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Ultra robust negative differential resistance
memristor for hardware neuron circuit
implementation

Yifei Pei1,7, Biao Yang2,7, Xumeng Zhang 3,7, Hui He1, Yong Sun2, Jianhui Zhao2,
Pei Chen3, Zhanfeng Wang1, Niefeng Sun4, Shixiong Liang5, Guodong Gu4,
Qi Liu 3 , Shushen Li1,6 & Xiaobing Yan 1,2

Neuromorphic computingholds immensepromise for developinghighly efficient
computational approaches. Memristor-based artificial neurons, known for due
to their straightforward structure, high energy efficiency, and superior scalability,
which enable them to successfully mimic biological neurons with electrical
devices. However, the reliability of memristors has always been a major obstacle
in neuromorphic computing. Here, we propose an ultra-robust and efficient
neuron of negative differential resistance (NDR) memristor based on AlAs/
In0.8Ga0.2As/AlAs quantum well (QW) structure, which has super stable perfor-
mance such as low variation (0.264%), high temperature resistance (400 °C) and
high endurance. The NDR devices can cycle more than 1011 switching cycles at
room temperature andmore than 109 switching cycles even at a high temperature
of 400 °C, which means that the device can operate for more than 310 years
at 10Hz update frequency. Furthermore, the NDR memristor implements the
integration feature of the neuronal membrane and avoids using external capa-
citors, and successfully apply it to the self-designed super reduced neuron circuit.
Moreover, we have successfully constructed Fitz Hugh Nagumo (FN) neuron
circuit, reduced hardware costs of FN neuron circuit and enabling diverse neuron
dynamics and nine neuron functions. Meanwhile, based on the high temperature
stability of the device, a voltage-temperature fused multimodal impulse neural
network was constructed to achieve 91.74% accuracy in classifying digital images
with different temperature labels. This work offers a novel approach to build
FN neuron circuits using NDR memristors, and provides a more competitive
method to build a highly reliable neuromorphic hardware system.

The exponential growth in data volume and computational demand,
coupled with the performance limitations of transistor-based com-
puting systems, has spurred interest in alternative computing
paradigms1. Researchers have proposed neuromorphic computing
hardware that simulates the behavior of brain and biological neural
network, which can produce greater performance improvements than
digital computing in the rapidly growing field of massive data sets,

information recognition, and classification2,3. Currently, the Leaky
Integrate and Fire (LIF) and Hodgkin-Huxley (HH) models are pre-
dominant in neuron simulation. The LIF model, being the simplest, is
widely used for spike neuron simulations but lacks the ability to
replicate many biologically relevant neuron features critical for com-
putational neuroscience4. The CMOS-based HH model accurately
replicates biological neuron behavior but necessitates a complex
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circuit design5. Neurons in the brain exhibit oscillatory behavior and
multiple neurons can oscillate synchronously. The Fitz-Hugh Nagumo
(FN) model, a simplification of the HH model, is optimal for neural
networks exhibiting synchronous neuron oscillation6. Besides, FN
neuron model can simulate the operation of biological neurons more
accurately than LIF neurons. Furthermore, the neural network with FN
neurons can be used to solve many complex computational problems
and can also be used to study the work of the human brain. Therefore,
the FN neuronmodel is considered one of the most successful models
in computational neuroscience7. However, digital transistor-based
chips attempt to model complex equations representing neuron-rich
nonlinear dynamics, thereby complicating them, and thesemodels are
currently hampered by computational bottlenecks8,9.

