
Received: September 14, 2024. Revised: November 30, 2024. Accepted: December 17, 2024
© The Author(s) 2025. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Briefings in Bioinformatics, 2025, 26(1), bbae694

https://doi.org/10.1093/bib/bbae694

Problem Solving Protocol

GPSD: a hybrid learning framework for the prediction of 
phosphatase-specific dephosphorylation sites 
Cheng Han1,‡, Shanshan Fu1,‡, Miaomiao Chen1, Yujie Gou1, Dan Liu1, Chi Zhang1, Xinhe Huang1, Leming Xiao1, Miaoying Zhao1, 

Jiayi Zhang1, Qiang Xiao2, Di Peng 1, *, Yu Xue 1, * 

1Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, 
Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 
430074, China 
2School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China 
*Corresponding authors. Yu Xue, Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and  
Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and 
Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China. E-mail: xueyu@hust.edu.cn; Di Peng, Department of Bioinformatics and Systems Biology, MOE Key 
Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science 
and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China. E-mail: pengdi@hust.edu.cn 
‡Cheng Han and Shanshan Fu contributed equally to this work. 

Abstract 
Protein phosphorylation is dynamically and reversibly regulated by protein kinases and protein phosphatases, and plays an essential 
role in orchestrating a wide range of biological processes. Although a number of tools have been developed for predicting kinase-
specific phosphorylation sites (p-sites), computational prediction of phosphatase-specific dephosphorylation sites remains to be a 
great challenge. In this study, we manually curated 4393 experimentally identified site-specific phosphatase–substrate relationships 
for 3463 dephosphorylation sites occurring on phosphoserine, phosphothreonine, and/or phosphotyrosine residues, from the literature 
and public databases. Then, we developed a hybrid learning framework, the group-based prediction system for the prediction of 
phosphatase-specific dephosphorylation sites (GPSD). For model training, we integrated 10 types of sequence features and utilized three 
types of machine learning methods, including penalized logistic regression, deep neural networks, and transformer neural networks. 
First, a pretrained model was constructed using 561 416 nonredundant p-sites and then fine-tuned to generate computational models 
for predicting general dephosphorylation sites. In addition, 103 individual phosphatase-specific predictors were constructed via transfer 
learning and meta-learning. For site prediction, one or multiple protein sequences in FASTA format could be inputted, and the prediction 
results will be shown together with additional annotations, such as protein–protein interactions, structural information, and disorder 
propensity. The online service of GPSD is freely available at https://gpsd.biocuckoo.cn/. We believe that GPSD can serve as a valuable 
tool for further analysis of dephosphorylation. 
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Introduction 
Reversible protein phosphorylation is one of the most important 
posttranslational modifications (PTMs) and determines the func-
tional dynamics of targeted substrates, such as protein activity, 
localization, interactions, and stability [1]. Phosphorylation is 
involved in regulating a broad spectrum of biological processes, 
such as cellular metabolism, transcription, and cell division 
[2, 3]. Mechanistically, protein kinases (PKs) serve as writers to 
transfer one or multiple phosphoryl groups for the modification 
of substrates, whereas protein phosphatases (PPs) function as 
erasers to specifically dephosphorylate substrates by hydrolysing 
phosphate ester bonds for the removal of phosphoryl groups 
[4, 5]. In eukaryotes, phosphorylation and dephosphorylation 
mainly occur on three types of phosphorylatable amino acid 
residues, including serine (S), threonine (T), and tyrosine (Y) 
residues [6]. Furthermore, these two types of catalytic enzymes 
dynamically control the equilibrium of phosphorylation and 

dephosphorylation, which determines the steady state of protein 
phosphorylation levels in vivo [7, 8]. The balance of reversible 
phosphorylation is responsible for sustaining the cellular home-
ostasis under normal physiological conditions [9, 10]. In particular, 
aberrant PP activity results in inadequate or excessive protein 
phosphorylation to be implicated in numerous human diseases, 
including cancer, neurodegenerative disorders, and diabetes [7, 
11, 12]. Thus, the identification of phosphatase-specific targets 
and site-specific phosphatase–substrate relationships (ssPSRs) is 
fundamental for understanding the regulatory mechanisms of 
dephosphorylation. 

