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Recurrent models of orientation selectivity
enable robust early-vision processing in
mixed-signal neuromorphic hardware

Valentina Baruzzi1, Giacomo Indiveri 2 & Silvio P. Sabatini 1

Mixed signal analog/digital neuromorphic circuits represent an ideal medium
for reproducing bio-physically realistic dynamics of biological neural systems
in real-time. However, similar to their biological counterparts, these circuits
have limited resolution and are affected by a high degree of variability.
By developing a recurrent spiking neural network model of the retinocortical
visual pathway, we show how such noisy and heterogeneous computing sub-
strate can produce linear receptive fields tuned to visual stimuli with specific
orientations and spatial frequencies. Compared to strictly feed-forward
schemes, the model generates highly structured Gabor-like receptive fields of
any phase symmetry, making optimal use of the hardware resources available
in terms of synaptic connections and neuron numbers. Experimental results
validate the approach, demonstrating how principles of neural computation
can lead to robust sensory processing electronic systems, even when they are
affected by high degree of heterogeneity, e.g., due to the use of analog circuits
or memristive devices.

The goal of an early visual processing system is to extract as much
information as possible about the structural properties of the visual
signal, efficiently and quickly. Such a system must provide reliable
features of high informative content, with low latency, to best support
subsequent processing stages, for example involved in navigation or
visual scene interpretation. Recently developed asynchronous event-
driven vision sensors combined with brain-inspired spiking neuro-
morphic processors represent a promising technological solution for
implementing such systems. The properties of these sensors and
processors include massively parallel operation with a degree of net-
work reconfigurability that can support the definition of different
types of real-time visual processing models. However, current proto-
types have limited resources for programming arbitrary connectivity
patterns among neurons. For this reason, neuromorphic vision front-
ends have been restricted so far to implementing relatively simple
edge and moving object detectors. For example, recently proposed
neuromorphic visual processing for depth perception and stereo-
vision operate exclusively on temporal contrast events, disregarding
the local spatial structure of the visual signal1,2. Other examples

implement simple (e.g., binary) feature matching, by composing local
receptors outputs through receptive fields (RFs) with minimal and
simple weighting profiles3.

More sophisticated early visual processing systems would require
highly structured RFs, e.g., with two-dimensional (2D) wavelet-like
profiles to extract local amplitude, phase, and orientation information
in a given frequency sub-band (cf. linear visual cortical cell responses,
e.g., see ref. 4). Indeed, for many machine vision tasks, images are
commonly analyzed by sets of oriented spatial-frequency channels in
which some properties of the image are better represented than in
image space. The spatio-temporal properties of the resulting harmonic
components have been shown to be critically important for extracting
primary early vision information. In general, as evidenced in several
studies (e.g., see refs. 5–7), by using harmonic patterns for matching
insteadof image luminancemeasures, the resulting perception ismore
reliable, denser, and immune to changing lighting conditions. Since a
direct implementation of suchwavelet RFs onneuromorphic hardware
is hampered by their limited routing resources, designing and vali-
dating efficient architectural solutions to obtain compact visual signal
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analyzers with minimal resource consumption is a challenge of critical
importance.

In this paper, we address this challenge, by demonstrating an
economic way to implement spike-based early-vision detectors of
oriented features in given spatial frequency bandwidths that repro-
duce the known properties of Gabor-like simple cells RFs in the pri-
mary visual cortex (V1)4,8. This work builds on previously proposed
preliminary models9,10. The strength of this work lies in the pre-
sentation of a coherent framework that combines and integrates
previous contributions and extends them with both theoretical
contributions that demonstrate the validity of the approach pro-
posed and additional experimental results that highlight the benefits
of the neuromorphic setup used. Our experimental results demon-
strate how sparse biologically plausible recurrent connectivity
schemes lead to the emergence of realistic RFs that exhibit response
properties very similar to those measured in cortical neurons. In

addition to being a useful result that validates theoretical and mod-
eling studies with a real physical computing substrate that has the
same properties and limitations of the biological computing sub-
strate, this work paves the way toward the construction of compact
and low-power early vision processing front-end systems for com-
plex vision processing systems.

Results
The overall system setup consists of an event-based vision
sensor interfaced directly to a neuromorphic spiking neural network
processor that emulates the cortical stage, (see Fig. 1a). The event-
based retina-like vision sensor is the Dynamic Vision Sensor (DVS)11,
and the spiking neural network processor is a Dynamic Neuro-
morphic Asynchronous Processor (DYNAP-SE), which comprises
mixed-signal analog/digital configurable neurons and synapse
circuits12.

DVS

DYNAP-SE

INPUT

OUTPUT

VIRTUAL
NEURONS

OSCILLOSCOPE

COMPUTER
(CTXCTL Primer)

Relay
 layer

  V1
 layer

 Output

Retina
 layer

. . .

. . .

. . .. . .

. . .

. . .

+-

-

Retina
 layer

  Output

  V1
 layer

. . .

. . .. . .

. . .. . .

. . .

a

cb

NETWORK
 SCHEME

Relay
 layer

  V1
 layer

Retina
 layer

DYNAP-1

DYNAP-2 DYNAP-3

DYNAP-0

Fig. 1 | Connectivity schemeandoverall systemsetup. aThe overall system setup
detailing how the model network has been physically mapped on the DYNAP-SE
board and a close-up visual of the neuromorphic chip DYNAP-SEL. The DVS sensor
output is reproduced by a population of spiking virtual neurons that act as spike
generators for the physical silicon neurons on the DYNAP-SE chips. The board can
be connected to an oscilloscope, to observe the membrane voltage of selected
silicon neurons, and to a computer, through the CTXCTL Primer interface, to
monitor the spiking activity of the four chips in real-time. A diagram of the con-
nectivity scheme between the network’s layers is shown in the insets for the retina
layer, the relay layer, and V1 layer: green shadings refer to excitatory feed-forward
connection, whereas red’s refer to the clustered recurrent inhibitory connections.
b One-dimensional representation of the recurrent network interconnection

scheme: the target neuron, labeled by a black bar on the V1 layer, receives feed-
forward excitation from neurons of the retina layer (cf. the elongated region in the
inset of panel a), and recurrent inhibition from V1 neurons located at a fixed dis-
tance and displaced symmetrically along an orientation equal to the selectivity bias
provided by feed-forward afferent connections (cf. the two red circular clusters in
the inset of panel a). The angle of the bar indicates the orientation to which the
neuron will be eventually sensitive according to such connectivity scheme.
The same pattern of connections is repeated for every neuron of the V1
layer. c One-dimensional pictorial representation of the interconnections of
an equivalent strictly feed-forward network, highlighting the larger extent of
interconnections (light blue squares on the retina layer) required to obtain the
same RF.
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TheDVS is built on principles that are consistentwith the function
of a real retina: sparse event-based output, representation of relative
luminance changes, and segregation of positive and negative contrast
polarities into separate output channels. It is composed of pixels that
respond asynchronously to relative changes in light intensity, gen-
erating a stream of events that constitutes its output. Each event is
transmitted to further processing stages in real-time, as it is produced.
The event data encodes the address of the pixel that produced it, and
its polarity (ON and OFF for positive and negative intensity changes,
respectively). For data logging purposes, the processing pipeline time-
stamps each event and stores also the time at which it was produced.
Therefore, this data can be either saved for analysis or off-line simu-
lations, or fed in real-time to further processing stages, such as the
DYNAP-SE chip. The neuron and synapse dynamics and short-term
memory functions are implemented on the DYNAP-SE using parallel
analog circuits that run in continuous time, rather than using time-
multiplexed digital circuits that discretize time13. The analog circuits
operate in the subthreshold domain to minimize the dynamic power
consumption and to implement biophysically realistic neural and
synaptic behaviors, with biologically plausible temporal dynamics14. In
our setup, theDVSactivity is recorded for data logging and at the same
time transmitted to a DYNAP-SE chips configured to have a specific
arrangement of synaptic connections that gives rise to well-structured
RFs. The DYNAP-SE chip neurons eventually produce tuning curves
with a specific orientation and spatial frequency, mimicking the com-
putation carried out by simple cells in the primary visual cortex15,16. The
chip’s signals that represent the membrane voltage of selected silicon
neurons can be observed through an oscilloscope, and the spiking
activity of the entire chip can bemonitored in real time as a stream of
address events on a computer by using a custom-designed data-log-
ging software suite17.