On the other hand, various new devices have been used to simulate
biological neurons, benefiting from their greater biological similarity
and scalability than digital transistors. Usually, FN neural circuits require
N-type negative differential resistance (NDR) memristors to be
implemented10, while traditional S-type NDR memristors including
threshold switch memristors11, phase change memristors12, and Mott
memristors8 are difficult to support the implementation of FN neural
circuits. On the other hand, due to the randomness of conductive fila-
ments and nucleation sites13–15, these traditional NDRmemristor devices
are often unstable and typically require capacitors to integrate neurons,
which limits their practical applications in large-scale neuralmorphology
computing systems. Therefore, findingmore stable N-type NDR devices
to construct neural circuits is a very necessary task. Fortunately, the
resonant tunneling diode (RTD) is a typical N-type NDR device that
adopts band controlled tunneling mechanism and is less affected by
temperature, which makes it have better device stability16. Therefore,
combining the NDR effect of RTD and the hysteresis characteristics of
memristors is a new idea to develop suitable devices for neuron circuits.

Here, we have carefully designed a memristor with NDR effect to
construct the electronic equivalent of biological neurons. The NDR
memristor functional layer is assumed by AlAs/In0.8Ga0.2As/AlAs with
quantum-well (QW) structure via metal-organic vapour phase epitaxy
(MOVPE) ensures device stability and reproducibility, which displays a
volatile resistance switch and is locally activated under the state of a
hysteresis NDR with current-voltage characteristics. A new fabrication
technique based on conventional i-line photolithography for micron-
scale high current density NDR memristor devices is also developed
with accurate control over the hence characteristics. The NDR mem-
ristor shows high reliability and temperature stability and can be
cycled stably at room temperature and 109 cycles at 400 °C. The NDR
memristor is used to construct a simple Fitz Hugh Nagumo (FN) neu-
ron circuit, which effectively proves the feasibility and advantages of
designing neuron circuit without capacitor. This design not only
reduces hardware costs but also enables diverse neuron dynamics and
functionality. The new FN neuron circuit designed by us realizes 9
kinds of neuron functions, including phasic spiking, anodal break
excitation, spike accommodation, subthreshold oscillations, class 1
excitable, all or nothing firing, tonic bursting, refractory period, and
accommodation. We constructed an edge detection device based on
FN neurons, which showed better characteristics than other edge
detection techniques by comparison. A voltage-temperature fused
multimodal impulse neural network is also constructed based on the
high-temperature stability of the device, and the results show that our
system can distinguish images with different temperature labels. With
excellent device performance and simple neuron circuit design, it
opens a road to the neuromorphic computing with full memristor.

Results
Negative differential resistance (NDR) memristor device activa-
tion Fitz-Hugh Nagumo (FN) neuron
The neurons in the brain show oscillatory behavior, and the synchro-
nous oscillation of neurons plays a crucial role in many human

operations17. Neural networks with FN neurons can be used to solve
many complex computing problems, and even to study the work of
human brain. Therefore, the FN neuronmodel is considered one of the
most successful models in computational neuroscience18. The impor-
tance of synchronous oscillation in brain operation inspires the reali-
zation of coupled oscillators without modeling neuron operations.
However, oscillators themselves cannot simulate many neuron char-
acteristics, whichwill affect the system’s computing power. Therefore,
people need to ideally use circuits that can accurately simulate the
operation of biological neurons. Figure 1a demonstrates the working
principle of our afferent nerve and the analogy with its biological
counterpart. The prototype circuit is composed of NDR memristors
with different switching voltages as shown in Fig. 1c. The parallel NDR
memristors are connected in series with an inductor L1. Two NDR
memristors with different switching voltages simulate voltage gated
Na+ and K+ membrane protein ion channels like Fig. 1b, which can also
be regarded as the equivalent of neuronmembrane potential. Through
the I–Vcharacteristicsof the components forceby current (Fig. 1d), the
device not only reflects theNDRcharacteristics, but also shows thebox
type hysteresis characteristics. The two I–V characteristic curves under
voltage force are shown in Fig. S1. The N-type NDR exhibited by the
memristor and the oscillation voltage difference between the two
devices are important reasons for the successful implementation of
the FN neuron circuit19. The constructed neuronal circuits exhibit
oscillatory behavior similar to that of biological neurons at a pre-
scribed range of inputs, as shown in Fig. 1e. Based on the typical
oscillatory behavior of neurons, we designed an edge detection device
based on the constructed neuronal circuit to mimic the extraction of
image edges by living organisms, and the schematic of the edge
detection is shown in Fig. 1f.

