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Practices for controlling intracranial pressure (ICP) in traumatic brain injury (TBI) patients admitted 
to the intensive care unit (ICU) vary considerably between centres. To help understand the rational 
basis for such variance in care, this study aims to identify the patient-level predictors of changes in ICP 
management. We extracted all heterogeneous data (2008 pre-ICU and ICU variables) collected from 
a prospective cohort (n = 844, 51 ICUs) of ICP-monitored TBI patients in the Collaborative European 
NeuroTrauma Effectiveness Research in TBI study. We developed the TILTomorrow modelling strategy, 
which leverages recurrent neural networks to map a token-embedded time series representation 
of all variables (including missing values) to an ordinal, dynamic prediction of the following day’s 
five-category therapy intensity level (TIL(Basic)) score. With 20 repeats of fivefold cross-validation, we 
trained TILTomorrow on different variable sets and applied the TimeSHAP (temporal extension of 
SHapley Additive exPlanations) algorithm to estimate variable contributions towards predictions of 
next-day changes in TIL(Basic). Based on Somers’ Dxy, the full range of variables explained 68% (95% 
CI 65–72%) of the ordinal variation in next-day changes in TIL(Basic) on day one and up to 51% (95% CI 
45–56%) thereafter, when changes in TIL(Basic) became less frequent. Up to 81% (95% CI 78–85%) of 
this explanation could be derived from non-treatment variables (i.e., markers of pathophysiology and 
injury severity), but the prior trajectory of ICU management significantly improved prediction of future 
de-escalations in ICP-targeted treatment. Whilst there was no significant difference in the predictive 
discriminability (i.e., area under receiver operating characteristic curve) between next-day escalations 
(0.80 [95% CI 0.77–0.84]) and de-escalations (0.79 [95% CI 0.76–0.82]) in TIL(Basic) after day two, we 
found specific predictor effects to be more robust with de-escalations. The most important predictors 
of day-to-day changes in ICP management included preceding treatments, age, space-occupying 
lesions, ICP, metabolic derangements, and neurological function. Serial protein biomarkers were 
also important and may serve a useful role in the clinical armamentarium for assessing therapeutic 
needs. Approximately half of the ordinal variation in day-to-day changes in TIL(Basic) after day two 
remained unexplained, underscoring the significant contribution of unmeasured factors or clinicians’ 
personal preferences in ICP treatment. At the same time, specific dynamic markers of pathophysiology 
associated strongly with changes in treatment intensity and, upon mechanistic investigation, may 
improve the timing and personalised targeting of future care.
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When traumatic brain injury (TBI) patients are admitted to the intensive care unit (ICU), a core focus of their care 
is to protect and promote potential recovery in brain tissue by either preventing or mitigating raised intracranial 
pressure (ICP)1. To date, the heterogeneous pathophysiological mechanisms that elevate ICP after TBI are not 
sufficiently characterised for patient-tailored treatment (i.e., precision medicine)2,3. Therefore, consensus-
based guidelines4,5 encourage a precautionary, stepwise approach6 to ICP management, in which therapeutic 
intensity—defined by the perceived risk and complexity of each treatment plan—is incrementally escalated until 
adequate ICP control is achieved. The overall intensity of a patient’s ICP management can be measured on the 
latest Therapy Intensity Level (TIL) scale7, which was developed by the interagency TBI Common Data Elements 
(CDE) scheme8 and prospectively validated thereafter7,9.

An analysis of high-TIL treatment administration across 52 ICUs participating in the Collaborative European 
NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) study10,11 revealed frequent deviation from the 
recommended stepwise approach, even with ICP monitoring12. In fact, there was substantial between-centre 
variation in ICP management (according to TIL) without commensurate variation in 6-month functional 
outcome on the Glasgow Outcome Scale—Extended (GOSE)13,14. Baseline injury severity factors, imaging 
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results, and ICP explained only 8.9% of the pseudo-variance in dichotomised high-TIL treatment use12. These 
results raised the questions about whether contemporary ICP management is performed in a systematic, rational 
manner in practice and whether some patients are being exposed to unnecessary risks with high-TIL therapies. 
Answering these questions requires consideration of a patient’s full, time-varying clinical course as well as a 
more detailed representation of different levels of the TIL scale.

As a first step towards answering the questions above, we aim to identify factors associated with ICP-targeted 
treatment decisions on an individual patient level. Expanding upon our previous work13,15, we propose a 
modelling strategy (TILTomorrow) which dynamically predicts next-day TIL(Basic)—the five-category version of 
TIL—from all pre-ICU and ICU data prospectively recorded for the CENTER-TBI study (Fig. 1). Our primary 
objective in developing TILTomorrow was to determine how well a patient’s full clinical course can predict 
upcoming changes in ICP treatment intensity. Our second objective was to estimate the differential contribution 
of pathophysiological severity, the preceding trajectory of treatment, and unmeasured factors (e.g., personal 
treatment preferences) towards explanation of next-day changes made to TIL(Basic). Our third objective was to 
mine the full dataset for dynamic predictors of day-to-day changes in TIL(Basic).

Methods
Study design and participants
CENTER-TBI is a longitudinal, observational cohort study (NCT02210221) involving 65 medical centres across 
18 European countries and Israel10,11. Patients were recruited between 19 December 2014 and 17 December 2017 
if they met the following criteria: (1) presentation within 24 h of a TBI, (2) clinical indication for a computerised 
tomography (CT) scan, and (3) no severe pre-existing neurological disorder. The project objectives and design 
of CENTER-TBI have been described in detail previously10,11.

In this work, we focus on adult TBI patients who were admitted to the ICU and underwent invasive ICP 
monitoring. Our rationale is that TIL is most reliable in the instance of ICP monitoring since the scale requires 
its component treatments to have been administered with intent of targeting ICP or cerebral perfusion pressure 
(CPP)7. Therefore, we apply the following inclusion criteria in addition to those of CENTER-TBI: (1) primary 
admission to the ICU, (2) at least 16 years old at ICU admission, (3) at least 24 h of ICU stay, (4) invasive ICP 
monitoring, (5) no decision to withdraw life-sustaining therapies (WLST) on the first day of ICU stay, and (6) 
availability of daily TIL assessments from at least two consecutive days.

Ethics declaration
This sub-study was approved by the CENTER-TBI management committee (#491 in online list of approved 
proposals16).

The CENTER-TBI study was conducted in accordance with all relevant laws of the European Union if directly 
applicable or of direct effect and all relevant laws of the country where the recruiting sites were located, including 
but not limited to, the relevant privacy and data protection laws and regulations (the “Privacy Law”), the relevant 
laws and regulations on the use of human materials, and all relevant guidance relating to clinical studies from 
time to time in force including, but not limited to, the ICH Harmonised Tripartite Guideline for Good Clinical 
Practice (CPMP/ICH/135/95, “ICH GCP”) and the World Medical Association Declaration of Helsinki, entitled 
“Ethical Principles for Medical Research Involving Human Subjects.” Informed Consent by the patients or the 

Fig. 1. TILTomorrow prediction task and modelling strategy. All shaded regions surrounding curves are 95% 
confidence intervals derived using bias-corrected bootstrapping (1000 resamples) to represent the variation 
across the patient population and across the 20 repeated five-fold cross-validation partitions. (a) Illustration 
of the TILTomorrow dynamic prediction task on a sample patient’s timeline of ICU stay. The objective of 
the task is to predict the next-day TIL(Basic) score at each calendar day of a patient’s ICU stay. The prediction 
is dynamic, updated for each calendar day, and must account for temporal variation of variables across 
all preceding days using a time-series model (ft). (b) Illustration of the TILTomorrow modelling strategy 
on a sample patient’s timeline of ICU stay. Each patient’s ICU stay is first discretised into non-overlapping 
time windows, one for each calendar day. From each time window, values for up to 979 dynamic variables 
were combined with values for up to 1029 static variables to form the variable set. The variable values were 
converted to tokens by discretising numerical values into 20-quantile bins from the training set and removing 
special formatting from text-based entries. Through an embedding layer, a vector was learned for each token 
encountered in the training set, and tokens were replaced with these vectors. A positive relevance weight, 
also learned for each token, was used to weight-average the vectors of each calendar day into a single, low-
dimensional vector. The sequence of low-dimensional vectors representing a patient’s ICU stay were fed into 
a gated recurrent neural network (RNN). The RNN outputs were then decoded at each time window into an 
ordinal prognosis of next-day TIL(Basic) score. The highest-intensity treatments associated with each threshold 
of TIL(Basic) are decoded in Table 1. (c) Probability calibration slope, at each threshold of next-day TIL(Basic), 
for models trained on the full variable set. The ideal calibration slope of one is marked with a horizontal 
orange line. (d) Ordinal probability calibration curves at four different days after ICU admission. The diagonal 
dashed line represents the line of perfect calibration. The values in each panel correspond to the maximum 
absolute error (95% confidence interval) between the curve and the perfect calibration line. Abbreviations: 
CT = computerised tomography, ER = emergency room, ft = time-series model, GRU = gated recurrent 
unit, Hx = history, ICP = intracranial pressure, ICU = intensive care unit, LSTM = long short-term memory, 
N/A = not available, NF-L = neurofilament light chain, SES = socioeconomic status, TIL = Therapy intensity 
level, TIL(Basic) = condensed, five-category TIL scale as defined in Table 1, VE = vascular endothelial.
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legal representative or next of kin was obtained, according to local legislations, for all patients recruited in the 
core dataset of CENTER-TBI and documented in the electronic case report form. Ethical approval was obtained 
for each recruiting site. The lists of sites, ethical committees, approval numbers, and approval dates are available 
online17.