The detection of phosphatase-specific targets and dephospho-
rylation sites via traditional biochemical methods, such as in 
vitro phosphorylation assay and immunoblotting, is usually low 
throughput (LTP), labour intensive, and time consuming. In recent 
years, the advancement of various high-throughput (HTP) tech-
nologies, including protein chips and tandem mass spectrometry
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(MS/MS), has facilitated the discovery of dephosphorylation sites 
[13–19]. For example, Hoermann et al. combined a substrate phos-
phorylation peptide library and a phosphoproteomic approach to 
analyse dephosphorylation events involving phosphoserine (pS) 
and phosphothreonine (pT) residues, which are demodified by 
the catalytic subunits of PPs PP1 and PP2A [14]. In addition to 
experimental assays, in silico analyses of dephosphorylation sites 
have also been employed. To date, several tools have adopted con-
ventional machine learning methods to detect dephosphorylation 
events on phosphotyrosine (pY) residues for a small number of 
tyrosine PPs, including protein tyrosine phosphatase 1B (PTP1B) 
and the Src homology 2 (SH2) domain-containing PPs SHP-1 and 
SHP-2 [20–22]. For example, Wu et al. used  the  k-nearest neighbour 
algorithm and sequence features to predict pY sites of substrates 
specifically demodified by PTP1B, SHP-1, and SHP-2 [20]. Later, 
Wang et al. separately utilized the Group-based Prediction System 
(GPS) method and CKSAAP-DEPHOS, which combined a support 
vector machine (SVM) with the composition of k-spaced amino 
acid pairs (CKSAAP) approach, to establish two predictors for 
the analyses of dephosphorylation sites [21]. Moreover, Jia et al. 
integrated a bi-profile Bayes feature extraction technique and an 
SVM to predict dephosphorylation sites that are specific for three 
tyrosine PPs [22]. Recently, Chaudhari et al. used a bidirectional 
long short-term memory (Bi-LSTM) method for the development 
of DTL-DephosSite to predict general dephosphorylation sites on 
pS, pT, and pY residues [23]. The number of PPs needs to be 
expanded for dephosphorylation prediction. Previously, we used 
490 762 nonredundant eukaryotic p-sites to pretrain a general 
phosphorylation model, which markedly increased the accuracy 
for the prediction of kinase-specific p-sites [24]. It is not known 
whether such a pretraining strategy would facilitate the compu-
tational detection of dephosphorylation sites in eukaryotes. 

In this study, we first collected 4393 reported ssPSRs for 
3463 dephosphorylation sites occurring on pS, pT, and/or pY 
residues of 1833 protein substrates, as well as their corresponding 
106 upstream PPs, from the literature and public databases 
(Supplementary Table S1). Then, we developed a computational 
tool, the group-based prediction system for the prediction 
of phosphatase-specific dephosphorylation sites (GPSD). For 
model training, 10 types of sequence features were used, and 
three machine learning methods, including penalized logistic 
regression (PLR), deep neural networks (DNNs), and transformer 
neural networks (TNNs), were integrated into a hybrid learning 
framework. Compared with a previously reported tool DTL-
DephosSite [23], GPSD exhibited a highly comparative accuracy 
for predicting general dephosphorylation sites. By combining 
transfer learning and meta-learning, we further fine-tuned 103 
individual models for predicting phosphatase-specific dephos-
phorylation sites, using 4267 reported ssPSRs. For convenience, 
an online service of GPSD was developed. Overall, we anticipate 
that GPSD could serve as a useful tool for further analysis of 
dephosphorylation. 

Methods 
The algorithm of GPSD 
In this study, we developed a three-step framework for predict-
ing phosphatase-specific dephosphorylation sites in eukaryotes. 
First, general phosphorylation models were pretrained and fine-
tuned to construct the models for predicting general dephos-
phorylation sites. Then, individual phosphatase-specific predic-
tors were further fine-tuned from the general dephosphorylation 
models. The details on data collection and preparation, as well 

as sequence feature encoding, are provided in Supplementary 
methods. The implementation of GPSD is presented as below. 

To pretrain general phosphorylation models, we first defined 
a p-site peptide PSP (30,30) as a phosphorylatable residue 
flanked by 30 upstream residues and 30 downstream residues, as 
previously described [24]. The PSP (30,30) items around known p-
sites were regarded as positive data, whereas the PSP (30,30) items 
from other non-phosphorylatable S/T or Y residues were taken 
as negative data. Next, we used 10 types of sequence features 
to encode PSP (30,30) items (Supplementary methods). For each 
feature, PLR and DNN were separately used to train a model. Using 
one-hot encoding, two additional models were trained by Bidirec-
tional Encoder Representations from Transformers (BERT) and 
Generative Pre-trained Transformer (GPT), respectively [25–27]. 

For each PSP (30,30) item, 20 prediction scores were individually 
produced by each of the 10 DNN models (D1, D2, D3, . . .  , D10) and 10  
PLR models (P1, P2, P3, . . .  , P10). Two additional scores, B and G, were  
produced by BERT- and GPT-based models, respectively. These 
scores were represented as a 22-dimensional vector as follows: 

V = (D1, D2, D3, . . . , D10, P1, P2, P3, . . . , P10, B, G) 

Then, the vector V was used as the secondary feature, and a 
new PLR model was trained based on this vector to obtain a final 
score. 