Structure and model analysis of NDR memristor devices
Figure 2a is a schematic diagram of the device cross-section, showing
the structure of theNDRmemristor device. The entire process includes,
based on the air bridge technology, standard i-line lithography and wet
chemical etching, a technology for manufacturing NDRmemristor with
high current density has been developed. Figure 2b is the SEM image of
the yellow circle in Fig. 2a. The process details are described in detail in
the Supplementary Information (Section 1) as shown in Fig. S2. The
high-quality InP and GaAsN+ based epitaxial layers have been obtained
by metal-organic vapour phase epitaxy (MOVPE). Figure 2c shows the
high angle annular dark field image InP/GaAs heterostructure of GaAs
cross section. GaAs layer has perfect epitaxial (111) relationship.
Figure 2d, e show the crystal structure and corresponding Fast Fourier
Transform (FFT) images in Fig. 2c. The relative angle and distance
between two lattice planes and diffraction spots indicate the existence
of (111) oriented tetragonal F42m phase. The Fig. S3 in Supplementary
Information shows that the arrangement of As atoms (yellow dots) and
Ga atoms (red dots) is very regular, and the lattice constants are 3.76Å
and 3.48Å, which can reduce the formation of interface states between
GaAs layers and AlAs layers, as well as between GaAs layers and InP
substrates. As shown in Fig. 2f, the TEM image of the enlarged cross
sectionofAlAs/In0.8Ga0.2As/AlAsQWshows the layer-by-layer growthof
the film with good interfaces between AlAs and In0.8Ga0.2As. Excellent
film quality not only reduces the formation of interfacial states between
layers, but also has better thermal conductivity and thermal expansion
matching, which helps to reduce thermal stress and thermal gradient,
and improve the overall thermal stability of the device20,21. In addition,
the thickness of In0.8Ga0.2As layer is determined to be about 3 nm,
which is smaller than the carrier thermal de Broglie wavelength. Dis-
crete energy levels were created in the well which led to a NDR
characteristic22, which details are described in the Supplementary
Information Section 1.1. Resonant tunneling of electrons was easy to
produce in a double barrier heterostructure with a thin In0.8Ga0.2As
layer sandwiched between two AlAs barriers. The electronic resonance
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tunneling behavior used in the switching process of the device does not
change the distribution of internal ions and crystal structure, so it can
improve the stability of the device and make the device more
uniform23,24. The Fig. 2g is the inverse FFT of the yellowbox in the Fig. 2f
diagram, and a small number of vacancies can be observed locally.
Figure 2h the yellow dotted contour area is empty. The important rea-
son why the IV curve reflects the box type hysteresis is that there are a
few vacancies in the In0.8Ga0.2As film, which makes the device a key
feature in the application of neuron circuits.

Device characteristics and modeling
The NDR memristor is powered by connecting a digital meter at two
electrodes. Figure 3a shows the I–Vcharacteristic curveof thedevice at

room temperature. After 100 cycles of scanning, the device has no
obvious fluctuation, showing excellent uniformity. Unlike traditional
RTD devices, the voltage gradually increases, causing electrons in the
N-type region to cross thepotential barrier andenter the P-type region.
In the NDR devices, the application of an external voltage facilitates
electron tunneling within the device’s structure, leading to the gen-
eration of a tunneling current25. Due to internal defects in semi-
conductor materials, electrons are captured, resulting in a certain
accumulation of electrons at the interface. This accumulation of
electrons will reduce the energy band at the interface. When the cur-
rent decreases, the captured electrons are released, resulting in a
hysteresis phenomenon26. Therefore, as the voltage decreases, the
switching voltage will decrease to a certain extent and a certain
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Fig. 1 | Biological neurons and artificial neurons. a Schematic structure of a
biological neuron, showing that an action potential is fired near the axon hillock
(under sufficient input stimulus) and propagates along the cell axon toward the
output synapses. bMechanismof voltage-gated Na+ and K+ ion flows across the cell
membrane. c Basic circuit of a two-channel NDR memristor devices neuron to