Network interconnection scheme
In computational neuroscience, early-level visual feature detectors are
usually built from local feed-forward spatial weighting of retinal
afferents. Intrinsic feedback is often proposed as an additional
mechanism for refining single cells’ basic orientation and the spatial-
frequency tuning. In particular, in a previous work18, we showed how
the (linear) superposition of a retinocortical (i.e., feed-forward)
oriented bias and a recurrent (i.e., feed-back) cross-orientation inhi-
bition gives rise to highly structured Gabor-like RFs when inhibition
originates from laterally distributed clusters19. The network is con-
ceptually composed of two layers that represent two homogeneous
populations of retinal and cortical (i.e., V1) neurons, respectively (see
Fig. 1b). Accordingly, the excitation e of a neuron with orientation
preference θ in the spatial position x = (x, y) on the V1 layer can be
modeled as the solution of:

eðxÞ=aðh0 � sÞðxÞ � bðw � eÞðxÞ ð1Þ

where * denotes the spatial convolution operator, s(x) is the visual
signal, a is the strength of the feed-forward contribution, and b the
strength of inhibition. The feed-forward kernel h0 is modeled as an
elongated Gaussian function that weights the afferent contributions
from the retinal layer (cf. the green region in the retina layer shown in
Fig. 1a):

h0ðxθ, yθÞ=
1

2πpσ2
h

� exp � x2
θ=p

2 + y2θ
2σ2

h

 !
, ð2Þ

where σh and p set the size and elongation of the feed-forward kernel,
and xθ = x cosθ+ y sin θ, yθ = � x sinθ+ y cosθ are the rotated spatial
coordinates. The recurrent inhibitory kernel is modeled by two
Gaussian functions displaced along the direction orthogonal to the
major axis of the feed-forward kernel (cf. the red regions in the V1 layer

shown in Fig. 1a):
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where σk and d set the size and distance of the clustered inhibition. We
demonstrated18,19 that the linear superposition of feed-forward and
recurrent contributions – as defined above – gives rise to a RF h(xθ, yθ)
that can be well approximated by a Gabor function, characterized by
radial peak frequency k0 and spatial extension σ:

hðxθ, yθÞ=
1

2πpσ2 � exp � x2θ=p
2 + y2θ

2σ2

 !
cos k0xθ: ð4Þ

This is the feed-forward resolvent kernel of the recurrent integral
equation (see Eq. (1)) that represents how total afferent drive at retina
site affects activity at a cortical (V1) site, detecting specific character-
istics present in the input pattern of excitation. By properly choosing
the parameters of the kernel of recurrent inhibition, the spatial
extension onwhich these characteristics aredetected is possibly larger
than that of the actual inhibitory connections (see Fig. 1c). This occurs
both directly, by physical local interactions, and indirectly, through
propagation property of recursion. In this way, one can speak of
induced functional couplings not directly related to the presence of
corresponding specific wirings.

The preferred orientation selectivity changes when the feed-
forward kernel and the recurrent connectivity scheme are jointly
rotated by θ, while the peak spatial frequency varies when the dis-
placement of the inhibitory kernels d with respect to their size σk are
scaled. Since in thisworkwedealwith spikingneurons, linearity cannot
be given for granted and must be verified. To assess network’s per-
formance and characterize the RFs of its output neurons, we used
2D sinusoidal drifting gratings as visual stimuli, widely used to inves-
tigate the response of cells in the primary visual cortex16,20,21. By plot-
ting the mean firing rate response of a target neuron with respect to
the orientation and the radial spatial frequency, we obtain the tuning
curves that characterize neurons’ behavior. The narrower the curves,
the better the tuning of a neuron on a preferred combination of
orientation and spatial frequency.

Behavioral simulations
Before configuring and testing the hardware implementation of the
spiking neural network, we first performed behavioral-level simula-
tions, to ensure that the hardware is compatible with the theory and
obtain a ground truth to compare with. The behavioral level software
simulations were carried out using Brian2 spiking neural networks
(SNNs) simulator22 with a dedicated custom toolbox for taking into
account the properties of the silicon neurons and synapses, and many
aspects of the neuromorphic processor that are not captured by
computational neuroscience simulators23. The simulation process
allowed us to verify the assumption of linearity and to tune the key
design parameters of the connectivity scheme without having to deal
with the restrictions posed by the neuromorphic hardware. The
simulated network accounts for the discrete nature of neuron popu-
lations (see the Methods section for details). The feed-forward and
feed-back kernels used in these simulations are shown in Fig. 2a–b.
Two equivalent test networks with known RFs, built by feed-forward
connections only, were also used for comparison: synaptic connec-
tions for these test networks were defined according to Gabor func-
tions with three and five subregions, as in Fig. 2c.