Therapy intensity level (TIL)
The endpoint for the TILTomorrow dynamic prediction task (Fig.  1a) is the next-day TIL(Basic) score. The 
TIL(Basic) scale was developed through an international expert panel to serve as a five-category summary of the 
full, 38-point TIL score8. TIL(Basic) categorises overall ICP treatment intensity over a given period of time by 
selecting the highest classification of ICP control amongst all treatments administered in that period of time, 
as defined in Table 1. By convention, a decompressive craniectomy for refractory intracranial hypertension 
is scored with TIL(Basic) = 4 (i.e., extreme ICP control) for every subsequent timepoint. As described later, we 
account for this effect in our analysis by: (1) referencing TILTomorrow performance against simply carrying 
forward the last-available TIL(Basic) score and against models trained without treatment (e.g. incidence of 
decompressive craniectomy) or clinician-impression (e.g., reason for decompressive craniectomy) variables, and 
(2) focusing only on variables that occur at least a day before a change in TIL(Basic). Since daily use of TIL(Basic) 
was prospectively validated7, we calculate the TIL(Basic) score over each available calendar day of a patient’s ICU 
stay. For the CENTER-TBI study, information pertaining to the TIL(Basic) treatments (Table 1) was recorded 
on days 1–7, 10, 14, 21, and 28 of ICU stay. TIL(Basic) score calculations were excluded on or after the day of 
any WLST decision. As an overall summary metric, we also calculated TIL(Basic)

median—the median of the daily 
TIL(Basic) scores over days 1–7 of ICU stay.

Classification of ICP control ICP-targeting treatment

Study representation (count)

Patients (844 total) Centres (51 total)

(4) Extreme 490 (58%) 50 (98%)

High-dose propofol or barbiturates (metabolic suppression) 315 (37%) 46 (90%)

Intensive hyperventilation (PaCO2 < 30 mmHg) 61 (7.2%) 24 (47%)

Therapeutic hypothermia (< 35 °C) 93 (11%) 31 (61%)

Intracranial operation for progressive mass lesion (not scheduled at admission) 149 (18%) 40 (78%)

Decompressive craniectomy for refractory intracranial hypertension* 76 (9.0%) 29 (57%)

(3) Moderate 344 (41%) 47 (92%)

High-volume CSF drainage (≥ 120 mL/24h) 212 (25%) 41 (80%)

Moderate hyperventilation (30 ≤ PaCO2 < 35 mmHg) 235 (28%) 41 (80%)

Higher-dose mannitol (> 2g/kg/24h) 45 (5.3%) 22 (43%)

Higher-dose hypertonic saline (> 0.3g/kg/24h) 128 (15%) 33 (65%)

Cooling for ICP control (≥ 35 °C) 146 (17%) 32 (63%)

(2) Mild 645 (76%) 50 (98%)

Higher-dose sedation for ICP control (not aiming for burst suppression) 561 (66%) 48 (94%)

Low-volume CSF drainage (< 120 mL/24h) 221 (26%) 41 (80%)

Fluid loading for CPP management 511 (61%) 48 (94%)

Vasopressor therapy for CPP management 720 (85%) 50 (98%)

Mild hyperventilation (35 ≤ PaCO2 < 40 mmHg) 509 (60%) 48 (94%)

Lower-dose mannitol (≤ 2g/kg/24h) 197 (23%) 41 (80%)

Lower-dose hypertonic saline (≤ 0.3g/kg/24h) 303 (36%) 41 (80%)

(1) Basic 406 (48%) 45 (88%)

Head elevation for ICP control 765 (91%) 50 (98%)

Nursed flat (180°) for CPP management 123 (15%) 31 (61%)

Lower-dose sedation for mechanical ventilation 753 (89%) 50 (98%)

(0) None 338 (40%) 48 (94%)

Table 1. TIL(Basic) scale treatments and representation in study population. The TIL(Basic) scale was developed 
by Maas et al.8 and prospectively validated by Bhattacharyay et al.7 The TIL(Basic) score is determined by 
selecting the highest classification of ICP control (first column) among all the ICP-targeting treatments 
(second column) administered to a patient over a calendar day. The study representation of each TIL(Basic) 
category and each ICP-targeting treatment is the count (and percentage) of study patients who received the 
corresponding (category of) treatment during any day of their ICU stay as well as the count (and percentage) 
of centres who administered the corresponding (category of) treatment in the study population. *If a 
decompressive craniectomy is performed as a last resort for refractory intracranial hypertension, its score 
is included in the day of the operation and in every subsequent day of ICU stay. CPP = cerebral perfusion 
pressure, CSF = cerebrospinal fluid, ICP = intracranial pressure, ICU = intensive care unit, PaCO2 = partial 
pressure of carbon dioxide in arterial blood, TIL = therapy intensity level scale, TIL(Basic) = condensed TIL scale.
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We elected not to use the full TIL score as the model endpoint since it is a point-sum (rather than a truly categorical) 
score, and the same value changes in TIL can be the result of changing treatments across different intensities. For 
instance, administering head elevation, low-volume cerebrospinal fluid drainage, and low-dose mannitol is numerically 
‘equivalent’ to performing a last-resort decompressive craniectomy7. On the contrary, changes in TIL(Basic) correspond 
to transitions across specific, interpretable bands of treatment intensity (Table 1).

Model variables
We extracted all variables collected before and during ICU stays for the CENTER-TBI core study11 (v3.0, ICU 
stratum) using Opal database software18. These variables were sourced from medical records and online test 
results and include structured (i.e., numerical, binary, or categorical), unstructured (i.e., free text), and missing 
values. We manually excluded variables which explicitly indicate death or WLST (Supplementary Table S1), and, 
if a decision to WLST was made during any point of a patient’s ICU stay, we only extracted model variables before 
the timestamp of WLST decision. We also added features extracted from automatically segmented and expert-
corrected high-resolution CT and magnetic resonance (MR) images. These features correspond to the type, 
location, and volume of space-occupying lesions, and the process of their extraction has been described in detail 
previously19,20. In total, we included 2,008 variables: 1,029 static (i.e., fixed at ICU admission) variables and 979 
dynamic variables (i.e., collected during ICU stay) with varying sampling frequencies. We qualitatively organised 
the variables into the nine categories listed in Table 2 and further indicated whether variables represented an 
intervention during ICU admission (e.g., administration and type of glucose management) or a physician-based 
impression (e.g., reason for not pursuing intracranial surgery following CT scan, Supplementary Table S2). 
Descriptions for each of the variables can be viewed online at the CENTER-TBI data dictionary21.

TILTomorrow modelling strategy
Whilst strong predictors of functional outcome after TBI are known, this is not the case for TIL. Thus, the 
TILTomorrow modelling strategy was designed to include all static and dynamic variables from CENTER-TBI 
to produce an evolving prediction of the next calendar day’s TIL(Basic) over each patient’s ICU stay. The large 
number of variables precludes building such a model by manual feature extraction, motivating our flexible 
tokenisation-and-embedding approach with no constraints on the number or type of variables per patient. 
We trained models, through supervised machine learning, with three main components based on our prior 
studies13,15,22: (1) a token-embedding encoder, (2) a gated recurrent neural network (RNN), and (3) an ordinal 
endpoint output layer. We created 100 partitions of our patient population for repeated k-fold cross-validation 
(20 repeats, 5 folds) with 15% of each training set randomly set aside as an internal validation set.

