/pi-
PrimeNovo and https://github.com/BEAM-Labs/pi-PrimeNovo. Future
updates and new releases will also be available at this link.
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