Linearity test and feature tuning characterization
To test the linearity assumption, we stimulated the network with input
gratings characterized by a wide range of temporal and spatial
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frequencies, from 0.68 to 3.16 Hz, and from 0.2 to 0.36 cycles per
degree (cpd), respectively. If the linearity assumption holds, the firing
rate of the output neuron should bemodulated by the same temporal
frequency of the grating used as input. We verified that this condition
is always satisfied, both when the inhibitory recursion is excluded and
when it is applied (see Fig. 3a). Simulations showed that recurrent
clustered inhibition does indeed elicit the tuning of the neurons in the
V1 layer to specific values of orientation and spatial frequency. The
narrowest tuning curves are obtained when recurrent inhibitory con-
nections cluster at a distance d comparable to the width of the feed-
forward excitatory kernel σh. Other parameters that play a role in
shaping the periodicity of the resulting RF profiles are the spatial
extension of the clustersσk and the strength of the recurrent inhibitory
connections b. The leftmost panel of Fig. 3b shows how the tuning
curves change according to d. Keeping σk fixed at 0.8 and b at 3 ⋅ 103,
d = 5 yielded the best tuning curves both for spatial frequency and
orientation. For lower values ofd the neuron is not properly tuned, and
the inhibition reduces the firing rate significantly. For higher values of
d the tuning curves broaden and the peak spatial frequency shifts to
lower values. By keeping d and b fixed at 5 and 3 ⋅ 103 respectively, the
tuning curves are broader for low values of σkwhile for high values the
inhibition lowers thefiring rate, as shown in the central panel of Fig. 3b.
In the analysis, we have set the weight of the feed-forward excitatory
connections a = 1 ⋅ 103. If we compare the normalized curves,
σk = 0.8÷1.2 appears to be an optimal choice that yields the sharpest
tuning both in orientation and spatial frequency, as well as a minimal
relative bandwidth β = 0.8÷1.5 octaves. The value of b has to meet a
stability constraint, and, anyhow, changing it beyond a certain value
does not significantly affect the tuning of the neuron, as it can be seen
in the rightmost column of Fig. 3b. Figure 3c shows the comparison
between the tuning curves obtained by recurrent inhibition with
optimal parameters and those exclusively obtained through feed-
forward excitatory and inhibitory connections from the retina layer,
as detailed in Methods. In terms of the spatial frequency tuning
curve, the recurrent network yields the best results, whereas the
orientation tuning curves are comparable. Anyhow, the recurrent
inhibition method requires far less synaptic connections, as shown
in Fig. 4, which is a relevant feature if one considers the limitations
posed by neuromorphic processors like the DYNAP-SE. A direct
comparison with an equivalent 21 × 21 five sub-region RF obtained by
a feed-forward scheme shows an advantage for the recurrent net-
work by a factor greater than 3, which progressively increases with
the rescaling of the RF’s size. It is worth noting that when the clus-
terization of the inhibitory kernel with respect to the size of the
feed-forward (excitatory) one is chosen above an optimal value (e.g.,
σk = 0.16 ⋅ d and σh = 0.7 ⋅ d), Gabor-like RFs reach the highest
possible number of sub-regions by acting on the strength of inhi-
bition b, which can be increased up to the limit of network
instability, with no impact on the number of the required synaptic
interconnections. In case we settle for RFs with a larger relative
bandwidth (e.g., β ≃ 1.5 octaves, and thus a less number of sub-
regions, e.g., three), the higher efficiency of the recurrent network
over the feed-forward one drops to a factor of ≃ 1.65, yet paying the
price of a reduced selectivity in the spatial frequency domain. If we
choose intermediate values, the number of interconnections of a
feedforward network that can produce RFs comparable to those
obtained with the proposed recurrent connectivity scheme is
approximately 2.5 times higher (e.g., a feedforward network for a
seven-pixel wide Gabor filter with five subregions requires 481
connections, while its recurrent equivalent requires 191 connec-
tions). As a consequence, the number of wires required in an
equivalent feedforward architecture is at least 2.5 times
longer, assuming a best case scenario in which one interconnection
requires just one unity wire element (i.e. a square metal layout
block). In this case both area usage and power consumption would

increase by at least a factor of 2.5. In practice, area is likely to
increase significantly more, because VIAs need to be taken into
account in the layout, and additional wire lengths will be needed for
routing. The increase in power consumption will depend on the
activity (i.e., voltage changes) on those wires. Assuming sparse
activations, the factor of 2.5 is a good estimate. Considering that
typical vision applications require front-end convolutions with a
huge number of RFs, the convenience of recursion-based solutions
turns out to be so far substantial.

The tuning of the neuron to a specific orientation and spatial
frequency can be further improved by adding recursive excitatory
connections. A way to introduce recurrent excitation is to define a
kernel composed of two Gaussian functions equidistant from the
target neuron, identical to the inhibitory one but in the orthogonal
direction (i.e., aligned with the initial orientation of the feed-forward
contribution from the retina layer). Adding recursive excitation,
indeed, allows us to obtain narrower tuning curves, but also increa-
ses the number of synaptic connections, which can be problematic if
the goal is to implement the network on neuromorphic processors
where the number of synapses per neuron is limited, such as the
DYNAP-SE. Because of this, that network structure was implemented
in simulation, only (see Supplementary Information, Fig. S1). The
effect is beneficial as long as the strength of the excitation doesn’t
exceed a certain threshold, above which the shape of the curve is
deformed and the tuning is no longer on the expected value of the
feature.

Fig. 2 | Connectivitykernels and test RFs.Meshplots and top-view schemesof the
feed-forward kernel (a) and of the feed-back kernels of the recurrent network (b),
for the different parameter settings considered. Black dots indicate the position of
the target neuron of the V1 layer that receives excitation through the feed-forward
kernel on the retina layer, and recurrent inhibition through the feed-back kernel on
the V1 layer. This connection scheme is replicated for every neuron of the V1 layer.
c Representation of the RFs obtained—for the sake of comparison—direcly through
two strictly feed-forward test networks.
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Spatial profiles with arbitrary phase values
Figure 5 a shows three examples of spatial frequency tuning curves and
their Fourier transforms for three output neurons. They all present a
central positive lobe and two negative side bands resembling Gabor
functions with even symmetry, as expected from the network’s archi-
tecture. That is equivalent to stating that they all present the samezero
phase. Nevertheless, the RFs of nearby cells (e.g., in positions n − k, n,
n + k, where k is set as equal to d, in terms of neuron index) can be
summed in a convenient way in order to obtain a profile with an
arbitrary phase value, using a method similar to the one described
in ref. 24. The maximum of the one-dimensional section (on the plane
perpendicular to the preferred orientation) of the RF spatial profiles of
the lateral neurons will lay in correspondence with the minima of the
spatial profile of theRFof the central neuron. The sumcanbeweighted

by coefficients α = � sinψ� 0:5 � cosψ, β= cosψ, γ = sinψ� 0:5 �
cosψ so that a spatial profile with the desired phase value ψ can be
easily obtained, as shown in Fig. 5b.

Two-dimensional spectral response characterization
We derived the 2D spectral response profiles H(kx, ky) by varying the
stimulus spatial frequency pairs over a square grid of −0.95 ×0.95 cpd
with a step of 0.1 cpd in a quasi systematic manner (i.e., covering all
combinations in a random order). Spikes occurring during stimula-
tions were accumulated and averaged over 2 grating cycles to
approximate the output neurons’ mean firing rate. This process
was repeated for all the 20 × 20 spatial frequency pairs. Results are
shown as iso-amplitude contour plots. As expected, the amplitude
spectral response exhibits two Gaussian-like blobs located almost

Fig. 3 | Characterizationof theRFs emerging fromthe simulatednetwork. aThe
top row shows the response to moving gratings with a fixed spatial frequency of 0.28
cpd and temporal frequencies that vary as indicated; the bottom row shows the
response to moving gratings with a fixed temporal frequency of 3.16 Hz and variable
spatial frequencies that vary as indicated. Red and black curves refer to the instan-
taneous firing rates of the central neuron in the simulated V1 layer with and without
recursion, respectively; the blue curve refers to the instantaneous firing rate of the
afferent neurons in the simulated retina layer. As it can be observed, the firing rate of
the neuron of interest in V1 oscillateswith the same temporal frequency as the input in
the retina layer, attesting to the linear behavior of the network. b Red lines represent
the tuning curves for the central neuron of the simulated V1 layer for different values
of the parameters d, σk and b. For each column, two parameters were set to fixed

typical values (*), whereas the third parameter varies between a minimum and max-
imum: (first column) 2 ≤ d ≤ 9 sampled with a step of 1, σ*

k = 1:2, b
* = 3 ⋅ 103; (second

column) d* = 5, 0.4 ≤ σk ≤ 1.5 sampled with a step of 0.4, b* = 3 ⋅ 103; (third column)
d* = 5, σ*