ICU stays were partitioned into non-overlapping time windows, one per calendar day (Fig. 1a). Static variables 
were carried forward across all windows (Fig. 1b). All variables were tokenised through one of the following 
methods: (1) for categorical variables, appending the value to the variable name, (2) for numerical variables, 
learning the training set distribution and discretising into 20 quantile bins, (3) for text-based entries, removing 
all special characters, spaces, and capitalisation from the text and appending to the variable name, and (4) for 
missing values, creating a separate token to designate missingness (Fig. 1b). We selected 20 quantile bins for 
discretisation based on optimal performance in our previous work13,22. By labelling missing values with separate 
tokens instead of imputing them, the models could learn potentially significant patterns of missingness and 
integrate a diverse range of missing data without needing to validate the assumptions of imputation methods on 
each variable23. During training, the models learned a low-dimensional vector (of either 128, 256, 512, or 1,024 
units) and a ‘relevance’ weight for each token in the training set. Therefore, models would take the unique tokens 
from each time window of a patient, replace them with the corresponding vectors, and average the vectors—each 
weighted by its corresponding relevance score – into a single vector per time window (Fig. 1b).

Each patient’s sequence of low-dimensional vectors then fed into a gated RNN—either a long short-term 
memory (LSTM) network or a gated recurrent unit (GRU)—to output another vector per time window. In 

Category Example variable

Count by subtypes

All Static Dynamic Interventions and physician impressions

Demographics and socioeconomic 
status Years of formal education 22 22 0 0

Medical and behavioural history Number of prior TBIs or concussions 186 186 0 0

Injury characteristics and severity Airbag deployed during accident 84 84 0 0

Emergency care and ICU admission Blood transfusion in ER 234 234 0 14

Brain imaging reports Cortical sulcal effacement 939 425 514 19

Laboratory measurements Serum level of UCH-L1 228 75 153 6

ICU medications and management Vasopressor dose 141 3 138 127

ICU vitals and assessments Types of seizures in past day 125 0 125 0

Surgery and neuromonitoring Ventriculostomy for CSF drainage 49 0 49 39

Total 2008 1029 979 205

Table 2. Variable count per category and subtype. Data represent the number of subtype (column) variables 
per category (row). CSF = cerebrospinal fluid, ER = emergency room, ICU = intensive care unit, SBP = systolic 
blood pressure, TBI = traumatic brain injury, UCH-L1 = ubiquitin carboxy-terminal hydrolase L1.
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this manner, the models learned temporal patterns of variable interactions from training set ICU records and 
updated outputs with each new time window of data. Finally, each RNN output vector was decoded with a 
multinomial (i.e., softmax) output layer to return a probability at each threshold of next-day TIL(Basic) over time 
(Fig. 1b). From these outputs, we also calculated the probabilities of TIL(Basic) decreasing, staying the same, or 
increasing tomorrow in relation to the last available TIL(Basic) score (Supplementary Methods S1). Please note 
that both threshold-level probability estimates and estimated probabilities of next-day changes in TIL(Basic) are 
derived from the outputs of the same model, as described in Supplementary Methods S1.

The combinations of hyperparameters—in addition to those already mentioned (embedding vector 
dimension and RNN type)—and the process of their optimisation in the internal validation sets are reported in 
Supplementary Methods S2–S3.

Model and information evaluation
All metrics, curves, and associated confidence intervals (CIs) were calculated on the testing sets using the 
repeated Bootstrap Bias Corrected Cross-Validation (BBC-CV) method24, as described in Supplementary 
Methods S2. We calculated metrics and CIs at each day directly preceding a day of TIL assessment in our study 
population (i.e., days 1–6, 9, 13, 20, and 27).

The reliability of model-generated prediction trajectories was assessed through the calibration of output 
probabilities at each threshold of next-day TIL(Basic). Using the logistic recalibration framework25, we first 
measured calibration slope. Calibration slope less(/greater) than one indicates overfitting(/underfitting)25. 
Additionally, we examined smoothed probability calibration curves to detect miscalibrations that might have 
been overlooked by the logistic recalibration framework25.

To evaluate prediction discrimination performance, we calculated the area under the receiver operating 
characteristic curve (AUC) at each threshold of next-day TIL(Basic). These AUCs are interpreted as the probability 
of the model correctly discriminating a patient whose next-day TIL(Basic) is above a given threshold from one 
with next-day TIL(Basic) below. Moreover, we calculated the AUC for prediction of next-day escalation and de-
escalation in TIL(Basic). In this case, the AUC represents the probability of the model correctly discriminating a 
patient who experienced a day-to-day (de-)escalation in TIL(Basic) from one who did not.

We also assessed the information quality achieved by the combination of our modelling strategy and 
the CENTER-TBI variables in predicting next-day changes in TIL(Basic) by calculating Somers’ Dxy

26. In our 
context, Somers’ Dxy is interpreted as the proportion of ordinal variation in day-to-day changes of TIL(Basic) that 
is explained by the variation in model output27. The calculation of Somers’ Dxy is detailed in Supplementary 
Methods S4.

We compared the performance of the TILTomorrow modelling strategy trained on the following factors 
to test their differential contribution to prediction: (1) the full variable set [2008 variables], (2) all variables 
excluding physician-based impressions and treatments (e.g., all variables related to TIL) [1803 variables], and 
(3) only static variables repeated in each time window [1029 variables]. Our rationale for these ablated variable 
sets was to estimate the extent to which: (1) predictable trajectories of care – independent of other measured 
factors – influence treatment planning and (2) ICP treatments are responding to recorded events that occur 
over a patient’s ICU stay. To serve as our reference for model comparison, we also calculated the performance 
achieved by simply carrying over the last available TIL(Basic) for prediction of next-day TIL(Basic). This reference 
performance accounts not only for the proportion of the population that did not change in TIL(Basic) on a given 
day but also for the change in the assessment population caused by patient discharge over time.

Contributors to transitions in TIL
We applied the TimeSHAP algorithm28 on testing set predictions to find specific variables associated with next-day 
changes in TIL(Basic). TimeSHAP is a temporal extension of the kernel-weighted SHapley Additive exPlanations 
(KernelSHAP) algorithm29, which estimates the relative contribution (i.e., Shapley value30) of each model input 
to a specific patient’s model output. In our case, this was done by masking sampled combinations of tokens (i.e., 
coalitions) leading up to a patient’s next-day change in TIL(Basic) and calculating the difference in trained model 
output for each combination. A kernel-weighted linear regression model was then fit between binary coalition 
masks and resulting model outputs to estimate the Shapley value for each model input. TimeSHAP extends 
KernelSHAP by considering each unique combination of tokens and time windows as its own feature. Crucially, 
TimeSHAP made this computationally tractable for our application, in which models contain many possible 
tokens, by grouping low-contributing time windows in the distant past together as a single feature (i.e., temporal 
coalition pruning). TimeSHAP, KernelSHAP, and Shapley values are described in greater, mathematical detail in 
Supplementary Methods S5.

We estimated token-level Shapley values with the TimeSHAP algorithm at both one day and two days 
before an upcoming change in TIL(Basic). Our chosen model output for TimeSHAP was the expected next-
day TIL(Basic) score, as defined in Supplementary Methods S5. We then calculated the difference between the 
estimated Shapley values of the two consecutive days for each token to derive its ΔTimeSHAP value. If a token 
did not exist in the window of either of the two days, then its Shapley value for that day was zero. Therefore, 
ΔTimeSHAP values were interpreted as the contributions of variable tokens towards the difference in model 
prediction of next-day TIL(Basic) over the two days directly preceding the change in TIL(Basic), given the patient’s 
full set of tokens. If a variable had a positive (or negative) ΔTimeSHAP value, it was associated with an increased 
likelihood of escalation (or de-escalation) in next-day treatment intensity. Moreover, since the calculation of 
ΔTimeSHAP values required two days of information before the change in TIL(Basic), we only calculated the 
variable contributions to day-to-day changes in TIL(Basic) that occurred after day two of ICU stay.
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Results
Study population
Of the 4509 patients available for analysis in the CENTER-TBI core study, 844 patients from 51 ICUs met the 
inclusion criteria of this work (Supplementary Fig. S1). The median ICU stay duration of our population was 
14 days (Q1–Q3: 8.4–23 days) and 86% (n = 722) stayed through at least seven calendar days. Since the regularity 
of TIL(Basic) assessments decreased substantially after 14 days, and since less than half of the population remained 
in the ICU for 21 days (Supplementary Fig. S2), we focused our analysis on the first 14 days of ICU stay. Summary 
characteristics of the overall population are detailed in Table 3. To highlight factors associated with intra-patient 
variability in ICP treatment intensity, we also stratified the characteristics in Table 3 by whether patients had a 
day-to-day change in TIL(Basic) over days 1–7 in the ICU (the consecutive days of TIL(Basic) measurement in our 
study). On average, patients who did not experience a change in TIL(Basic) over their first week were significantly 
younger, had higher baseline ICP values, and resulted in poorer functional recovery at six months post-injury 
(Table 3). However, their mean ICU stay duration was not significantly different.