For fine-tuning general dephosphorylation models, the 
pretrained parameters of general phosphorylation models 
were unchanged. Similarly, the dephosphorylatable PSP (30,30) 
items were regarded as positive data, whereas other non-
dephosphorylatable PSP (30,30) items in the same substrates were 
taken as negative data. 

To further fine-tune the phosphatase-specific models, reported 
ssPSRs were hierarchically classified according to the levels of PP 
groups, PP families, and individual PPs [28]. For each PP cluster that 
included ≥30 dephosphorylation sites, its corresponding model 
was implemented directly using transfer learning, and n-fold 
cross-validations were conducted to evaluate its performance. 
For other PP clusters that contained <30 dephosphorylation sites, 
Model-Agnostic Meta-Learning (MAML) [29, 30], a widely used 
meta-learning strategy, was adopted for model fine-tuning. For 
each PP cluster, the negative PSP (30,30) items were randomly 
resampled, with a positive-versus-negative ratio of 1:10 per time. 
In total, 20 independent iterations were performed for fine-tuning 
the DNN models and TNN models. The leave-one-out validation 
was performed to test the performance. The training procedures 
were interactively conducted until the accuracy of predictive 
models was not increased any longer. 

The PLR model was implemented in scikit-learn v1.0.2 (https:// 
scikit-learn.org/stable/), with the ridge (L2) penalty. The ‘lbfgs’ 
solver was adopted for parameter optimization. For compari-
son, three additional machine learning methods, including SVM, 
random forest (RF), and Gaussian Naïve Bayes (GNB), were also 
implemented in scikit-learn v1.0.2. The DNN model was imple-
mented in Keras 2.4.3 (http://github.com/fchollet/keras) with the  
TensorFlow 2.4.1 backend, as well as the BERT- and GPT-based 
models. Details on implementation of DNNs and TNNs were 
present in Supplementary methods. For the DNN framework, the 
optimized parameters, including the number of neurons, dropout 
ratio, and learning rate, are provided in Supplementary Table S2. A  
computer with an NVIDIA GeForce RTX 2060 GPU, a Genuine Intel 
CPU @ 3.60 GHz CPU, and 64 GB of RAM was used for training the 
computational models.
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Results 
Development of a hybrid learning framework for 
the prediction of dephosphorylation sites 
Since dephosphorylation only occurs at p-sites, we first pretrained 
general phosphorylation models. The training dataset contained 
561 416 nonredundant known p-sites in 82 468 proteins derived 
from three public databases, including EPSD [31], dbPTM [32], 
and PhosphoSitePlus [33]. From iLearnPlus, a machine learning 
platform for analysing biological sequences [34], we obtained 66 
informative features to encode protein sequences. To assess the 
usefulness of each of the 66 features, PLR was first used for model 
training, and 9 sequence features were ultimately selected for 
their superior performance values. For encoding each PSP (30,30) 
item, nine sequence features were used together with the GPS fea-
ture [24]. Then, PLR and DNNs were separately used to construct 
a model using each of the 10 features. Using one-hot encoding, we 
further took two frameworks of TNNs, including BERT and GPT, to 
learn the contextual information [25–27]. The prediction scores of 
the 22 models were taken as the secondary features and further 
integrated by PLR to output a single predictive score. 

Next, the pretrained models for predicting general phos-
phorylation were fine-tuned for constructing general dephos-
phorylation predictors. The benchmark dataset contained 3304 
nonredundant dephosphorylation sites in 1765 proteins collected 
from the literature and two public databases, DEPOD [35] 
and dbPTM [32] (Supplementary Table S1). Then, the general 
dephosphorylation models were further fine-tuned to construct 
103 phosphatase-specific predictors, utilizing 4267 ssPSRs of 
3304 dephosphorylation sites in 1765 phosphatase-specific 
substrates (Fig. 1A, Supplementary Table S1). PP clusters with 
fewer than three dephosphorylation sites were not included for 
model implementation. In particular, considering the limited 
numbers of experimentally validated ssPSRs for the majority 
of PPs, a meta-learning method, MAML [29, 30], was employed 
to enhance the robustness and accuracy of predictive models 
trained with fewer than 30 phosphatase-specific sites. Using 
transfer learning and meta-learning, a total of 103 phosphatase-
specific predictors were generated. Finally, a website server was 
provided to be freely accessible at https://gpsd.biocuckoo.cn/ 
(Fig. 1B). 