k = 1:2, b 2 {1 ⋅ 102, 5 ⋅ 102, 1 ⋅ 103, 1.5 ⋅ 103, 2 ⋅ 103, 3 ⋅ 103, 4 ⋅ 103, 5 ⋅ 103}. Tuning
curves obtained for increasing values of the variable parameters are represented with
increasing color saturation. Black lines represent the curves obtained when the
recurrent inhibition is removed. c Comparison between the tuning curves for the
central neuron of the simulated V1 layer, obtained by the recurrent network for d = 5,
σk = 1.2, and b = 3 ⋅ 103 (red line), and the neurons of the simulated test networks with
Gabor-like feed-forward RFs with three subregions (light blue lines) and five sub-
regions (dark blue lines).
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symmetrically about the origin. The frequency response decays
smoothly as one moves away from either peak with a characteristic
band-pass filter behavior. Figure 6a show typical examples for the
same fixed radial spatial frequency and four different orientations. The
RF in Fig. 6b has been obtained by averaging the frequency responses
for variable orientations. This is equivalent to a rotation of the spectral
coordinates about the origin and has the effect of roughly normalizing
the results with respect to orientation. The normalized orientationwas
set to 0∘, for convenience (horizontal axis). The average major spatial
frequency component (i.e., radial peak frequency of the Gabor-like RF)
was 0.3387 cpd.

Extraction of dominant local orientation
The resulting bank of linear filters can be used as a minimal and
controllable set of operators for extracting early vision features,
from the spiking video stream provided by the DVS, directly. Indeed,
the spatial structure of the Gabor-like profiles allows us to aggregate
ON and OFF temporal events according to locally oriented band-pass
spatial frequency channels, which are frequently used as front-ends
of artificial vision systems25,26. Although several tricks should be
considered to efficiently implement a full multichannel representa-
tion, a flavor of the functionality of the proposed network is pre-
sented, for a single scale and four orientation channels. Figure 6c
shows the results for a snapshot of a DVS recording featuring a
moving hand; the panels show the activity of the DVS, the activity of
the retina layer that reproduces ON events as spikes, and the labeled
response of the simulated V1 layers obtained from four channels with
different preferred orientations. By combining the magnitude
responses from the basis channels through a tensor-based
method, for each image pixel it is assigned the dominant local
orientation, along with its reliability, given by the average firing rate
of population of orientation selective neurons. The detected domi-
nant local orientation well matches the actual local orientation in
the scene.

Extraction of full harmonic content
In general, input-output characterization of visual RFs is based on the
notion of contrast. Accordingly, we can represent the spatial image i as

the combination of two components: one part is the average lumi-
nance of the stimulusm, the second part is the variation of luminance
about the mean, which defines the stimulus contrast c:

i= ð1 + cÞm ð5Þ

where c can be either positive or negative, and m≥0.
In early stages of the visual system, for each contrast polarity

channel, local changes of contrast in a cell’s RF yield to changes of that
cell rate of response (r) :

ΔrON = rON � r0 ΔrOFF = rOFF � r0, ð6Þ

where r0 is the neuron’s spontaneous firing rate that we can assume
equal for both ON and OFF channels. In order to gain equivalent a
linear summation response to a signed contrast pattern within the
overall neuron’s RF (composed of ON and OFF subregions), a push-
pull mechanism is usually advocated27–29, that collects positive (i.e.,
excitatory) contribution from relay cells of preferred polarity and
negative (i.e., inhibitory) contribution from relay cells of opposite
polarity. ON and OFF event detectors in the retina-like DVS camera
cannot per se encode negative responses. Yet, assuming a push-pull
configuration, events provided by DVS camera can be conceptually
combined to obtain positive or negative changes of response on
the basis of the sign of contrast. As a result, stimulating an ON
neuron by a not appropriate contrast polarity results in a decrease
of its response, due to inhibition from the corresponding OFF
neuron, which, conversely, has received the appropriate stimulus in
its RF:

�ΔrON = defΔrOFF: ð7Þ

Fig. 5 | Spatial profiles with arbitrary phase values. a The spatial frequency
tuning curves and their inverse Fourier transforms for three sample neurons of the
simulated V1 layer (central neuron and two nearby neurons at distance d from it).
The input grating used to obtain the curves had a temporal frequency of 3.16 Hz.
b The weighted sum of the spatial profiles to obtain a filter with an arbitrary phase
value. The value of k can be chosen as being approximately equal to d.

Fig. 4 | Comparison between recursive and feed-forward scheme in terms of
required interconnections. The different curves show the synaptic sparsity
advantage of the recurrent implementation of Gabor-like RFs (red curves) over
strictly feed-forward ones (blue curves), and how it scales for different sizes and
number of sub-regions. Dashed and solid red lines represent the number of total
interconnections used for a recurrent implementation of a five sub-region RFwhen
the width of the inhibitory cluster σk was set to 0.8 and 1.2 deg, respectively,
corresponding to a relative spatial frequency bandwidth β = 0.8÷0.9 octaves; the
size of the feed-forward kernel σh was kept fixed to 3.5. Light and dark blue lines
represent the number of interconnections required by equivalent strictly feed-
forward RFs of three and five sub-regions, respectively. The inset details the
numerical comparison for a five pixel size of the central sub-region. Rescaling was
done by maintaining the same proportions among kernels and by flooring to the
greatest odd integers for obtaining the resulting sizes in pixels.
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In other words, we take the excitatory response of the OFF channel as
the estimate of the inhibitory response of the ON channel, and the
combined response can be written as:

Δr =ΔrON � ΔrOFF = rON � rOFF: ð8Þ

To prove the efficacy of the push-pull mechanism we can test the
superposition property. Suppose we have two contrast stimuli c1 > 0
and c2 < 0. The response variations of the ON andOFF channels will be:

ΔrON =h1c
+
1 +h2c

+
2 =h1c1 + 0=h1c1 ð9Þ

ΔrOFF =h1c
�
1 +h2c

�
2 = 0� h2c2 =h2jc2j, ð10Þ

respectively,where c+ = def maxf0, cg and c� = def �minf0, cg andh1,h2
denote the values of theRFprofile. By combining the tworesponseswe

obtain:

Δr =ΔrON � ΔrOFF =h1c1 � h2jc2j=h1c1 +h2c2 ð11Þ

which proves the linearity of the response, provided we model as
negative the weights of the OFF subregions. In this way, the RF prop-
erly acts as a linear filter by mapping a weighted sum of the signed
input contrast of the stimulus to the neural response.

Hence, two identical networks with the previously described
structure were implemented, one for the ON events and the other for
the OFF events. In this way, retina layers handle ON and OFF events in
separate channels. The added information provided by the com-
plementary channel allows the building of a full linear response to
luminance contrasts, whichopens thepossibility of extracting the local
phase information from the visual signal by exploiting the response of
a quadrature pair of Gabor-like band-pass filters. More precisely, an
oriented band-pass channel is capable of measuring the signal’s phase

Fig. 6 | Two-dimensional spectral response characterization and functional
validation. a Four examples of spectral response profiles of neurons of the simu-
lated V1 layer (for θ = 0°, − 45°, 90°, and 45°) and the corresponding spatial kernels
obtained by inverse Fourier transform. The colored contours indicate the -3 dB
magnitude of the power spectrum Gabor filter responses of a theoretical orienta-
tion hypercolumn. b Average spectral response profile of neurons of the simulated
V1 layer normalized with respect to orientation, and the corresponding spatial
kernel obtainedby inverse Fourier transform. Bandpass cutoffwas set at −3dB. The
vertical dashed line identifies the radial peak frequency of the Gabor-like RF. c A
snapshot of themeasured activity of theDVS for a natural scene, the corresponding
firing rate of the simulated retina layer, and the combined response of the simu-
lated V1 layers obtained from four channels with different preferred orientations.