Summary characteristic Overall (n = 844, 51 centres)

Day-to-day change in TIL(Basic) during first week in ICU

Yes (n = 677, 50 centres) No (n = 167, 40 centres) p-value‡

Age (years) 47 (29–61) 48 (30–62) 41 (27–58) 0.047

Sex: female 212 (25%) 165 (24%) 47 (28%) 0.36

Baseline Glasgow coma scale (n* = 795) 0.67

 3–8 540 (68%) 426 (67%) 114 (71%)

 9–12 138 (17%) 112 (18%) 26 (16%)

 13–15 117 (15%) 96 (15%) 21 (13%)

Baseline CT lesions (n* = 730)

 Epidural haematoma 165 (23%) 136 (23%) 29 (19%) 0.36

 Intracerebral haemorrhage 594 (81%) 480 (83%) 114 (77%) 0.11

 Subdural haematoma 465 (64%) 368 (63%) 97 (65%) 0.76

 Traumatic subarachnoid haemorrhage 633 (87%) 502 (86%) 131 (88%) 0.73

First-day mean ICP (mmHg) (n* = 811) 11 (7.0–15) 10. (6.8–14) 12 (8.2–17)  < 0.001

TIL(Basic)
median 2 (2–4) 2 (2–3) 4 (2–4)  < 0.001

Refractory intracranial hypertension (n* = 836) 143 (17%) 85 (13%) 58 (35%)  < 0.001

ICU stay duration [days] 14 (8.4–23) 14 (8.1–23) 14 (8.8–23) 0.90

6-month GOSE (n* = 738) 0.018

 (1) Death 181 (25%) 139 (23%) 42 (29%)

 (2 or 3) Vegetative/lower SD 181 (25%) 154 (26%) 27 (18%)

 (4) Upper SD 70 (9.5%) 48 (8.1%) 22 (15%)

 (5) Lower MD 122 (17%) 96 (16%) 26 (18%)

 (6) Upper MD 73 (10%) 65 (11%) 8 (5.5%)

 (7) Lower GR 55 (7.5%) 42 (7.1%) 13 (8.9%)

 (8) Upper GR 56 (7.6%) 48 (8.1%) 8 (5.5%)

Baseline prognosis† (%) (n* = 749)

 Pr(GOSE > 1) 85 (64–94) 85 (66–95) 83 (56–93) 0.010

 Pr(GOSE > 3) 54 (31–75) 54 (33–76) 52 (24–71) 0.019

 Pr(GOSE > 4) 40. (22–59) 41 (24–60.) 38 (16–54) 0.010

 Pr(GOSE > 5) 22 (11–36) 22 (12–38) 19 (8.9–30.) 0.0022

 Pr(GOSE > 6) 13 (6.7–21) 13 (7.1–22) 11 (5.2–17) 0.0034

 Pr(GOSE > 7) 5.2 (2.5–9.5) 5.4 (2.7–9.9) 4.2 (2.2–8.6) 0.0071

Table 3. Summary characteristics of the study population stratified by day-to-day changes in TIL(Basic). Data 
are median (Q1–Q3) for numerical characteristics and n (% of column group) for categorical characteristics 
unless otherwise indicated. Units or numerical definitions of characteristics are provided in square brackets. 
*Limited sample size of non-missing values for characteristic. †Ordinal functional outcome prognostic scores 
were calculated through tokenised embedding of all clinical information in the first 24 h of ICU stay, as 
described previously15. ‡p-values, comparing patients who experienced a day-to-day change in TIL(Basic) in 
the first week of ICU stay to those who did not, are derived from Welch’s t-test for numeric variables and χ2 
contingency table test for categorical variables. CT = computerised tomography, GOSE = Glasgow outcome 
scale-extended, GR = good recovery, ICP = intracranial pressure, ICU = intensive care unit, MD = moderate 
disability, Pr(GOSE > ·) = “probability of GOSE greater than · at 6 months post-injury” as previously 
calculated from the first 24 h of admission27, SD = severe disability, TIL = therapy intensity level scale, 
TIL(Basic) = condensed TIL scale as measured in Table 1 for each calendar day, TIL(Basic)

median = median TIL(Basic) 
over first week of ICU stay.
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The representation of each ICP-targeting treatment and TIL(Basic) score in our study is listed in Table 1. The 
least-represented treatment (higher-dose mannitol) was administered to 45 patients (5.3%) across 22 ICUs. The 
least-represented TIL(Basic) score (TIL(Basic) = 0) signifies that 338 patients (40%) across 48 ICUs had at least one 
day of no ICP-targeted treatment during their stays. A decompressive craniectomy for refractory intracranial 
hypertension was performed in 76 patients (9.0%) across 29 ICUs, and the median timepoint for such an 
operation was day three (Q1–Q3: two–five) of ICU stay.

The distribution of TIL(Basic) values at each day of TIL assessment and the transitions of TIL(Basic) scores 
between days of assessment are visualised in Fig. 2a. No more than 2.4% of the population’s TIL(Basic) scores 
were missing at any given assessment day, and the proportion of patients receiving basic-to-no ICP-targeting 
treatment (i.e., TIL(Basic) ≤ 1) increased over time (Supplementary Fig. S2). The distribution of day-to-day 
changes in TIL(Basic) (Fig. 2b) demonstrates that there was considerably more change in TIL(Basic) from day one 
to day two than there was in any other pair of consecutive days. On the rest of the days in the first week, 69–75% 
of the population did not experience a change in TIL(Basic) from one day to the next (Fig. 2b). The distribution 
of next-day TIL(Basic) given the current day’s TIL(Basic) (Supplementary Fig. S3) show that at least 79% of day-to-
day therapeutic transitions happen within one TIL(Basic) category, except for escalations from TIL(Basic) = 0 and 
de-escalations from TIL(Basic) = 4 from day one to two. When a change in TIL(Basic) did occur, the distributions 
of TIL(Basic) before and after the change (Supplementary Fig. S4) reflect a gradual trend towards de-escalation at 
later days of ICU stay as expected.

Reliability and performance of TILTomorrow
With both calibration slopes (Fig. 1c) and smoothed calibration curves (Fig. 1d) across the thresholds of next-
day TIL(Basic), we observed that the TILTomorrow modelling strategy achieved sufficient testing set calibration 
for analysis from day two of ICU stay onwards. The 95% CI of the calibration slope pertaining to prediction of 
next-day TIL(Basic) > 0 was wider than that of other thresholds but still centred around a well-calibrated slope of 
one.

In the first week of ICU stay, TILTomorrow correctly discriminated patients at each threshold of next-
day TIL(Basic) between 79% (95% CI 77–82%) and 95% (95% CI 93–96%) of the time (Fig. 3a). However, this 
apparently strong predictive power was in fact largely because TIL(Basic) tended not to change greatly (i.e., the 
“inertia” of TIL) across day-to-day steps (Fig. 2b), especially at higher thresholds of next-day TIL(Basic) (violet 
lines in Fig. 3a). After removing all treatments and physician-based impressions from the model variable set 
(including all variables related to TIL), the first-week AUCs dropped to between 0.65 (95% CI 0.62–0.68) and 
0.86 (95% CI 0.82–0.89) with significantly lower performance at higher thresholds of next-day TIL(Basic) (Fig. 3a). 
Models trained with only static variables achieved only marginally better discrimination than an uninformative 
predictor (best AUC: 0.60 [95% CI 0.56–0.63], Fig. 3a).