emulate the Fitz-Hugh Nagumo (FN) neuron. d The typical I–V characteristic curve
of NDR memristor devices, where two devices with different switching voltages
simulate Na+ and K+ ion channels, respectively. e The output signal of the circuit in
(a) exhibits oscillatory behavior similar to that of neurons. f FN neuron circuit
applied to image edge detection.
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window will appear (Fig. 3b). The equivalent circuit diagram of the
component is shown in Fig. S4. Among them, Ls and Rs are the series
inductance and series resistance from the lead and contact, Rn and C
are the negative resistance and intrinsic capacitance of the double
barrier single well structure, Cp is the parallel parasitic capacitance
related to the device structure and lead, and LQW is the intrinsic
inductance related to the time constant τQW related to the local energy
level of the potential well. The quantum-well inductance (LQW) repre-
sents the electron dwell time in quantum well and will not limit the
oscillator frequency. The maximum oscillation frequency (fmax) of the
NDR memristor is defined as the frequency where R(f) becomes zero,
as given by Eq. 127.
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1
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Therefore, the electrical characteristics of NDRmemristor devices can
be changed by adjusting device technology, material growth condi-
tions, device size, etc. The I–V curve of NDRmemristor devices shows
obvious NDR and box type hysteresis, in which the NDR memristor
device negative resistance (Rn) is given by

Rn =
2ΔV
3ΔI

ð2Þ

Where ΔV =Vp-Vv, ΔI = Ip-Iv. In DC mode, NDR memristor shows ultra-
high reproduction performance. To check the uniformity of the
device, the statisticaldataofGaussianfittinghistogramofpeakcurrent
and valley current are analyzed in the Fig. 3c, d. The device shows only
a 0.29 % temporal variation (σ/μ) during 100 consecutive DC cycles,
which is nearly 5 times higher than the currently reported high
reliability devices28. Similarly, the statistical data of Gaussian fitting
histogramof peakvoltage andvalley voltage are analyzed in Fig. S5.We
also calculated the ratio of peak current to valley current under 100DC

scans, which is almost stable at about 2.94 as shown in Fig. S6. Stable
peak to valley ratio can contribute stable output frequency in neuron
circuit. Temperature correlation measurement is carried out to study
the thermal correlation of V–I characteristics of NDR devices. The
operating temperature is controlled by the heating table. Fig. S7 shows
the 100 cycles of I–V cycles of the device at 400 °C, which still shows
good stability. The statistical data ofGaussianfitting histogramof peak
current and valley current are analyzed in Fig. S8. Endurance is also an
important indicator to measure the stability of devices. Figure 3e
shows that NDR devices can cycle more than 1011 switching cycles at
room temperature and Fig. 3f shows that NDR devices can cycle more
than 109 switching cycles even at a high temperature of 400 °C, which
means that the device can operate for more than 310 years at 10Hz
update frequency. Fig. S9 shows the yield of components under
different graphical conditions. The yield of components in each area is
greater than 95%, and that in some areas is 100%. To demonstrate the
uniformity between devices from different batches, we randomly
selected 10batches of device and tested ten I–V characteristic cycle for
each device. Fig. S10 show that the devices from different batches had
good uniformity. From the perspective ofmanufacturing, high yield of
high-performance NDR devices requires not only uniform doping
concentration, but also uniform QW layer thickness. Rapid, non-
destructive evaluation of epitaxial materials is valuable for optimizing
and monitoring the growth process, which in turn can maximize
device output. To better study the relationship between the
electrical characteristics of devices and temperature changes, we
selected deviceswith smaller linewidth to study small current changes.
Figure 3g shows the I–V characteristics of NDRs (line weight is 1μm)
measured as a function of temperature from 25 °C to 400 °C, the
details of peak and valley currents are presented in Fig. S11. The peak
current is essentially unchanged, but the valley current increases when
the temperature is raised from 25 °C to 400 °C. As the valley current
increasesmore rapidly than the peak current, the ratio peak and valley
currents reduce from 2.94 to 1.86 as shown in Fig. 3h. The valley
current is known to depend on elastic and inelastic electron scattering
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Fig. 2 | NDR memristor device analysis. a Device structure diagram, the yellow
circle part is the quantum well (QW) structure. b SEM image of “air bridge” struc-
ture. cHigh-angle annular darkfield scanning TEM image of InP andGaAs structure.
d, e corresponding to the fast Fourier transform of GaAs and InP, respectively.