The streamof events generatedby theDVS is shown in the input image:ONandOFF
events are represented as white and black squares overlaid to the corresponding
image of the scene acquired with a regular frame-based camera. In the resulting
retinal activity, brightest tones indicate higher firing rates. The V1 multichannel
activity highlights the local dominant orientation value around each pixel, calcu-
lated as θdom =0:5 � arg Pθr

ON
θ e2jθ

� �
, where rON

θ is the instantaneous firing rate of
the corresponding neuron in the V1 layer, and θ ∈ {0°, − 45°, 90°, 45°} is the
orientation of the Gabor-like filter. For the sake of simplicity in the visualization,
only theneurons of theV1 (ON) layerwith afiring rate above a given,fixed threshold
(equal to 60% of the average maximum firing rate of the neuron population), were
considered in the computation. Cropped DVS240 recording from DVSFLOW16
dataset60.
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with respect to its orientation. In general, for intrinsically 2D signals
(such as corners, junctions, or textures) there does not exist a single
symmetry axis, and the phase measure is influenced by the signal’s
energy distribution along other symmetry axes that characterize its
complex structure. By using a full set of oriented filters (θ∈ [0∘, 180∘)),
each filter gathers information about the signal’s phase with reference
to its oriented bandwidth (i.e., across the orientation of the filter) and a
vector averaging operation (cf. ref. 30) must be used to decode the
local phase. Accordingly, the dominant local image phase for the
spatial position index n can be defined as:

ϕðnÞ= atan2½SðnÞ,CðnÞ� ð12Þ

with

CðnÞ=
X
θ

CθðnÞEθðnÞj cosðθ� ϑÞj

SðnÞ=
X
θ

SθðnÞEθðnÞ cosðθ� ϑÞ
ð13Þ

whereEθ(n) is the energy component, defined asEθðnÞ=C2
θðnÞ+ S2θðnÞ; ϑ

is the dominant orientation, defined ad ϑ=0:5 � arg PθEθe
2jθ

� �
; and

Cθ(n) and Sθ(n) are the even and odd components obtained by the
weighting procedure of nearby impulse responses of the cortical layer,
as previously described:

SθðnÞ= � rθðn� dÞ+ rθðn+dÞ

CθðnÞ= � 1
2
rθðn� dÞ+ rθðnÞ �

1
2
rθðn+dÞ

ð14Þ

where rθ(n) is the combined firing rate obtained from the push-pull
configuration

rθðnÞ= rONθ ðnÞ � rOFFθ ðnÞ ð15Þ

with rONθ ðnÞ and rOFFθ ðnÞ the instantaneous firing rates of the neurons in
positionnof the V1 layer of theON andOFF channels, respectively. The
subscript θ denotes the orientation of the RF. The resulting estimates
of the dominant phase component for drifting sinusoidal gratings with
orientation coincident with the RF’s orientation are graphed in Fig. 7a.
The center plot shows the result obtained when the spatial frequency
of the grating (0.2 cpd) corresponds to the preferred filter’s spatial
frequency, and demonstrates that the estimatewell captures the linear
variationof thephaseof the sinusoidal grating; the sideplots show that
the phase estimate degrades for not optimal spatial frequency of the
gratings, corresponding to lower values of the local energy of the
band-passed visual signal (see also Fig. 7b). In addition, we have
conducted a comparative analysis on the accuracy and reliability of the
phase estimate obtained with or without the push-pull mechanism.
Figure 7c shows the normalized instantaneous firing rates rON and rOFF

of a V1 layer neuron in response to a sinusoidal grating with optimal
orientation and spatial frequency, and their push-pull combination.
The zero mean (i.e., zero dc) feature of the combined response,
differently from the others, yields to almost unbiased and reliable
phase estimates (see Fig. 7d). The phase error and energy violin plot
distributions underline this conclusion, also pointing out the overall
higher efficiency of the push-pull response compared to those of the
ON and OFF channels, separately (see Fig. 7e). Certainly, these
differences would have only negligible effect on the (eventual)
classification accuracy achieved from the band-passed images
obtained by convolving the original images with the three filters. This
because, typically, image classification can well rely upon local image
energy peaks, which are sufficient for characterizing the different
samples of popular image dataset (e.g., N-MNIST and N-Caltech10131,
HOTS32, MNIST_DVS33, the event-based UCF-5034) used for

benchmarking. However, the advantage of implementing the pro-
posed filtering stage in the push-pull configuration becomes evident
when we compare the efficacy of the associated phase-based feature
maps in more complex machine vision problems. Accurate phase
detection depends on ideal quadrature pair of bandpass filters to
obtain the analytic signal. The dc sensitivity of the real (symmetric)
part of the Gabor kernel is therefore an important aspect that cannot
be ignored5,35, and can be addressed, for example, by correcting for, or
constraining, their shape7. The push-pull configuration automatically
cancels the dc sensitivity, which otherwise introduces a positive bias in
the real part of the response that would affect the reliability and
stability of local phase measurements and thus those of the derived
visual features. It isworthnoting that, although inprinciple the valueof
the phase associated to each orientation channel is correct, its
confidence decreases as far as the symmetry axis of the image
structure deviates from the orientation axis of the filter. We can thus
state that the energy value of the associated wavelet-like transform is
not isotropic, since it is not invariant under rotations of the signal. The
isotropy of the representation is yet regained when one considers the
whole set of oriented channels (i.e., the whole hypercolumn36).

Implementation on the DYNAP-SE board
The Brian2 simulations allowed us to study the effect of recurrent
inhibition in the SNN and to determine the combination of para-
meters that yields the best tuning curves, without being restricted by
the limitations of the DYNAP-SE for what concerns the maximum
number of synapses available per neuron, and the quantization of
synaptic weights. On the basis of those simulations, we determined
the values of d, σk and b that yielded the best results and with those
parameter values we implemented the network on the neuromorphic
processor DYNAP-SE. The network structure was slightly modified to
overcome the restrictions posed by the DYNAP-SE board: notably, an
extra layer of neurons, the relay layer, was added between the retina
layer and the V1 layer to increase the number of available synapses, as
detailed in Methods. The DVS recordings were reproduced through
the activity of the retina layer, and, after implementing the retino-
cortical connections, we recorded the spikes of the central neuron of
the V1 layer to assess the efficacy of inhibition. The DYNAP-SE board
indeed offers the possibility of closely observing the voltage of the
membrane capacitor of any neuron on its chips through an oscillo-
scope. Bymonitoring the activity of the central neuron of the V1 layer
and of one of its afferents in the retina layer, we observe that
recurrent inhibition suppresses the spiking in case of non-preferred
values of spatial frequency and orientation of the stimulus; the effect
of the inhibition is insteadmuch weaker when the preferred stimulus
is presented, see Fig. 8a. Since neurons and synapses behavior on the
DYNAP-SE is not deterministic due to device mismatches, the
resulting tuning curves for spatial frequency and orientation were
mediated over ten sessions. Results are shown in Fig. 8b. A neuron
that receives only the feed-forward input is not tuned to any specific
value of the features and its firing rate changes according to the
temporal frequency of the grating (since faster gratings elicit more
events on the DVS, and thus higher firing rate of the retina neurons
that project to the relay layer and then to the V1 layer). When the
recurrent inhibition is switched on, the neuron becomes clearly
tuned to a specific spatial frequency and to a specific orientation. The
curves obtained for different temporal frequencies overlay: this is
evidence of the fact that the emergence of ON and OFF subregions in
the RF induced by recurrent inhibition successfully normalizes the
firing rate in input. As already done in simulation, configurations of
the network aimed to obtain neurons tuned on different orientations
were also successfully tested on the DYNAP-SE board, as shown
in Fig. 8c.