Fig. 2. Distributions of TIL(Basic) and its day-to-day changes in the study population. (a) Alluvial diagram 
of the evolution of the TIL(Basic) distribution in the study population over the assessed days of ICU stay. 
Percentages which round to 2% or lower are not shown. (b) Distributions of day-to-day changes in 
TIL(Basic). The numbers above each bar represent the number of study patients remaining in the ICU after 
the corresponding day-to-day step. Percentages which round to 2% or lower are not shown. Abbreviations: 
ICU = intensive care unit, TIL = therapy intensity level, TIL(Basic) = condensed, five-category TIL scale as 
defined in Table 1, WLST = withdrawal of life-sustaining therapies.
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To completely account for the inertia of TIL(Basic) across day-to-day steps, we calculated discrimination 
performance in the prediction of changes in next-day TIL(Basic) (Fig. 3b). Prediction performance was highest on 
day one across all variable sets, with the full-variable model correctly discriminating next-day de-escalations 90% 
(95% CI: 88–91%) of the time and next-day escalations 85% (95% CI: 83–87%) of the time. Within each variable 
set, change-in-TIL(Basic) prediction performance did not change significantly from day two onwards, except for 
the prediction of next-day escalation from static variables. Treatment and physician-based impression variables 
significantly improved performance in prediction of next-day de-escalations in TIL(Basic) but not in prediction 
of next-day escalations in TIL(Basic) (Fig. 3b). Moreover, static variables achieved greater discrimination in the 
prediction of TIL(Basic) escalations than in the prediction of TIL(Basic) de-escalations from days two to four of ICU 
stay.

Differential explanation of next-day changes in TIL
The full set of 2,008 variables explained 68% (95% CI 65–72%) of the ordinal variation in next-day changes 
in TIL(Basic) on day one and up to 51% (95% CI 45–56%) through the rest of the first week (Fig. 3c). For the 
same endpoint, the 1,803 variables which exclude treatments and physician-based impressions explained 60% 
(95% CI 57–64%) of the ordinal variation on day one and up to 35% (95% CI 30–41%) thereafter (Fig. 3c). 
From Fig. 3b, we found that the explanation added from the prior trajectory of ICU management related more 
to informative patterns of treatment de-escalation than to those of escalation. At the same time, most of the 
explanation achieved by the full variable model could also be achieved without explicit information about the 
patient’s treatments. The 1,029 static variables explained 54% (95% CI 50–57%) of the ordinal variation in next-
day changes in TIL(Basic) on day one and decreased in explanation significantly from days two (28% [95% CI 
23–33%]) to six (13% [95% CI 7–19%]) (Fig. 3c). In other words, the explanatory impact of dynamic variables 

Fig. 3. Differential performance in discriminating and explaining next-day TIL(Basic). All shaded regions 
surrounding curves and error bars are 95% confidence intervals derived using bias-corrected bootstrapping 
(1000 resamples) to represent the variation across 20 repeated five-fold cross-validation partitions. (a) 
Discrimination performance in prediction of next-day TIL(Basic)—measured by AUC at each threshold of 
TIL(Basic)—by models trained on different variable sets. The violet line represents the performance achieved by 
simply carrying the last available TIL(Basic) forward to account for the effect of day-to-day stasis in TIL(Basic) on 
prediction. The horizontal dashed line (AUC = 0.5) represents the performance of uninformative prediction. 
(b) Discrimination performance in prediction of next-day de-escalation or escalation in TIL(Basic)—measured 
by AUC—by models trained on different variable sets. The horizontal dashed line (AUC = 0.5) represents 
the performance of uninformative prediction. (c) Explanation of ordinal variation in next-day changes in 
TIL(Basic)—measured by Somers’ Dxy—by models trained on different variable sets. Abbreviations: AUC = area 
under the receiver operating characteristic (ROC) curve, ICU = intensive care unit, TIL = therapy intensity 
level, TIL(Basic) = condensed, five-category TIL scale as defined in Table 1.
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increased over time in the ICU. Most of the explanatory information in static variables contributed towards 
prediction of treatment escalations earlier in patients’ ICU stays (Fig. 3b).

Variables associated with next-day changes in TIL
During the days of consecutive TIL assessment that were eligible for ΔTimeSHAP calculation (days 2–7), 
575 patients (68% of population) experienced a total of 1004 day-to-day changes in TIL(Basic). The associative 
contributions of highest-impact variables towards prediction of these changes—both for models trained on all 
variables and for those trained without treatment variables—are visualised in Fig. 4. The number of points for 
each variable in Fig. 4 equals the number of times each variable was represented across the 1004 changes in 
TIL(Basic). Moreover, we annotated several specific values of categorical variables in Fig. 4 because of their visually 
consistent association with next-day TIL(Basic) de-escalation (i.e., negative ΔTimeSHAP) or TIL(Basic) escalation 
(i.e., positive ΔTimeSHAP). Across the leading predictors of next-day changes in TIL(Basic) (Fig. 4), we found the 
following categories of variables:

• The preceding trajectory of ICU management (e.g., extubation, prior trajectory of TIL, ending nasogastric 
feeding),

• age at admission,
• bleeding risk factors (e.g., history of taking anticoagulants, baseline platelet count),
• brain imaging results (e.g., traumatic subarachnoid haemorrhage, subdural haematoma, intraparenchymal 

haemorrhage),
• haemodynamics and intracranial hypertension (e.g., ICP, blood pressure, respiratory efficiency),
• markers of systemic inflammation (e.g., ventilator-associated pneumonia [which may also reflect long venti-

lation time], eosinophils),
• metabolic derangements (e.g., sodium, calcium, alanine aminotransferase),
• neurological function (e.g., Glasgow Coma Scale [GCS] eye and motor scores),
• protein biomarkers (e.g., neurofilament-light chain, total tau protein).

The most robust predictors of next-day de-escalation in TIL(Basic) were other clinical indicators of treatment 
de-escalation (e.g., ending nasogastric feeding), improvement in patients’ eye-opening responses, previous 
administration of barbiturates or propofol, and sufficient control of ICP. Overall, the effects of predictors for 
TIL(Basic) escalation were not as robust as those for de-escalation (Fig. 4); however, stratifying the ΔTimeSHAP 
values by the pre-transition TIL(Basic) score revealed more consistent associations per level of treatment intensity 
(Supplementary Fig. S5). For example, high ICP values were robustly predictive of escalations from TIL(Basic) = 2, 
and the prior administration of certain therapies could be predictive of a future escalation or de-escalation 
based on the current TIL(Basic) score (Supplementary Fig. S5). Apart from treatment variables, the factors that 
contributed the most towards prediction of de-escalation from extreme ICP management (i.e., TIL(Basic) = 4) 
were neurological improvements in motor and eye response with sufficiently controlled ICP and high blood 
oxygen saturation (Supplementary Fig. S5). The ΔTimeSHAP values of missing variables (Supplementary 
Fig. S6) demonstrated that missingness of a variable (e.g., missing report of daily complications) could have a 
significant de-escalating associative effect on model output.

Conceptual model of changes in treatment intensity
We combined the results from the differential explanation of next-day changes in TIL(Basic) (Fig. 3b–c) and the 
variable contributions towards prediction of these events (Fig. 4) to produce a conceptual model of day-to-day 
changes in treatment intensity (Fig. 5). Given the considerable difference in explanation performance between 
day one and subsequent days of ICU stay, we separated these explanation percentages in our model.

Discussion
We present the first approach to dynamic prediction of future therapy intensity levels (TIL) in ICP-monitored 
TBI patients. The TILTomorrow modelling strategy allowed us to exploit the full clinical context (2,008 
variables) captured in a large neurotrauma dataset over time to uncover factors associated with next-day 
changes in TIL(Basic)22. By including missing value tokens, models discovered meaningful patterns of missingness 
(Supplementary Fig. S6)23. Moreover, our approach mapped clinical events to evolving predictions at each 
ordinal level of next-day TIL(Basic), which is an improvement in statistical power and clinical information over 
using a dichotomised measure of therapeutic intensity (e.g., high-TIL therapies)15.