Performance evaluation and comparison 
Using the 10-fold cross-validation, the performance of each fea-
ture was individually assessed. The area under the curve (AUC) 
values for predicting pS/pT dephosphorylation sites ranged from 
0.7215 (OPF_10bit in the DNN model) to 0.8899 (GPS in the DNN 
model) (Fig. 2A and Supplementary Fig. S1A). Similarly, for the 
prediction of dephosphorylation at pY residues, the AUC values 
ranged from 0.6869 (AAindex in the PLR model) to 0.8640 (GPS in 
the DNN model) (Fig. 2B and Supplementary Fig. S1B). The receiver 
operating characteristic (ROC) curves revealed that the sequence 
feature encoded by the GPS method consistently had greater 
predictive accuracy for dephosphorylation sites than the other 
nine remaining sequence features did. Using one-hot encoding, 
BERT and GPT were adopted to extract contextual information 
from phosphorylatable and dephosphorylatable peptides, respec-
tively. Our results showed that the general models of predicting 
pS/pT dephosphorylation using BERT- and GPT-based architec-
ture received the AUC values of 0.7363 and 0.7462, respectively 
(Fig. 2A). For the prediction of pY dephosphorylation sites, the AUC 
values of BERT- and GPT-based models were 0.7172 and 0.8603, 
respectively (Fig. 2B). 

Next, we evaluated the performance of each sequence feature 
using PLR, DNNs, or TNNs. Taken the GPS feature as an example, 
the general predictor of pS/pT dephosphorylation trained by 
DNNs achieved the highest AUC value of 0.8899, while the 
pY dephosphorylation model of dual-specificity phosphatase 
(DSP) trained with PLR obtained a higher AUC value of 0.9109 
compared to other features trained by other machine learning 
methods (Fig. 2C). In addition, for the other phosphoserine 
phosphatase (PSP-Other) family, the AUC value of BERT-based 
predictor was 0.8895, greater than other features using DNNs or 
PLR (Fig. 2C). Thus, different machine learning methods exhibited 
differential capabilities in learning various sequence features. 
After the integration of all 10 features and 3 machine learning 
approaches, the 10-fold cross-validation AUC value reached 
0.9415 for predicting pS/pT dephosphorylation, and the AUC 
value of the predictive model for dephosphorylation sites at 
pY residues was 0.8724 (Fig. 2A–C, and  Supplementary Fig. S1C, 
Supplementary Table S3). The confusion matrices also supported 
the performance of GPSD for predicting general dephosphory-
lation sites (Supplementary Fig. S2A). Besides PLR, we further 
used SVM, RF, and GNB for feature integration. The similar 
10-fold cross-validation values supported the efficiency of PLR 
(Supplementary Fig. S1D, E). In this regard, our analyses indicated 
the hybrid learning framework was helpful for improving the 
prediction accuracy. 

In addition, 4-, 6-, and 8-fold cross-validations were performed 
to further evaluate the general dephosphorylation predictors 
(Supplementary Fig. S1F, G). The AUC values were similar to 
the 10-fold cross-validation results, supporting the robustness 
of models in GPSD. Furthermore, for 25 phosphatase-specific 
models curated with ≥30 experimentally validated sites, 4-, 
6-, 8-, and 10-fold cross-validations were performed, as well as 
confusion matrices under the 10-fold cross-validation (Supple-
mentary Figs. S2B and S3). Our analyses showed that the AUC 
values ranged from 0.9207 to 1.000, implying the superior 
performance of GPSD for predicting phosphatase-specific 
dephosphorylation sites. Moreover, we compared the performance 
values of models for predicting dephosphorylation sites, with 
or without the pretraining models of general phosphorylation 
(Supplementary Fig. S1D, E). The predictors fine-tuned from 
pretraining models had higher AUC values than did the models 
without pretraining (Supplementary Fig. S1D, E). 