The average estimated power consumption for a neuron of the
relay layer and for the corresponding neuron of the V1 layer, when
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responding to the preferred stimulus at the highest temporal fre-
quency, is 6.54 μJ and446nJ, respectively. Details on the estimation are
reported in Methods.

The push-pull configuration was also tested, with the ON and OFF
branches occupying chips 1 and 3 of the DYNAP-SE board (relay layers
on core 0 and 1 of chip 1 and V1 layers on core 0 and 1 of chip 3). As
predicted by simulations (see Fig. 7c), when presented a sinusoidal
gratingwith the filter’s preferredorientation and spatial frequency, the
combined instantaneous firing rate r = rON − rOFF obtained from the
push-pull configuration results in a steeper sinusoidal profile, attesting
to the fact that the combined information from the ON and OFF
channels refines the filter’s tuning and allows a wider contrast sensi-
tivity. In this way, the push-pull mechanism allows us to gain an
equivalent linear response to the (signed) contrast of the image,
modeled through a spatial RF with largely distinct ON and OFF
subregions.

Discussion
Todays’s neuromorphic systems represent a promising alternative to
conventional von Neumann architectures for both understanding and
reproducing the properties of biological sensory processing systems,
as they are subject to similar constraints in terms of noise, variability,
and parameter resolution37. Reproducing the dynamics of biological
neural systems using sub-threshold analog circuits and asynchronous
digital ones make these systems ideal computational substrate for
testing and validating hypotheses aboutmodels of sensory processing
for a wide range of application domains14,38. In addition, their real-time
response properties allow us to test these models in closed-loop sen-
sory-processing hardware setups and to get immediate feedback on
the effect of different parameter settings.

As the amount of data in visual processing is intrinsically high,
providing sufficient resources for performing complex transforma-
tions – from pixels to features – and implementing corresponding

Fig. 7 | Estimates of the dominant phase component for the push-pull config-
uration. a Estimated dominant phase components ϕ for drifting sinusoidal grat-
ings with different spatial frequencies and orientation coincident with the neuron’s
orientation preference. The most reliable phase estimate (red plot) is obtained
when the stimulus' spatial frequencymatches the peak frequency of the Gabor-like
band-pass filter (i.e., ks =0.2 cpd ≃ k0). The actual (i.e., ground truth) phase signal is
displayed for reference as black dashed lines. b Normalized energy E of the band-
passed signals for a range of spatial frequencies. Low values of the local energy
weaken the reliability of the phase estimates (see green and blue plots in panel a).
c Normalized instantaneous firing rates rON and − rOFF of the V1 layer silicon neuron
of the ON channel (light gray) and of the OFF channel (dark gray), respectively. The
input stimulus was a sinusoidal grating whose orientation and spatial frequency

matched the peak frequency of the Gabor-like RF and its orientation preference;
the temporal frequency was set to 3.16 Hz. The combined instantaneous firing rate
r = rON − rOFF is shown in purple. Firing rates were mediated over ten recording
sessions, solid lines represent the mean, whereas shadings represent standard
deviation. d The comparison of the stimulus phase estimates for the ON-channel
only (gray), theOFF-channel only (black), and their push-pull combination (purple).
e The distributions around the means of the population errors of phase estima-
tions, and of their reliability in terms of energy response for the three conditions
considered. Solid dots depict the mean and associated error bars represent stan-
dard error of themean. Theminor bias in the error and the higher energymake the
phase estimate by the push-pull configuration more accurate and reliable than
those attainable by single channels. Color codes as in panel (c).
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computational models is particularly challenging. Indeed, front-end
early vision modules have to construct high-dimensional quantitative
representations of image properties, referable to local contrast varia-
tions across different orientations, and according to different spatial
frequencies. Subsequent stages eventually combine these properties
in variousways, to provide categorical qualitative descriptors, inwhich
information is used in a non-local way to formulatemore global spatial
and temporal predictions (e.g., see ref. 39). However, it is only seldom
that classical frame-based computational theories can be directly
applied to event-based sensory data. Indeed, typically, object detec-
tion, pattern recognition, and scene reconstruction rely upon algo-
rithms and computational procedures that well conform to the
peculiar properties of the sensory data representation. Considering
specifically image classification tasks32,40,41, intrinsically 1D properties,
like edges and contours, are often sufficient to obtain a compact and

complete feature description that enables a similarity measure to be
applied to the different samples of popular image dataset. Other
applications, like depth perception, optic flow, or simultaneous loca-
lization andmapping (SLAM), more decisively rely upon the timings of
events1,42,43. Although fully exploiting the time coding of spikes trains
can be extremely efficient, we cannot disregard extracting the infor-
mation conveyed by the spatial structure (i.e., the texture) of the
luminance pattern, which depends on precise relations among the
phases of the various harmonics (e.g., see refs. 7,44). We must ensure
that such information is not lost. The latter indeed plays a pivotal role
in gaining dense feature maps potentially informative for several
machine vision applications. Extracting stable spatial image structure
requires local operations to regularize the information contained in
spike trains. This can be done afterwards, on the result of the inter-
pretation of the event stream (as mostly adopted by event-based

Fig. 8 | Measured response properties of the implemented silicon neurons.
aVoltage traces of themembrane capacitor of the central neurons of the relay layer
(yellow line) and V1 layer (green line). Panels exemplify how recurrent inhibition
suppresses spike activity in case of stimuli with a non-preferred value for spatial
frequency or orientation, and how the inhibitory effect is instead much weaker
when stimuli with preferred spatial frequency or preferred orientation are pre-
sented.bThe corresponding spatial frequency and orientation tuning curves in the
relay layer and in the V1 layer. Tuning curves were mediated over ten recording
sessions, solid lines represent the mean, whereas shadings represent standard

deviation. The relay layer receives feed-forward input only, whereas the V1 layer
receives also the contribution of recurrent inhibition. Different colors indicate
different temporal frequencies of the gratings used as visual stimuli: 3.16 Hz (red),
2.15 Hz (light red), 1.45 Hz (blue), 1 Hz (lightsteelblue). c Tuning curves obtained by
the measured responses of silicon neurons of the V1 layers with different orienta-
tion preferences, as indicated. The temporal frequency of the gratings used as
visual stimuli was set to 3.16 Hz. As in panel b, solid lines represent the mean,
whereas shadings represent standard deviation.
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machine vision algorithms, e.g., see ref. 45), or concurrently with
picking-up sensory signal. Having such an early stage dedicated to the
extraction of general-purpose regularized features brings about
enormous advantages in terms of adaptability and versatility for
compositionally building or learning a variety of higher-order visual
descriptors. At a first level of abstraction, it is thus important that the
rate coding model of network’s neuronal firing replicates the known
encoding properties of the cells in the primary retinocortical pathway,
according to a linear filtering model with appropriate kernels (i.e.,
receptive fields)46 It is well acknowledged that Gabor wavelets are a
powerful tool to gain an efficient regularized representation of the
information contained in frame-based visual signal, in terms of local
amplitude, phase and orientation maps of the transformed signal.