The main results of this study are summarised in the conceptual diagram of changes in TIL(Basic) (Fig. 5). 
Amongst all day-to-day steps, the transition from day one to day two had the greatest number of changes in 
TIL(Basic) (Fig. 2b), which were also the most predictable (68% [95% CI 65–72%] explanation, Fig. 3c). From 
day two onwards, the ordinal explanation of changes in next-day TIL(Basic) dropped to between 39% (95% CI 
32–47%) and 51% (95% CI 45–56%). This difference suggests that first-to-second-day changes in treatment 
intensity might have been the most systematic, possibly associated with primary injury severity and initial 
patient responses to treatment (Fig.  3c). Later in ICU stay, the predictive influence of a patient’s treatment 
trajectory increased (mostly through informative patterns of de-escalation, Fig. 3b), and that of static factors 
decreased (Fig. 3c). Whilst static factors are poor predictors of TIL(Basic) on any given day (Fig. 3a and as shown 
previously12), they achieve considerable discrimination performance in prediction of escalations up to day four 
(AUC: 0.70 [95% CI 0.65–0.74], Fig. 3b). This may indicate the potential of certain primary injury factors for 
justifying earlier intervention as to avoid tolerating suboptimal ICP management for a few days. Apart from 
age, the highest-contributing static factors were space-occupying lesions (also reflected in a recent study31) 
and bleeding risk factors (Fig. 4), both of which can complicate ICP control. As targets of TIL therapies, ICP 
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and haemodynamic factors are expectedly high-contributing, with different effects based on the pre-transition 
TIL(Basic) score (Supplementary Fig. S5). Metabolic complications (i.e., abnormalities in renal or liver function 
and electrolytic imbalances) have previously been shown to be significantly more common in patients receiving 
high-TIL therapies12 and an important marker for physiological endotyping32. Moreover, in a prior study, serial 
protein biomarkers (in addition to GCS) were key descriptors for clustering TBI patient trajectories in the ICU33. 
Therefore, the results from these dynamic variables support the links between TIL and pathophysiology—
including systemic factors (e.g., metabolism and inflammation)—after TBI7. This is potentially of clinical 
importance since protein biomarkers are not measured serially as part of typical routine care outside of research 

Fig. 4. Population-level variable contributions to prediction of changes in next-day TIL(Basic) at days directly 
preceding a change in TIL(Basic). The ΔTimeSHAP values on the left panel are from the models trained on the 
full variable set whilst the ΔTimeSHAP values on the right panel are from the models trained without clinician 
impressions or treatments. ΔTimeSHAP values are interpreted as the relative contributions of variables towards 
the difference in model prediction of next-day TIL(Basic) over the two days directly preceding the change in 
TIL(Basic) (Supplementary Methods S5). Therefore, the study population represented in this figure is limited 
to patients who experienced a change in TIL(Basic) after day two of ICU stay (n = 575). A positive ΔTimeSHAP 
value signifies association with an increased likelihood of escalation in next-day TIL(Basic), whereas a negative 
ΔTimeSHAP value signifies association with an increased likelihood of de-escalation. The variables were 
selected by first identifying the ten variables with non-missing value tokens with the most negative median 
ΔTimeSHAP values across the population (above the ellipses) and then, amongst the remaining variables, 
selecting the ten with non-missing value tokens with the most positive median ΔTimeSHAP values (below 
the ellipses). Each point represents the mean ΔTimeSHAP value, taken across all 20 repeated cross-validation 
partitions, for a token preceding an individual patient’s change in TIL(Basic). The number of points for each 
variable, therefore, indicates the relative occurrence of that variable before changes in TIL(Basic) in the study 
population. The colour of the point represents the relative ordered value of a token within a variable, and for 
unordered variables (e.g., patient status during GCS assessment), tokens were sorted alphanumerically (the sort 
index per possible unordered variable token is provided in the CENTER-TBI data dictionary21). Abbreviations: 
CVDs = cardiovascular diseases, ER = emergency room, FIO2 = fraction of inspired oxygen, GCS = Glasgow 
coma scale, ICP = intracranial pressure, PaO2 = partial pressure of oxygen, TIL = therapy intensity level, 
TIL(Basic) = condensed, five-category TIL scale as defined in Table 1, VAP = ventilator-associated pneumonia.
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studies (e.g., CENTER-TBI) and a few centres. It is still uncertain whether serial biomarker measurement 
would improve care outcomes. However, analysing the temporal dynamics of these biomarkers may not only 
enable a more precise characterisation of patients’ treatment needs but also elucidate biological mechanisms 
underpinning variable treatment response. Finally, whilst we found no significant difference in full-model 
prediction performance between next-day escalations and de-escalations of TIL(Basic) (Fig.  3b), high-impact 
predictors had a more robust signal with de-escalations than they did with escalations (i.e., more consistently 
negative ΔTimeSHAP values in Fig. 4). This suggests that escalation prediction may be the effect of a complex 
interaction of factors which is difficult to perceive with ΔTimeSHAP values.

The underlying assumption of this work is that a more protocolised management of ICP would also be more 
predictable based on the dynamic condition of a TBI patient. Even with wide inter-centre variation in ICP-
targeting treatment14, we would expect the measurable factors which rationally drive day-to-day changes in 
TIL to predict such changes on an individual level. After day two, approximately half of the ordinal variation 
in day-to-day changes in TIL(Basic) is unexplained by the full CENTER-TBI variable set, and we propose four 
reasons for this remaining uncertainty (Fig. 5). First, certain clinical events or complications that could suddenly 
trigger a (de-)escalation in TIL (e.g., sustained rise in ICP) might not have been predictable from the day before. 
Second, there are probably important physiological factors, either unmeasured or not included in our variable 
set, which would have improved TIL prediction. Most notably, high-resolution waveforms of ICP34 and arterial 
blood pressure (ABP) and their derived metrics (e.g., pressure–time dose35 and vascular reactivity36) are more 
likely to elucidate ICP management decisions than the bihourly clinician-recorded ICP or CPP values available 
in our variable set37. Prior analyses of additional physiological modalities—e.g., cerebral microdialysis38, 
automated pupillometry39,40, and motion sensing41—have also demonstrated independent associations with 
TIL or other short-term endpoints after TBI. Third, assuming different centres have different protocols for ICP 
management, there may not have been enough patient representation across the spectrum of TBI severity from 
each centre for TILTomorrow to learn centre-specific guidelines. Fourth, a part of ICP management may be 
driven by the personal preferences of clinicians in deviation from general guidelines. At the same time, we 
recognise that predictability does not guarantee a systematised delivery of care. We therefore investigated 
differential explanation of (Fig.  3b–c) and specific variable contributions towards (Fig.  4) changes in TIL to 
bridge prediction performance to a plausible concept of ICP management (Fig. 5).

Fig. 5. Conceptual diagram of factors explaining day-to-day changes in therapeutic intensity. The percentage 
values represent the differential explanation of ordinal variation in next-day changes in TIL(Basic) as measured 
by Somers’ Dxy. The bolded percentage values represent the 95% confidence interval of Somers’ Dxy from days 
2–6 of ICU stay, whilst the percentage values below them represent the 95% confidence interval of Somers’ Dxy 
from day 1 of ICU stay (Fig. 3c). The 95% confidence intervals were derived using bias-corrected bootstrapping 
(1000 resamples) to represent the variation across 20 repeated five-fold cross-validation partitions. The 
leading static and dynamic pathophysiological factors were determined by qualitative categorisation of the 
variables with the highest contribution to next-day changes in TIL(Basic) based on ΔTimeSHAP values (Fig. 4). 
Abbreviations: TIL = therapy intensity Level, TIL(Basic) = condensed, five-category TIL scale as defined in Table 
1.
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Our results support the use of TIL as an intermediate outcome after TBI7. Specific categories of 
pathophysiological variables—both static and dynamic—associate well with changes in TIL (Figs. 4 and 5). Since 
TIL rates the relative risk and complexity of administered treatments, it is logical to minimise TIL when all other 
factors are held equal. On the other hand, TIL is also a complicated marker of pathophysiology. Since around 
half of the ordinal variation in changes in TIL is not explained by measured variables (Fig. 5), we hypothesise 
that TIL’s sensitivity to pathophysiology is partially confounded by the personal preferences of clinical teams. 
Nevertheless, TIL was previously shown to be a stronger indicator of refractory intracranial hypertension than 
ICP itself and, thus, a more suitable intermediate endpoint for TBI management7. Since the full information 
pertaining to TIL was only date-stamped in CENTER-TBI, the highest resolution at which we could assess 
TIL(Basic) was once per calendar day (Table 1). However, clinicians were also asked to record qualitatively whether 
treatment intensity was decreasing or increasing every four hours, and these indications (from the day before a 
change in TIL(Basic)) were amongst the strongest predictors of next-day changes in TIL(Basic) (Fig. 4). This result 
supports a higher resolution TIL for monitoring pathophysiological severity; however, daily TIL scores have 
been shown to be reliable estimates of hourly TIL scores,9 and CENTER-TBI has demonstrated the practical 
feasibility of daily TIL assessment for a large-scale study (≤ 2.4% missingness, Fig. 2a).

TILTomorrow can potentially be useful in other heterogeneous-data-intensive clinical domains as a framework 
for decoding factors tied to treatment decision-making or other dynamic endpoints. This can inform the design 
of future causal inference models of individualised treatment effects from observational data42. TILTomorrow 
was not conceived for clinical deployment and should not be used for real-time decision support due to concerns 
of self-fulfilling prophecies, generalisability, and variable robustness43. Our focus was on explanatory modelling, 
to derive insightful patterns from the CENTER-TBI data and quantify the predictability of ICP management. 
Furthermore, ΔTimeSHAP values on observational data are merely associative and cannot be interpreted for 
causal inference. We used TimeSHAP in this work to highlight potential areas of investigation from a wider, 
data-driven approach. Pathophysiological predictors of the need for higher TIL (Figs. 4 and 5) could be useful 
for improving the timing and precision of future clinical decision-making (e.g., performing decompressive 
craniectomy in a timely but targeted way) but would require more evidence and feasibility studies than just their 
predictive power in our data.