Next, we compared the performance of GPSD for predicting 
general dephosphorylation, to a previously published tool, DTL-
DephosSite (Supplementary Table S4) [23]. We used an indepen-
dent dataset not for training, including a total of 159 dephos-
phorylation sites. GPSD showed AUC values of 0.8818 and 0.8154 
for predicting pS/pT and pY dephosphorylation sites, respec-
tively, much higher than DTL-DephosSite (Fig. 2D). Furthermore, 
we investigated the contribution of each of the 10 sequence fea-
tures to dephosphorylation prediction, and a widely used method, 
SHapley Additive exPlanation (SHAP), was employed for model 
interpretations (Fig. 2E and Supplementary Fig. S1H) [36]. The 
results revealed that all sequence features were informative for 
predicting dephosphorylation sites, and the GPS feature achieved 
the highest scores, indicating the importance of sequence similar-
ity in the prediction of modified sites. Moreover, we observed that 
the contextual information captured by BERT had a higher con-
tribution for predicting pS/pT dephosphorylation sites (Fig. 2E), 
whereas GPT-based model had a higher contribution for predict-
ing pY dephosphorylation sites (Supplementary Fig. S1H). The 
contextual information learnt by either BERT or GPT was useful 
for improving the prediction performance. Taken together, our
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Figure 1. The whole procedure for the development of GPSD. (A) Data collection and preparation of nonredundant p-sites and dephosphorylation sites 
from the literature and public databases. (B) The model construction of GPSD for predicting eukaryotic dephosphorylation sites. In total, 10 types of 
sequence feature and 3 machine learning approaches, including DNNs, PLR, and TNNs, were integrated into a hybrid learning framework for model 
training. The strategy of pretraining followed by fine-tuning was adopted to develop phosphatase-specific predictors. 
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Figure 2. Performance evaluation and comparison of the GPSD. (A) Performance evaluation of the predictors of pS/pT dephosphorylation sites via 
various features and algorithms. The 10 models were individually trained with each of the 10 sequence features by DNNs. Using one-hot encoding, two 
models were trained by BERT and GPT, respectively. The GPSD predictor was trained via combining three machine learning methods and 10 sequence 
features. The ROC curves and AUC values are presented separately for the 13 predictive models. (B) Performance evaluation of the predictors of pY 
dephosphorylation sites via various algorithms and features. Similar to the pS/pT dephosphorylation site predictors, 13 predictors were shown to 
evaluate the model performance. (C) the AUC values of dephosphorylation predictors using each of 10 sequence features and 3 machine learning 
methods, including DNNs, PLR, and TNNs. (D) Performance comparison of the general model of GPSD with the previously reported tool via an 
independent test dataset. (E) Contribution of the 10 types of sequence features and the contextual information captured by TNNs for predicting 
dephosphorylation pS/pT site by measuring the SHAP score. 
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results demonstrated that combining 10 sequence features and 
3 machine learning methods facilitated the prediction of dephos-
phorylation sites in eukaryotes. 

Usage of the GPSD web server 
For convenience, we developed a user-friendly web server of 
GPSD to computationally predict general and phosphatase-
specific dephosphorylation sites (Fig. 3). Users can submit single 
or multiple protein sequences in FASTA format via the prediction 
interface, with adjustable thresholds (Fig. 3A). The results table 
displays information such as ‘ID’, ‘Position’, ‘Phosphatase’, 
‘Peptide’, ‘Score’, and ‘Source’ (Fig. 3B). Clicking ‘Exp’ in the 
‘Source’ column links to PubMed evidence, if available, while the 
‘Interaction’ column indicates interaction data from the BioGrid 
database [37]. For each PP cluster, the sequence logo of the DSP 
(30,30) items generated by iceLogo software is displayed in the 
‘Logo’ column [38]. All the columns can be sorted by clicking 
the title (Fig. 3B). By default, the top three dephosphorylation 
sites with the highest predicted scores, along with the disorder 
propensity score for each residue predicted by IUPred [39], are 
shown in the protein sequence diagram. We also conducted basic 
statistical analyses on the distribution and number of disordered 
regions within the selected PP family. Additionally, the 3D 
structure of the substrate with the predicted dephosphorylation 
site can be presented via 3Dmol.js (Fig. 3C). Prediction results are 
downloadable in .txt, .csv, .tsv, and .xlsx formats, and images can 
be exported as .png files. For convenience, we provided a video 
tutorial with 1′42′′ for a step-by-step usage of the online service 
of GPSD. 

Motif analysis of dephosphorylation sites 
We utilized the SHAP [36] method to analyse the motif sequences 
that are potentially essential for protein dephosphorylation. After 
dividing and calculating the DSP(3,3) for the pS/pT sites and 
pY sites, we constructed the frequency matrix and SHAP value 
matrix of the peptide at each position. To understand the effects 
of adjacent peptides on dephosphorylation modification, we cal-
culated the Pearson correlation coefficients (PCCs) between the 
frequency of each peptide and the SHAP value at each location 
(Supplementary Fig. S4). The use of a threshold with an absolute 
PCC value >0.2 as a cutoff indicated that 8, 17, 63, and 44 peptides 
in the 4 positions from upstream to downstream might be impor-
tant for protein modification at the pS, pT, or pY residues. In addi-
tion, we calculated the average SHAP score for each peptide after 
Z-score normalization. A normalized average SHAP value >0.15 
was used as the threshold to determine the protein peptides that 
might play an essential role in dephosphorylation modification. 
After the analyses, 4, 9, 29, and 11 short peptides were reserved at 
each position (Fig. 4A–D and Supplementary Table S5). 