In previous works9,10, we indicatively demonstrated that recurrent
clustered inhibition can be successfully used in SNNs, both in simula-
tion and on mixed-signal analog/digital neuromorphic hardware, to
economically implement highly structured Gabor-like RFs. The results
of this paper corroborate those preliminary findings, specifically
extending the analysis of the linearity of the resulting RFs when using
the net firing rate of the retina (ON firing rate minus OFF firing rate)
instead of both as awhole, or separately. Such a push-pull combination
of the complementary ON and OFF channels led to more reliable and
unbiased representation of the harmonic content (see phase and
energy in Fig. 7e) whichwould eventually lead to steeper tuning curves
of the V1 neurons, resulting inbetter selectivity to the local orientation,
spatial frequency and phase of the visual input. Employing multiple
banks of Gabor filters at the front-end of a bio-inspired vision system is
not a novel concept per se47–51, and examples of hardware imple-
mentations can be found in the literature24,52–56. Yet, here we propose
an economic way to implement them in hardware by a spiking neural
network, which can be efficiently scaled with the kernel size. The
resulting RFs are characterized by spatial profiles and by tuning curves
that are typically sharper than the ones obtainedusing equivalent feed-
forward schemes. Furthermore, RFs obtained through a recursive
scheme use a lower number of interconnections than that required
when using an exclusively feed-forward approach. The advantage of
the recurrent network over strictly feed-forward schemes is up tomore
than 3 × for a five sub-regionRFwith a size of 21 × 21, and increaseswith
the rescaling of the filter’s size. This is an important feature when
dealing with the limitations in terms of available synaptic connections
posed by neuromorphic processors.

In summary, the solutionproposed in thisworkdemonstrates that
an early vision filtering stage can be implemented in mixed-signal
neuromorphic hardware in a relatively economic way, with adequate
accuracy and stability. Particularly, exploiting both ON and OFF
channels – through their push-pull combinations – shows to be an
appropriate approach to remove the undesired effect of dc compo-
nent sensitivity, and thus obtain highly informative phase-based fea-
tures. The implemented units act as multiple oriented bandpass
frequency channels, well supporting a compact and reliable repre-
sentation of position, orientation and phase of local image patches. As
a whole, the resulting harmonic signal description provided by the
proposed neuromorphic circuit could be potentially used for a com-
plete characterization of the 2D local structure of the visual signal in
terms of phase relationships from all the available oriented channels.
The amplitude (i.e., firing rate) information can be used as an indicator
for the likelihood of the presence of a certain structure, while the
orientation of contrast transitions and their spatial symmetry (i.e.,
phase,7,57) can be used as an attribute of the visual descriptor.

Methods
Structure of the simulated network
To define the actual connections of each neuron of the V1 layer,
the target neuron is considered as being in the central position (0, 0)
of the x-y plane. The retina layer and the V1 layer are considered

superimposable, and to each neuron of the retina layer is assigned a
value sampled from the kernel h0(x, y) centered in (0, 0). The neurons
whose values are above a certain threshold are connected to the target
neuron with base-weights corresponding to the sampled values of the
corresponding kernels. The same process applies for defining the
recurrent connections. The base-weights were sampled from the feed-
forward and feed-back kernels in Fig. 2a, b. The Gabor functions in
Fig. 2c, used to sample the synapticweights for the test networks, were
defined in order to have an excitatory central region width of five
pixels (i.e., the same size as that of the feed-forward kernel) by fixing
k0 = 0.7 cpd, and σ = 3.5 or σ = 4.7 to obtain a three-subregion or a five-
subregion RF, respectively; the threshold was set to 0.1.

Implementation on the DYNAP-SE board
The DYNAP-SE board poses the following restrictions:
R1: each neuron can have at most 64 afferent connections;
R2: each neuron in a core shares the same biases, including the

synaptic weight of the afferent connections;
R3: each neuron has two types of excitatory synapses and two types

of inhibitory synapses, thus limiting to two themaximumnumber
of different excitatory and inhibitory weights for each core;

R4: only the shunting-type inhibitory synapse could be used since the
other type was not effective in lowering the membrane voltage of
the target neuron.

To overcome restriction R1, an extra layer of neurons, the relay
layer, was added between the retina layer and the V1 layer to increase
the number of available synapses. The relay layer receives excitation
from the retina layer through the feed-forward kernels, and projects
one-to-one connections to the V1 layer, where inhibition takes place.
The weights were adjusted so that the network with this new structure
behaves in an equivalent way to the simulated one. Due to restrictions
R2, R3, and R4, the connection weights that define the kernels cannot
be assigned by sampling the Gaussian profiles, as in the simulations,
but have to be set to a single value, in the case of the recurrent kernel,
or quantized by two levels in the case of the feed-forward kernel. The
relay layer and the V1 layer were placed on different cores of the
DYNAP-SE chip. The retina layerwas assigned to virtual neurons,which
are implemented by amodule that acts as a spike generator, providing
input spikes to the physical neurons on the target chip. The spiking
activity of the silicon neurons can be recorded and further processed
off chip. The DYNAP-SE board is connected to an oscilloscope to
monitor in real time the voltage on the membrane capacitor.

To calculate the power consumption of the neuron of the relay
layer and of the central neuron of the V1 layer we considered the
following equation, which approximates the power consumption of a
silicon neuron on the DYNAP-SE including spike generation and rout-
ing as primitive operations2:

P = rinðEspike + EpulseÞ+ routðEen + Ebr +RT � ErtÞ ð16Þ

where rin and rout are the average input firing rate and average output
firing rate, respectively; Espike is the energy required to generate one
spike, corresponding to 883 pJ; Epulse is the energy required by the
pulse extender circuit, corresponding to 324 pJ; Een is the energy
required to encode one spike and append destination, corresponding
to 883 pJ; Ebr is the energy required to broadcast one event to the same
core, corresponding to 6.84 nJ; Ert is the energy required to route the
event to a different core, corresponding to 360 pJ; RT is set to 1 if the
spike is sent to a different core, and is set to 0 otherwise.