We recognise several additional limitations in this study. TILTomorrow discretised both numerical variables 
into binned tokens and time into daily windows, which caused some loss of information. Limited by the 
resolution of available TIL assessments, we chose a daily time window to avoid inconsistent lead times in our 
prediction task (Fig. 1a). The highest resolution of regularly recorded variables (e.g., ICP) in the CENTER-TBI 
core study is once every two hours13, and, since TILTomorrow takes the unique set of tokens per daily window 
prior to embedding, these numerical variables would be reduced to the unique set of quantiles represented 
in a day (Fig.  1b). An encoding strategy which can integrate high-resolution ICP, CPP, and other clinical 
information into broader time windows may improve prediction performance. Additionally, the daily TIL(Basic) 
score accounts for 33% of the information in the full, 38-point TIL score7. As explained in the Methods, we used 
TIL(Basic) as the model endpoint over the full TIL score since it would enable us to uncover factors associated with 
changes across specific, interpretable bands of treatment intensity (Table 1). Nevertheless, a regression-based 
prediction of next-day full TIL may capture more nuanced patterns of factors associated with changes in ICP 
management. Finally, our results may encode recruitment, collection, and clinical biases native to our European 
patient set. Selective recording of clinical data—with selective missingness—may have biased our analyses, and 
findings may not generalise to other populations44. Given the broad inter-centre variation in ICP-targeted care14, 
the results of TILTomorrow are likely to vary considerably depending on the protocols of specific centres. We 
encourage investigators to apply the TILTomorrow approach to other longitudinal, granular ICU datasets of 
TBI patients—particularly in low- and middle-income countries where the burden of TBI is disproportionately 
higher45—and compare their results.

Data availability
Individual participant data, including data dictionary, the study protocol, and analysis scripts are available on-
line, conditional to approved study proposal, with no end date. Interested investigators must submit a study pro-
posal to the management committee online46. Signed confirmation of a data access agreement is required, and all 
access must comply with regulatory restrictions imposed on the original study. All code used in this project can 
be found at the following GitHub repository: https:   //gith ub. com/sbhattacha ryay/TILTomorro w47.

Received: 29 May 2024; Accepted: 18 December 2024

References
 1. Meyfroidt, G. et al. Management of moderate to severe traumatic brain injury: an update for the intensivist. Intensive Care Med. 

48, 649–666 (2022).
 2. Maas, A. I. R. et al. Traumatic brain injury: Integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 

16, 987–1048 (2017).
 3. Maas, A. I. R. et al. Traumatic brain injury: Progress and challenges in prevention, clinical care, and research. Lancet Neurol. 21, 

1004–1060 (2022).
 4. Hawryluk, G. W. J. et al. A management algorithm for patients with intracranial pressure monitoring: The Seattle International 

severe traumatic brain injury consensus conference (SIBICC). Intensive Care Med. 45, 1783–1794 (2019).
 5. Carney, N. et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery 80, 6 (2017).
 6. Stocchetti, N. & Maas, A. I. R. Traumatic intracranial hypertension. N. Engl. J. Med. 370, 2121–2130 (2014).
 7. Bhattacharyay, S. et al. Therapy intensity level scale for traumatic brain injury: Clinimetric assessment on neuro-monitored 

patients across 52 European intensive care units. J. Neurotrauma 41, 887–909 (2024).

Scientific Reports |           (2025) 15:95 13| https://doi.org/10.1038/s41598-024-83862-x

www.nature.com/scientificreports/

https://github.com/sbhattacharyay/TILTomorrow
http://www.nature.com/scientificreports


 8. Maas, A. I. R. et al. Standardizing data collection in traumatic brain injury. J. Neurotrauma 28, 177–187 (2011).
 9. Zuercher, P. et al. Reliability and validity of the therapy intensity level scale: analysis of clinimetric properties of a novel approach 

to assess management of intracranial pressure in traumatic brain injury. J. Neurotrauma 33, 1768–1774 (2016).
 10. Maas, A. I. R. et al. Collaborative European neurotrauma effectiveness research in traumatic brain injury (CENTER-TBI): A 

prospective longitudinal observational study. Neurosurgery 76, 67–80 (2015).
 11. Steyerberg, E. W. et al. Case-mix, care pathways, and outcomes in patients with traumatic brain injury in CENTER-TBI: A 

European prospective, multicentre, longitudinal, cohort study. Lancet Neurol. 18, 923–934 (2019).
 12. Huijben, J. A. et al. Use and impact of high intensity treatments in patients with traumatic brain injury across Europe: A CENTER-

TBI analysis. Crit. Care 25, 78 (2021).
 13. Bhattacharyay, S. et al. Mining the contribution of intensive care clinical course to outcome after traumatic brain injury. Npj Digit. 

Med. 6, 1–11 (2023).
 14. Huijben, J. A. et al. Changing care pathways and between-center practice variations in intensive care for traumatic brain injury 

across Europe: A CENTER-TBI analysis. Intensive Care Med. 46, 995–1004 (2020).
 15. Bhattacharyay, S. et al. The leap to ordinal: Detailed functional prognosis after traumatic brain injury with a flexible modelling 

approach. PLOS ONE 17, e0270973 (2022).
 16. CENTER-TBI Approved Proposals. https://www.center-tbi.eu/data/approved-proposals (Accessed May 21 2024).
 17. CENTER-TBI Ethical Approval. https://www.center-tbi.eu/project/ethical-approval (Accessed May 21, 2024)
 18. Doiron, D., Marcon, Y., Fortier, I., Burton, P. & Ferretti, V. Software application profile: Opal and Mica: open-source software 

solutions for epidemiological data management, harmonization and dissemination. Int. J. Epidemiol. 46, 1372–1378 (2017).
 19. Monteiro, M. et al. Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep 

learning: An algorithm development and multicentre validation study. Lancet Digit. Health 2, e314–e322 (2020).
 20. Jain, S. et al. Automatic quantification of computed tomography features in acute traumatic brain injury. J. Neurotrauma 36, 

1794–1803 (2019).
 21. CENTER-TBI Data Dictionary. https://www.center-tbi.eu/data/dictionary (Accessed May 21 2024).
 22. Deasy, J., Liò, P. & Ercole, A. Dynamic survival prediction in intensive care units from heterogeneous time series without the need 

for variable selection or curation. Sci. Rep. 10, 22129 (2020).
 23. Ercole, A. et al. Imputation strategies for missing baseline neurological assessment covariates after traumatic brain injury: A 

CENTER-TBI study. PLOS ONE 16, e0253425 (2021).
 24. Tsamardinos, I., Greasidou, E. & Borboudakis, G. Bootstrapping the out-of-sample predictions for efficient and accurate cross-

validation. Mach. Learn. 107, 1895–1922 (2018).
 25. Van Calster, B. et al. A calibration hierarchy for risk models was defined: from utopia to empirical data. J. Clin. Epidemiol. 74, 

167–176 (2016).
 26. Somers, R. H. A new asymmetric measure of association for ordinal variables. Am. Sociol. Rev. 27, 799–811 (1962).
 27. Van Calster, B., Van Belle, V., Vergouwe, Y. & Steyerberg, E. W. Discrimination ability of prediction models for ordinal outcomes: 

Relationships between existing measures and a new measure. Biomed. J. 54, 674–685 (2012).
 28. Bento, J., Saleiro, P., Cruz, A.F., Figueiredo, M.A.T., Bizarro, P. TimeSHAP: Explaining Recurrent Models through Sequence 

Perturbations. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining 2565–2573 (Association 
for Computing Machinery, New York, NY, USA, 2021).

 29. Lundberg, S. M. & Lee, S.-I. A Unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30, 4765–4774 
(2017).

 30. Shapley, L. S. A Value for n-Person Games. In Contributions to the Theory of Games II 307–318 (Princeton University Press, New 
Jerse, 1953).

 31. Brossard, C. et al. Prediction of therapeutic intensity level from automatic multiclass segmentation of traumatic brain injury lesions 
on CT-scans. Sci. Rep. 13, 20155 (2023).

 32. Åkerlund, C. A. I. et al. Clustering identifies endotypes of traumatic brain injury in an intensive care cohort: A CENTER-TBI study. 
Crit. Care 26, 228 (2022).