f High resolution TEM image of QW structure in (a). g In the inverse FFT image of
In0.8Ga0.2As, it can clearly see the defectsmarked in the yellow circle.h Line profiles
of the areas with and without atomic vacancies in In0.8Ga0.2As.
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processes, such as interface roughness, impurity scattering, phonon
scattering, and thermally assisted tunneling through higher
resonances29,30. The peak current reduces and valley current increases
with temperature due to enlarged phonon scattering which degrades
the peak tunneling current and broadens the resonant transmission
probability31.The peak current measured in Fig. 3g increases slightly
with temperature, probably due to thermal assisted electron tunneling
through higher resonance energy levels32. Figure 3i shows the peak to
valley current and peak to valley voltage variation of NDR devices at
25 °C–400 °C. The relationship between voltage and current and
temperature is shown in Fig. S12. Those observations are very
consistent with previous work on the temperature dependent
transmission probability of heterostructures32. This result not only
proves the transmission mechanism of the NDR device, but also
strongly proves that the device has good working stability at high
temperatures. The excellent robustness of NDR memristor devices
under high temperature conditions can be attributed to the high
thermal stability of the AlAs/In0.8Ga0.2As/AlAs quantumwell structure.
By using a double barrier structure for resonant tunneling, efficient
electron transfer can be achieved at specific energy levels, which is
insensitive to temperature changes and helpsmaintain stability at high

temperatures33,34. This NDR device has shown intentional stability and
durability compared to threshold switching devices used in neuronal
circuits in recent years. (Table S1)

Spike behavior of NDR based FN neurons
An action potential in a biological neuron consists of three events,
corresponding to four states as shown in Fig. 4a. The four processes
correspond to, 1, Resting state. 2, Depolarization. 3, Re- and hyper-
polarization. 4, Refractory period35. Here we will provide a detailed
description of the working process of the circuit and its association
with neurons. In the resting state, both the Na+ and K+ channels are
closed, both Device 1 (D1) and Device 2 (D2) are in the low resistance
state. When subjected to an input voltage stimulation exceeding the
threshold, D1 enters the high resistance state, causing the membrane
potential to rise and exhibit depolarization behavior. Subsequently,
the increase in membrane potential triggers D2 to enter the high
resistance state, causing the membrane potential to further increase
(further depolarization). Then the current flowing through the induc-
tor decreases, the voltage (membrane potential) on both D1 and D2
decreases. Once the voltage drops below the hold value of D2, the D2
goes back to a low resistance state and speeds up the decrease of

Fig. 3 | Electrical performance measurement of devices. a The 100 cycles of I–V
characteristic curve of NDR device at room temperature. Illustrations are pictures
of devices under an optical microscope. b The working mechanism of NDR mem-
ristor devices. c The peak current distribution histogram, blue line is a Gaussian
fitting curve. d The valley current distribution histogram, the red line is a Gaussian

fitting curve. e The NDR devices undergo more than 1011 switching cycles at room
temperature. f The NDR devices undergomore than 109 switching cycles at 400 °C.
g The illustration of single I–V curve at 25–400 °C. h The statistics of peak valley
current ratio at different temperatures. iStatistics andchange trendof peak current
(valley current) and peak voltage (valley voltage) at 25–400 °C.