Visual stimuli recording and conversion
Each grating is described in a polar coordinate system in terms of its
orientation θ and (radial) spatial peak frequency ks, with units of
degrees (deg) and cycles per deg (cpd), respectively. A Cartesian
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coordinate system (kx, ky) will be equivalently adopted to characterize
the 2D spectral response profiles of the output neurons. The rela-
tionships between Cartesian and polar coordinates are:

kx ¼ ks cosθ ky ¼ ks sin θ

θ ¼ arctanðky=kxÞ þ π=2 ks ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
x þ k2

y

q
:

ð17Þ

The stimuli were displayed on a screen at a fixed distance of 40 cm
and acquired by the DVS event camera. It is worth noting that a
drifting grating is necessary since onlymoving stimuli are effective in
generating DVS response. To generate moving gratings, we used the
toolbox PsychoPy58, which automatically allows us to set the spatial
frequency in cycles/deg (cpd), given the screen’s distance and its
resolution in pixels. The brightness of the screen was set at its
maximum and the recordings were carried out in a semi-dark room
to reduce the refraction of the screen. Examples of the generated
moving sinusoidal gratings, along with additional details on their
definition, are given in Supplementary Information, Fig. S2. Since the
DVS is sensitive to local contrast changes, bands of ON and OFF
events are generated where the sinusoidal profile is steep enough.
Conversely, where the profile is almost flat, contrast differences are
too small to be detected by the sensor, and no events are generated,
resulting in bands without events, which are wider or narrower
according to the contrast sensitivity threshold. The spatial frequency
information is always preserved since it is encoded in the distance
between the bands of events, but the phase is shifted by π/2. A
schematic illustration of how a sinusoidal grating is perceived by the
DVS sensor is shown in Supplementary Fig. S3. The drift velocity, and
accordingly the temporal frequency (i.e., the number of grating
cycles that pass a point in the image plane per unit time) are chosen
so as to have cells’ linear behavior and cells’ strongest responses (see
Supplementary Fig. S4). The jAER59 software was used to record and
save the output stream of events of the DVS into AEDAT files. We
recall that each event carries information about the position of the
pixel that generated it, the timestamp, and the polarity. The
AEDAT files were converted by extracting this information and by
organizing it into numerical matrices to be used as input to the
simulated network or to the spike generator module of the
DYNAP-SE.

Linear characterization of the resulting RFs
Predictions about the tuning of the resulting RF can be gained by the
transfer function of the linear approximation of the network. Without
compromising our conclusions, we can restrict the analysis to the one-
dimensional section along the direction orthogonal to the spatial
orientation of the RF, which fully defines the bandpass character of the
RF profile:

HðkÞ= EðkÞ
SðkÞ =

aH0ðkÞ
1 +bW ðkÞ ð18Þ

where by capital letters we denote the Fourier transforms of the cor-
responding quantities in spatial domain. The values of the power
spectrum W(k) of the inhibition kernel that tend to nullify the
denominator of H(k) dominate the free response of the recurrent
network, thus yielding a selective amplification of the input at the
corresponding frequency �k, which shapes the resulting RF. Given the
specific choice of the inhibitory kernel, we can straightforwardly
demonstrate that, for a sufficient strength of inhibition b, the peak
frequency of the resulting Gabor-like RF mainly depends on the
distance d of the inhibitory clusters:

k0 � �k � π
d
: ð19Þ

In such a condition, the network’s 2D spectral response centered
around the peak frequency k0 can be well approximated by a Gaussian
function with standard deviation B, whose relative bandwidth (at −3
dB cut-off)

β= log2
k0 +B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log 2

p
k0 � B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log 2

p ð20Þ

directly impacts on the number of sub-regions of the resulting RF. To
analyze network’s behavior independently of its scale, it is convenient
to analyze the normalized frequency tuning curve:

HðknÞ=
a exp½�k2

nq
2
h=2�

1 + 2b exp½�k2
nq

2
k=2� cosðknÞ

ð21Þ

where kn = kd, qh = σh/d, and qk = σk/d represent geometric parameters
that characterize the relative excitatory and inhibitory interconnection
fields of the recurrent network. By analyzing the effect of these
parameters18, we observe that the highest number of sub-regions is
attainable when qk shrinks towards ~ 0.125, and qh expands towards
~ 0.8, corresponding to a relative bandwidth β that approaches 1
octave.

Comparative assessments
On the basis of the predictions of the linearized network, the highest
resolution RF that can be obtained through the recurrent network is
given by the Nyquist sampling limit. By using pixels as units, the
maximum bandwidth of the filter to avoid aliasing is π pixel−1.
Accordingly, the maximum peak frequency achievable is k0 ≤ π − B
which, combined with Equation (19) and (20), leads to the minimum
integer distance of the inhibitory connections:

dmin = 1 +
2β � 1

2β + 1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log2

p
$ %

=2, 8β ð22Þ

The Nyquist condition puts a constraint on the RF localization in
space, not in the spatial frequency domain, thus not posing the-
oretical limits on the maximum number of sub-regions. Yet, we
set a relative bandwidth β = 0.9, which corresponds to a RF with
five well-defined sub-regions in the minimum mask size of 11 × 11
pixels, and an optimal choice of the spatial extensions of the
initial afferent excitatory, and of the recurrent inhibitory
connections equal to three and one pixel, respectively. Hence,
for such a minimum RF size, we can calculated the minimum
number of interconnections required by the recurrent network
(3 × 11 + 2) and compared it with the corresponding number
required by an equivalent feed-forward implementation (11 × 11).
We then quantified the number of interconnections required by
the recurrent network when scaling the size of the RF and
compared it with the corresponding number of interconnections
required by equivalent strictly feed-forward implementations
with three and five sub-regions (see Fig. 4). Simulations of the
implemented spiking network of 21 × 21 pixels quite well
confirmed the predicted advantages of the recurrent network,
with d = 5, a feed-forward kernel width of five pixels, and a
recursive kernel width ranging between three and five pixels.

In order to analyze the advantages of the push-pull combination
of ON and OFF channels, we computed the capacity of the recurrent
network to provide and effective estimate (ϕ) of the actual local phase
of the input stimulus ϕs, in terms of accuracy and reliability. To this
end, in spatial position index n and at time t, the phase error
Δϕ(n, t) =ϕ(n, t) −ϕs(n, t) was directly computed in the complex plane
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by using the following identity:

Δϕðn, tÞ= atan2ðCsðn, tÞSðn, tÞ � Cðn, tÞSsðn, tÞ,Cðn, tÞCsðn, tÞ
+ Sðn, tÞSsðn, tÞÞ,

ð23Þ

where C(n, t) and S(n, t) are the responses of a quadrature pair of
neurons with Gabor-like RFs centered in fixed spatial positions (for the
sake of convenience, to minimize the border effect, we considered a
population of eleven neurons symmetrically distributed with respect
to the center of the layer, with the same horizontal position index, and
on consecutive rows, i.e.,n = {(0,− 5), (0,−4),⋯ (0, 0),⋯ (0, 4), (0, 5)}),
whereas Cs(n, t) and Ss(n, t) are the actual quadrature components of
the stimulus drifting grating s(n, t) characterized by a spatial frequency
ks:

sðn, tÞ= sin½ksn+ϕsðn, tÞ�= sinðksnÞ cos½ϕsðn, tÞ�
+ cosðksnÞ sin½ϕsðn, tÞ�=Csðn, tÞ+ jSsðn, tÞ:

ð24Þ

In this way, since the four-quadrant inverse tangent atan2 function
returns values in the closed interval [π, π], we avoided the attendant
problemof phase unwrapping of the angle difference. The reliability of
the phase estimate was given by the associated response energy
C2(n, t) + S2(n, t), directly.

Data availability
The data that support the findings of this study have been deposited in
the Figshare database under accession code https://doi.org/10.6084/
m9.figshare.24236932.
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