Skip to main content
. 2025 Jan 2;15:216. doi: 10.1038/s41598-024-84015-w

Table 3.

Comparison of the proposed Q4HGC and some similar converters.

Attributes Converter presented in Proposed Q4HGC
31 34 35 36 37 39
V in 27 V 12 V 45 V 20 48 18 V 16 V
V 0 400 V 170 V 800 V 650 V 650 380 V 400 V
M 14.81 14.16 17.78 32.5 13.5 21.1 25
D 0.5 0.48 0.632 0.63 0.48

δ0 = 0.50

δ3 = 0.57

δ1 = 0.50

δ3 = 0.46

N mag 2 (1 simple inductor and 2 CI) 3 3 3 3 4 5
N Sw 2 1 1 1 1 3 3
N Di 4 7 5 7 7 5 7
TCU 12 16 12 16 16 16 20
M/TCU 1.2 0.885 1.481 2.03 0.846 1.31 1.25
M/TCU at δ = 0.5 1.25 1 0.667 0.9375 1 1 1.6
Current stress of the switch (% of Iin)

Min = 60%

Max = 100%

Min = 194%

Max = 194%

Min = 150%

Max = 150%

Min = 100%

Max = 100%

Min = 194%

Max = 194%

Min = 39%

Max = 100%

Min = 46%

Max = 100%

Source current nature Pulsating Continuous with ripple Pulsating Pulsating Pulsating Ripple-free Ripple-free
Gain extension technique QBC with coupled inductor and DCM Single Switch Cubic Boost Converter with SCs Active inductor-capacitor-two diodes (LC2D) network active switched inductor-capacitor network (SLCN)-based active switched inductor-capacitor network (SLCN)-based IBC with lift capacitor cascaded to QBC Floating Capacitor based cubic Cell + IBC
Voltage gain function Quadratic Quadratic Cubic Cubic Quartic Cubic Quartic
η (%) 94.9 91.6 90.04 95.48 95.6 92.7

Nmag no. of magnetic elements, NSw no. of switches, NDi no. of diodes, TCU total components used.