Article https://doi.org/10.1038/s41467-024-55293-9

Nature Communications |           (2025) 16:48 5

www.nature.com/naturecommunications


membranepotential.Once the voltage drops below the hold voltage of
D1, the D1 goes back to the low resistance state, the membrane
potential further decreases and drops to a negative value, corre-
sponding to re-polarization and hyperpolarization. It should be noted
that, the hold voltage of D2 is higher than the threshold voltage of D1,
just as the stages shown in Fig. 4a. At this point, both D1 and D2 return
to the initial. An FN model can be used to mimic the spiking and
burstingbehavior of cortical neurons. FNneuronmodels are described
by (3)36

z = f xð Þ+ dx
cdt

+ y ð3aÞ

c
dy
dt

= x � a� by ð3bÞ

this circuit has certain similarity with FN neurons in model (Table S2).
In Eq. (3), a, b, and c are defined such that, for no injected current, the
neuron membrane potential will be constant. In the FN neuronmodel,
f xð Þ= � x + x3=3, device I–V is also sufficient that function f xð Þ has a
shape like the one shown in Fig. S13. Because only when both devices
are unstable, the FN neuron circuit is in an oscillatory working state,
and the input voltage is less than the active value and does not oscil-
late, while the input voltage is higher than the active value and gen-
erates an oscillation (Fig. 4b–d). This active range is affected by the

device itself and the series inductance, and the device parameters are
not easy to change. Figure 4e shows the relationship between the
active voltage and the output frequency when the series inductance is
different. Figure 4f–n summarizes 9 experimentally proven spike
behaviors in FN neurons and uses simulation methods to verify the
experimental results. The 9 neuron behaviors are described in detail in
the supplementary information (section 2.2). All behaviors are mea-
sured from the neuron circuit independently designed in this work.
The phasic spiking, anodal break excitation, spike accommodation,
subthreshold oscillations, class 1 excitable, all or nothing firing, and
Tonic bursting behavior has the circuit diagram in Fig. 1 copied, the
refractory period and accommodation behavior are improved based
on Fig. 1, and the circuit diagram is shown in Fig. S14. Some results are
verified by software simulation (Fig. S15). This circuit is only composed
of twoNDRmemristor devices and inductance elements, whichgreatly
reduces the complexity compared with the previous neuron circuit
(Table S3).

Considering the unique relationship between the input voltage
and output voltage of the constructed FN neurons, we have developed
an edgedetection device37, as illustrated in Fig. 5a. The grayscale image
is first processed,mapping pixel values from0 to 255 to voltage, with a
potential difference of 0.83V–0.94 V between any two points. After
being processed by the processing unit, the input is fed into the con-
structed FN neurons. The neuron’s output yields the pixel gradient
values, detecting gradients in bothX andY directions to generate edge
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images, as shown in Fig. S16. These are eventually integrated into the
final edge image, with the processing unit depicted in Fig. S17. The
evaluation of this work’s edge detection results using the BSD50038

dataset yielded an F-measure of 0.472 as shown in Fig. 5b. The
F-Measure is a weighted summed average of accuracy and recall and is
a commonly used comprehensive evaluation metric, a higher value of
the F-Measure indicates a better performance in edge detection, its
value ranges from 0 to 1, with 1 indicating perfect performance39. The
F-Measure indicates that the edge detection results of this work out-
perform other memristor-based edge detection works. The FN neu-
rons serve as the core detection unit, with the neuron outputting a
single spike pulse when the input exceeds 0.93 V. All single spike pulse
outputs are classified as edges, enhancing the image edges. This out-
performs Mannion et al.‘s use of LIF neurons for edge detection40,41,
which is the fundamental reason for the higher F- Measure compared
to Mannion et al.‘s work. Meanwhile, the FN neuron circuit performed