According to previous studies on dephosphorylation sites, sev-
eral consensus motif sequences have been detected, including 
LSPIxE [40, 41], RVxF [41, 42], and p[ST]P [43, 44] (p[STY] rep-
resents the dephosphorylation site and x represents any amino 
acid residue). In this study, we explored the sequence motifs 
of dephosphorylation sites and evaluated the reliability of our 
manually curated datasets for predictive model training. Here, we 
first compiled 55 dephosphorylation motif sequences and their 
corresponding PPs through collecting and curating the literature 
(Supplementary Table S5). Using these 55 known motifs as a 
benchmark dataset, we analysed the protein peptides extracted 
from our analysis results and evaluated which motifs were sig-
nificantly enriched. For dephosphorylation occurring at pS/pT 
residues, approximately half of the amino acids detected at the +1 

position of pS/pT sites in phosphorylated proteomes treated with 
PP1 and PP2A are proline residues [14]. Our findings revealed that 
the peptides starting with [GAP] at position (1, 3) of the pS/pT sites 
received higher scores (Fig. 4A). Moreover, our enrichment anal-
ysis demonstrated that the p[ST]P motif was significantly over-
represented (Fig. 4E–F). In addition, the known sequence motif 
SxS [45] was significantly enriched (Fig. 4E). Consistently, the pep-
tides beginning with p[ST] at the position (−3, −1) of the pS/pT 
residues obtained the highest score (Fig. 4B). With respect to the 
dephosphorylation of tyrosine residues, our results demonstrated 
that the sequence motifs pY[DELVY][ELNV]x [46] and [EDY]pY [47– 
49] were significantly overrepresented (Fig. 4E and G). Moreover, 
the peptides starting with [DE] and [LIVM] at position (1, 3) of 
the pY residue had a higher score, and the sequence ending with 
[WFY] at position (−3, −1) of the pY site received a higher score 
(Fig. 4C and D). In addition, we discovered that classical motifs, 
including LSPIxE and RVxF, were also enriched (Fig. 4E) [40–42]. 
Our analyses revealed the reliability of the modification sites used 
for the training of the predictive models in our curated datasets. 

Analysis of phosphatase-specific 
dephosphorylation sites 
To evaluate the specificity of dephosphorylation prediction via 
individual predicative models, we conducted an analysis of the 
phosphatase-specific dephosphorylation sites. For verification of 
prediction accuracy, nine PPs-specific predictors for the dephos-
phorylation of pS/pT sites and three PPs-specific predictors for 
the dephosphorylation of pY sites were employed at the group 
level of PPs. In the evaluation, each predictor was used to predict 
the positive datasets of dephosphorylation sites from the other 
models and to validate the accuracy of the phosphatase-specific 
modification sites. Compared with the AUC values generated from 
other models, each predictive model showed greater accuracy in 
the prediction of their corresponding positive datasets of modified 
sites (Fig. 5A). 

Next, to further assess prediction accuracy at the single PP 
level, we selected predictors for pS/pT dephosphorylation specific 
to PP1, PP2A, and PTEN, as well as predictors for pY dephosphory-
lation specific to PTPN11 (SHP-2) and PTEN. For each selected PP, 
positive datasets of dephosphorylation sites were used to measure 
prediction specificity. First, PP2A-specific sites were adopted to 
evaluate the accuracy of the three predictors, revealing signif-
icantly lower prediction scores for PP1 and PTEN compared to 
PP2A using 10-fold cross-validation (Fig. 5B, C). Similarly, analysis 
of predictors specific to PTPN11 and PTEN showed significantly 
higher prediction scores for PTPN11 on PTPN11-positive datasets 
(Fig. 5D, E). We also evaluated predictors on other phosphatase-
specific dephosphorylation site datasets (Supplementary Fig. S5), 
confirming the prediction specificity of these models. In summary, 
our findings demonstrated that the PP-specific predictors are 
able to specifically recognize and computationally identify the 
modified sites of targeted substrates. 

Prediction of potential cancer-associated 
dephosphorylation events 
Given that numerous signalling pathways in humans are 
regulated by both phosphorylation and dephosphorylation, the 
dysregulation of PP activity has been reported to be associated 
with human cancer [50]. In this study, we analysed the rela-
tionships between dephosphorylation events and cancer via our 
developed tool, GPSD, and explored the potential essential role 
of these events in tumorigenesis. First, a total of 739 cancer-
related proteins collected in COSMIC [51] were downloaded, their

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae694#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae694#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae694#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae694#supplementary-data
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Figure 3. Usage of the GPSD web server. (A) The sequence submission interface. Users can input protein sequences in FASTA format and select from 
three different thresholds for predicting phosphatase-specific dephosphorylation sites. (B) Presentation of the prediction results with the example. The 
tabular list includes the positions of the dephosphorylation sites, prediction scores, cutoff values, identification via experimental or computational 
methods, PPI information, and iceLogo results. (C) Annotations of the prediction results. The number of dephosphorylation sites predicted by GPSD is 
presented, along with the locations of these sites illustrated in a 3D structure derived from the PDB database. Additionally, the disorder score of the 
dephosphorylation sites was calculated. 
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Figure 4. Motif analysis of dephosphorylation sites. (A) PCCs between the frequency of each peptide and the SHAP value at (1, 3) location adjacent 
to the pS/pT dephosphorylation site. (B) PCCs between the frequency of each peptide and the SHAP value at (−3, −1) location adjacent to the pS/pT 
dephosphorylation site. (C) PCCs between the frequency of each peptide and the SHAP value at (1, 3) location adjacent to the pY dephosphorylation 
site. (D) PCCs between the frequency of each peptide and the SHAP value at (−3, −1) location adjacent to the pY dephosphorylation site. (E) Enrichment 
analysis of experimentally validated classical dephosphorylation motifs, including the LSPIxE motif, RVxF motif, and [ST]P. (F, G) Sequence logos that 
conform to the experimentally validated classical dephosphorylation motifs. Motif sequences on pS/pT phosphatase-associated substrates (F) and motif 
sequences on tyrosine-related substrates (G). 
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Figure 5. Specificity analysis of PP dephosphorylation site predictors. (A) Specificity analysis of pS/pT dephosphorylation site predictors and pY 
dephosphorylation site predictors on the basis of family classification via the AUC value. (B, C) The density (B) and box (C) charts show the distributions 
of pS/pT dephosphorylation site predictors specific for PP2A, PP1, and PTEN in the PP2A dataset. (D, E) The density (D) and box (E) charts show the 
distributions of pY dephosphorylation site predictors specific for PTPN11 and PTEN in the PTPN11 dataset. 

corresponding protein sequences were used as the input for 
the GPSD prediction tool. The potential relationships between 
the dephosphorylation sites and the 12 PP groups were inferred 
via the high threshold. Our results revealed that 675 (91.34%) 
proteins were predicted to be dephosphorylated by at least one 
type of PP ( Fig. 6A). Moreover, 214 proteins had >10 modification 
sites (Fig. 6B and Supplementary Table S6), suggesting that 
dephosphorylation might serve as a potential mechanism to 
reshape protein function. 

Next, GO-based enrichment analyses were performed for 
174 cancer proteins that had predictive modification sites of 
at least four PP groups. Transcription-related pathways and 
phosphorylation-related pathways were overrepresented, imply-
ing that the potentially important role of modification events 
is correlated with cancer (Fig. 6C). Furthermore, KEGG-based 
enrichment analyses were conducted for 174 cancer proteins, and 
classical cancer-related pathways were significantly enriched. 
Thus, our findings suggested that dephosphorylation might

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae694#supplementary-data
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Figure 6. Cancer-associated dephosphorylation events predicted by GPSD. (A) Distribution of cancer proteins predicted to be dephosphorylated by 12 PP  
families with GPSD. (B) Distribution of the number of predicted dephosphorylation sites in cancer proteins. (C) GO-based enrichment analysis of 174 
cancer proteins predicted to be dephosphorylated by at least 4 PP families. (D) KEGG-based enrichment analysis of 174 cancer proteins predicted to 
be dephosphorylated by at least 4 phosphatase families. (E) A network of pathways predicted to be regulated by different cancer-associated proteins. 
(F) Predicted dephosphorylation sites and upstream PP families of TP53_HUMAN with GPSD were visualized by DOG 2.0. 
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have a potential function in cancer-related pathways (Fig. 6D). 
Moreover, a network containing typical cancer-associated proteins 
and their related processes was constructed via enrichment 
analysis (Fig. 6E). 

The human TP53 protein (UniProt ID: P04637), a well-studied 
tumour suppressor, was selected as an example to analyse 
PPP2CA-specific dephosphorylation sites via GPSD (Fig. 6F and 
Fig. 3). There are five potential modification sites in the TP53 
protein, including three previously reported dephosphorylation 
sites, S37, S46, and T55 [52–54]. T55 phosphorylation is involved 
in modulating DNA binding, controlling both the activation 
and termination of p53-mediated transcriptional programs at 
different stages of the cellular DNA damage response [55]. 
Moreover, the dephosphorylation of S46 in TP53 may impair its 
apoptotic activity [56]. For S315, a predicted dephosphorylation 
site for PPP2CA, we carefully checked the PPI information from 
public data resources and reported that PPP2CA physically 
interacts with TP53 [57]. Moreover, S315 was identified as a 
dephosphorylation site specific for the PP CDC14A, and its 
modification modulates the function of TP53 [50]. Here, the 
peptide sequence, including the modification sites of S315, 
aligned with [ST]P, a well-characterized motif recognized by 
PPs in the PP2A family [50]. Therefore, on the basis of these 
analyses, the dephosphorylation of S315 might be regulated 
by PPP2CA. Collectively, our results revealed the relationship 
between dephosphorylation modification and human cancer and 
the potential mechanism involved. 