the edge detection work using the sameway as the software operator,
which is the convolutional edge detectionmethod. The edge detection
was compared using two evaluation metrics, SSIM and PSNR, and the
principle is demonstrated in Supplementary Information (Section 1.3).
The results show that the neuron-based edge detection compared to
the software operator results in SSIM of 0.949 (Roberts) and 0.933
(Sobel), shown in Fig. 5c respectively, which produces a small amount
of error, but this result is acceptable. On one hand, the convolution
operation performed by software is executed on the CPU. The energy
consumption of the CPU and neuron circuits during the edge detec-
tion process was assessed (Both calculate the energy consumed to
complete a convolution operation using a 3 × 3 convolution kernel),
the MATLAB-based estimation determined that the energy consump-
tion for the CPU to perform a single convolution operation is
~138.02 µJ, whereas the neuron circuits consume about 4.11 nJ for the
same task. This represents an energy reduction of 5 to 6 orders of

Fig. 5 | Neuromorphic computation based on neurons. a Schematic repre-
sentation of the principle of edge detection by FN neurons. bComparative analysis
of edgedetectionperformancebasedon theBSDS500dataset. cMetrics evaluation
of edge detection images using SSIM and PSNR. d Schematic diagram of voltage-
temperature multimodal image recognition system. e Input voltage versus output

frequency curves at four different temperatures. f Accuracy of the network after
100 epochs using only voltage mode and voltage-temperature fusion mode.
g Confusion matrix of real and desired outputs in voltage-temperature
fusion mode.

Article https://doi.org/10.1038/s41467-024-55293-9

Nature Communications |           (2025) 16:48 7

www.nature.com/naturecommunications


magnitude when using neuron circuits compared to the CPU. On the
other hand, this FN neuron circuit is a basic unit circuit that can be
easily embedded into other circuits to form more complex neuro-
morphic computing circuits to perform various real-time computa-
tional tasks, which cannot be accomplished by traditional computing
chips such as CPUs.

Meanwhile, a voltage-temperature fused multimodal spiking
neural network systemwas constructedusing FNneurons basedon the
high-temperature stability characteristics of the device, as shown in
Fig. 5d. The MNIST42 dataset was processed and temperature infor-
mation was introduced, the specific processing is shown in methods,
the frequencymapping diagrams of someof the datasets processed by
the FNneurons are shown in Fig. S18. Then the imagepixel information
was mapped as the input voltage to the FN neurons, and the spiking
signals fusing the voltage and the temperature were obtained after
neuron processing, and then entered a spiking neural network for
classification, with a network structure of 28 × 28 neurons in the input
layer, 128 neurons in the hidden layer, and the output layer of 20
neurons. Figure 5e displays the curves of the relationship between the
input voltage and the output frequency for four temperatures, where
theoutput frequencygradually increases as the temperature increases,
thus allowing easy decoupling of the temperature and pressure
information in the fusion spikes. Under the same network structure,
the results of training with voltage spikes signals alone and voltage-
temperature fused spikes signals respectively are shown in Fig. 5f.
After 100 epochs of training, the accuracy of the network trained with
voltage-temperature fused spikes signals reaches 91.74%, while the
accuracy of the network trained with voltage spikes signals alone is
only 63.1%. Figure 5g shows the confusion matrix heat map of the
network trained by voltage-temperature fusion spikes, which shows
that the network achieves excellent classification results and only few
samples are misclassified. In summary, it is proved by simulation that
our system can complete the classification of images at high tem-
peratures, and at the same time, it can distinguish between different
temperatures.

Discussion
In summary, we have developed an ultra-robust NDRmemristor using
the AlAs/In0.8Ga0.2As/AlAs quantum well (QW) structure, which pos-
sesses low variation, high temperature resistance, high temperature
and high yield for a memristor-based neuromorphic system. This NDR
memristor exhibits exceptional stability, including low variation, high
temperature resistance, and endurance exceeding 1011 cycles, making
it ideal for neuromorphic computing. The innovative aspect of this
memristor is its ability to integrate the neuronal membrane’s func-
tionality, eliminating the need for external capacitors in the neuron
circuit. The research successfully demonstrates the construction of a
Fitz Hugh Nagumo (FN) neuron circuit using two NDRmemristors and
an inductor. This approach significantly reduces the hardware cost and
complexity of FN neuron circuits, while offering versatility in neuron
dynamics and functions. Finally, we applied this FN neuron to a
voltage-temperature fusionmultimodal image recognition system that
can classify images with different temperature labels at high tem-
peratures with a classification accuracy of 91.74%. This work presents a
groundbreaking method to build FN neuron circuits with NDR mem-
ristors, contributing to the development of highly reliable neuro-
morphic hardware systems, specifically addressing the challenges of
computational efficiency and reliability.

Methods
Device fabrication
The growth was performed in a vertical Thomas Swan 6 × 2′′ close-
coupled shower head MOVPE reactor on (100) semi-insulating InP
substrates with a 0.07o offcut at a pressure of 100 mTorr. A Laytec
EpiTT pyrometer (calibrated using an Absolut probe) was used to

control the growth temperature to 560 °C. The wafer was heated by
three stationary resistive graphite heaters located underneath the
wafer carrier which was rotated at 100 rpm in the clockwise direction.
Trimethylgallium (TMG), trimcethylaluminium (TMA) and trimethy-
lindium (TMI), housed in stainless steel bubblers, were used as group-
III precursors and arsine (AsH3) and phosphine (PH3) as the group-V
source materials. Epison TM gas phase analysers were used to accu-
rately control the concentration of the gas phase. To achieve high
n-doping concentrations (up to 2 × 1019cm-3), a comparatively low
growth rate of 6 nm/min was used to maximize the incorporation of
the silicon dopant in the crystal.

The epitaxy of the NDR structure consisted of a 100 nm InP buffer
layer, followed by 400nm highly n-doped GaAs (2 × 1019cm−3Si) to
serve as the lower contact. An In0.80Ga0.20As quantumwell was formed
between two AlAs barriers. To minimize the parasitic capacitance of
NDRdevices, low resistanceOhmic contacts are required to reduce the
self-heating effect in the device, which is beneficial for optimizing
device performance and reliability. The epitaxy was terminated with
15 nm n-doped In0.53Ga0.47As to enhance the formation of a low-
resistanceohmic contact. NDR structuresweregrownwith varyingQW
thicknesses of 4.5 nm. Finally, a specific contact resistivity of 6.3Ω/m2

was obtained for a Ti (20 nm)/Au (200 nm) non-alloyed ohmic contact
on In0.53Ga0.47As. The surface preparation procedure for the optimum
contact consisted of a 10min. O3 treatment followed by a 15 s dip in
1.25% ammonium hydroxide after which the sample was blown dry
usingN2. ATi (20 nm)/Au (200nm)metal stackwasdepositedonto the
samples in a metal evaporator. After the deposition, a post-
metallization anneal at 275 °C was carried out for the duration of
35min. to obtain a specific contact resistivity of 6.3Ω/m2.

These inverted air-bridge structures were fabricated on n+ InGaAs
film using the photolithographymask. Metallic strips, with dimensions
matching contact gaps, were created through ametal evaporation and
lift-off process. Subsequently, etching of InGaAs and InP was per-
formed using H3PO4:H2O2:H2O (1:1:18) and HCl, respectively. This
etching process formed “tunnels” beneath metallic stripes.

Dataset processing
The ten categories in theMNIST dataset were divided equally, with half
of them labeled 175 °C and the other 325 °C, to form a new twenty-
category dataset.

Data availability
All data supporting this study and its findings are available within the
article, its Supplementary Information and associated files. All source
data in the article image is saved in https://doi.org/10.5281/zenodo.
14054388

Code availability
The code used for simulation in the article is stored in https://doi.org/
10.5281/zenodo.14203073.
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