Discussion 
Protein phosphorylation was first discovered in 1955 by Edwin 
G. Krebs and Edmond H. Fischer, who were later awarded the 
Nobel Prize in Physiology or Medicine in 1992 [58]. Both phos-
phorylation and dephosphorylation are catalysed by numerous 
enzymes, with PPs playing a key role in controlling the substrate 
specificity of dephosphorylation. Reports indicate that defective 
or dysregulated PP expression can contribute to cancer, high-
lighting the increasing importance of PPs as drug targets [7, 59]. 
Thus, identifying dephosphorylation sites and their correspond-
ing upstream PPs is critical for understanding the molecular 
mechanisms of dephosphorylation. However, the accumulation 
of dephosphorylation site data has been relatively slow in recent 
years. In addition to traditional LTP biochemical experimental 
strategies, recent HTP technologies have focused primarily on a 
limited number of PPs, such as PP1 and PP2A [14, 17]. Another 
important aspect is that there are only a few experimentally 
identified dephosphorylation site databases, including DEPOD 
[35] and dbPTM [32]. Therefore, we anticipate that advancements 
in dephosphorylation prediction tools will positively impact the 
field by promoting data generation and driving progress in related 
areas. 

In this study, we integrated 10 sequence features and 3 
machine learning methods for the prediction of dephospho-
rylation sites (Fig. 1). From our results, it was found that 
each of the 10 sequence features trained by PLR, DNNs, or 
TNNs exhibited a considerable but differential contribution for 
improving the performance values of final models (Fig. 2C). 
Indeed, integration of DNNs, PLR, and TNNs into a hybrid learning 
framework further improved the accuracy for predicting general 
and phosphatase-specific dephosphorylation sites. Meanwhile, 
the current tool focuses primarily on general site prediction; 
the prediction of phosphatase-specific dephosphorylation sites 
remains underdeveloped. To address this gap, we collected 

4276 experimentally identified ssPSRs from the literature and 
databases. In this study, PPs were manually classified into three 
levels on the basis of information from the iEKPD database [28]. 
Transfer learning and meta-learning were then applied to each 
PP cluster to construct the models. Finally, we implemented 
an online service of GPSD, which provided 2 general prediction 
models and 103 phosphatase-specific prediction models. In 
GPSD, PP clusters with ≥3 dephosphorylation sites are retained, 
although their reliability may be relatively low. However, including 
these clusters would provide more comprehensive predictions 
and support further experimental validation. 

While GPSD is the first predictor that can broadly predict 
phosphatase-specific substrates and sites, it considers only the 
characteristics of flanking sequences around dephosphorylation 
sites; therefore, the prediction results need further experimental 
validation. Our future plans include the integration of novel com-
putational methods into GPSD, which will be crucial for accurately 
predicting ssPSRs and providing valuable insights into function-
ally associated dephosphorylation events in vivo. Besides, we aim 
to expand the benchmark dataset to increase the number of 
general and phosphatase-specific dephosphorylation sites, fur-
ther improving model performance and accuracy. Given the fre-
quent crosstalk between PTMs [60, 61]—such as PRL2 dephos-
phorylating the tyrosine 371 site of the E3 ubiquitin ligase CBL, 
thereby reducing CBL-mediated ubiquitination and FLT3 degra-
dation, which in turn enhances FLT3 signalling in leukaemia cells 
[62]—an improved algorithm that incorporates the relationships 
amongst different PTM types could significantly increase predic-
tion accuracy. Taken together, we will continue to maintain and 
improve GPSD algorithm for analysing eukaryotic dephosphory-
lation events. 

Key Points 
• We manually curated 4393 site-specific phosphatase– 

substrate relationships for 3463 dephosphorylation sites 
occurring on phosphoserine, phosphothreonine, and 
phosphotyrosine residues, as well as their corresponding 
106 upstream protein phosphatases. 

• For the prediction of general dephosphorylation sites, we 
developed a hybrid learning framework by integrating 
10 types of sequence features and 3 types of machine 
learning methods, namely, penalized logistic regression 
(PLR), deep neural networks (DNNs), and transformer 
neural networks (TNNs). 

• We fine-tuned 103 individual phosphatase-specific pre-
dictors via combining transfer learning and meta-
learning, and implemented an online service named 
GPSD for predicting phosphatase-specific dephosphory-
lation sites. 

Supplementary data 
Supplementary data is available at Briefings in Bioinformatics 
online. 
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