 33. Åkerlund, C. A. I. et al. Clinical descriptors of disease trajectories in patients with traumatic brain injury in the intensive care unit 
(CENTER-TBI): A multicentre observational cohort study. Lancet Neurol. 23, 71–80 (2024).

 34. Czosnyka, M. & Pickard, J. D. Monitoring and interpretation of intracranial pressure. J. Neurol. Neurosurg. Psychiatry 75, 813–821 
(2004).

 35. Åkerlund, C. A. I. et al. Impact of duration and magnitude of raised intracranial pressure on outcome after severe traumatic brain 
injury: A CENTER-TBI high-resolution group study. PLOS ONE 15, e0243427 (2020).

 36. Beqiri, E. et al. Towards autoregulation-oriented management after traumatic brain injury: Increasing the reliability and stability 
of the CPPopt algorithm. J. Clin. Monit. Comput. 37, 963–976 (2023).

 37. Zoerle, T. et al. Accuracy of manual intracranial pressure recording compared to a computerized high-resolution system: A 
CENTER-TBI analysis. Neurocrit. Care 38, 781–790 (2023).

 38. Eiden, M. et al. Discovery and validation of temporal patterns involved in human brain ketometabolism in cerebral microdialysis 
fluids of traumatic brain injury patients. eBioMedicine 44, 607–617 (2019).

 39. Banco, P. et al. Prediction of neurocritical care intensity through automated infrared pupillometry and transcranial doppler in 
blunt traumatic brain injury: the NOPE study. Eur. J. Trauma Emerg. Surg. https://doi.org/10.1007/s00068-023-02435-1 (2024).

 40. Luz Teixeira, T. et al. Early pupillometry assessment in traumatic brain injury patients: A retrospective study. Brain Sci. 11, 1657 
(2021).

 41. Bhattacharyay, S. et al. Decoding accelerometry for classification and prediction of critically ill patients with severe brain injury. 
Sci. Rep. 11, 23654 (2021).

 42. Bica, I., Alaa, A. M., Lambert, C. & van der Schaar, M. From real-world patient data to individualized treatment effects using 
machine learning: Current and future methods to address underlying challenges. Clin. Pharmacol. Ther. 109, 87–100 (2020).

 43. Sutton, R. T. et al. An overview of clinical decision support systems: Benefits, risks, and strategies for success. Npj Digit. Med. 3, 
1–10 (2020).

 44. Futoma, J., Simons, M., Panch, T., Doshi-Velez, F. & Celi, L. A. The myth of generalisability in clinical research and machine 
learning in health care. Lancet Digit. Health 2, e489–e492 (2020).

 45. Clark, D. et al. Casemix, management, and mortality of patients receiving emergency neurosurgery for traumatic brain injury in 
the global neurotrauma outcomes study: A prospective observational cohort study. Lancet Neurol. 21, 438–449 (2022).

 46. CENTER-TBI Data Access and Publication Requests. https://www.center-tbi.eu/data (Accessed May 21 2024).
 47. Bhattacharyay, S., van Leeuwen, F.D. sbhattacharyay/TILTomorrow: TILTomorrow code repository.  h t t p s : / / d o i . o r g / 1 0 . 5 2 8 1 / z e n o d 

o . 1 1 0 6 0 7 4 3     (2024). 

Acknowledgements
This research was supported by the National Institute for Health Research (NIHR) Brain Injury MedTech Co-op-
erative. CENTER-TBI was supported by the European Union 7th Framework programme (EC grant 602150). 
Additional funding was obtained from the Hannelore Kohl Stiftung (Germany), from OneMind (USA), from 
Integra LifeSciences Corporation (USA), and from NeuroTrauma Sciences (USA). CENTER-TBI also acknowl-

Scientific Reports |           (2025) 15:95 14| https://doi.org/10.1038/s41598-024-83862-x

www.nature.com/scientificreports/

https://www.center-tbi.eu/data/approved-proposals
https://www.center-tbi.eu/project/ethical-approval
https://www.center-tbi.eu/data/dictionary
https://doi.org/10.1007/s00068-023-02435-1
https://www.center-tbi.eu/data
https://doi.org/10.5281/zenodo.11060743
https://doi.org/10.5281/zenodo.11060743
http://www.nature.com/scientificreports


edges interactions and support from the International Initiative for TBI Research (InTBIR) investigators. S.B. is 
funded by a Gates Cambridge Scholarship and a Paul & Daisy Soros Fellowship. E.B. is funded by the Medical 
Research Council (MR N013433-1) and by a Gates Cambridge Scholarship. The funders had no role in study 
design, data collection and analysis, decision to publish, or preparation of the manuscript.  We are grateful to the 
patients and families of our study for making our efforts to improve TBI care possible. S.B. would like to thank 
Kathleen Mitchell-Fox (Princeton University) for offering comments on the manuscript.

Author contributions
S.B. co-conceptualised the aims, developed the methodology and design, curated, analysed, and visualised the 
data, acquired funding, and wrote the manuscript. F.D.L. aided in the analysis and visualisation of data and 
reviewed the manuscript. E.B. curated data, acquired funding, and reviewed the manuscript. C.A.I.Å., L.W., 
E.W.S., and D.W.N. curated data, advised statistical analysis, and reviewed the manuscript. A.I.R.M. and D.K.M. 
curated data, acquired funding, and reviewed the manuscript. A.E. served as principal investigator, curated data, 
co-conceptualised the aims, co-developed the methodology, and reviewed the manuscript. All authors read and 
approved the final manuscript.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at  h t t p s : / / d o i . o r g / 1 
0 . 1 0 3 8 / s 4 1 5 9 8 - 0 2 4 - 8 3 8 6 2 - x     .  

Correspondence and requests for materials should be addressed to S.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and 
indicate if changes were made. The images or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024 

the CENTER-TBI investigators and participants

Cecilia Åkerlund11, Krisztina Amrein12, Nada Andelic13, Lasse Andreassen14, Audny Anke15, 
Anna Antoni16, Gérard Audibert17, Philippe Azouvi18, Maria Luisa Azzolini19, Ronald 
Bartels20, Pál Barzó21, Romuald Beauvais22, Ronny Beer23, Bo-Michael Bellander24, Antonio 
Belli25, Habib Benali26, Maurizio Berardino27, Luigi Beretta19, Morten Blaabjerg28, Peter 
Bragge29, Alexandra Brazinova30, Vibeke Brinck31, Joanne Brooker32, Camilla Brorsson33, 
Andras Buki34,35, Monika Bullinger36, Manuel Cabeleira37, Alessio Caccioppola38, Emiliana 
Calappi39, Maria Rosa Calvi19, Peter Cameron39, Guillermo Carbayo Lozano40, Marco 
Carbonara38, Simona Cavallo27, Giorgio Chevallard41, Arturo Chieregato41, Giuseppe 
Citerio42,43, Hans Clusmann44, Mark Coburn45, Jonathan Coles46, Jamie D. Cooper47, Marta 
Correia48, Amra Čović49, Nicola Curry50, Endre Czeiter34,35, Marek Czosnyka37, Claire Dahyot-
Fizelier51, Paul Dark52, Helen Dawes53, Véronique Keyser54, Vincent Degos26, Francesco 
Della Corte55, Hugo den Boogert20, Bart Depreitere56, Đula Đilvesi57, Abhishek Dixit58, 
Emma Donoghue32, Jens Dreier59, Guy-Loup Dulière60, Ari Ercole58, Patrick Esser53, Erzsébet 
Ezer61, Martin Fabricius62, Valery L. Feigin63, Kelly Foks64, Shirin Frisvold65, Alex Furmanov66, 
Pablo Gagliardo67, Damien Galanaud26, Dashiell Gantner39, Guoyi Gao68, Pradeep George69, 
Alexandre Ghuysen70, Lelde Giga71, Ben Glocker72, Jagoš Golubovic57, Pedro A. Gomez73, 
Johannes Gratz74, Benjamin Gravesteijn75, Francesca Grossi55, Russell L. Gruen76, Deepak 
Gupta77, Juanita A. Haagsma75, Iain Haitsma78, Raimund Helbok23, Eirik Helseth79, Lindsay 
Horton7, Jilske Huijben75, Peter J. Hutchinson80, Bram Jacobs81, Stefan Jankowski82, Mike 

Scientific Reports |           (2025) 15:95 15| https://doi.org/10.1038/s41598-024-83862-x

www.nature.com/scientificreports/

https://doi.org/10.1038/s41598-024-83862-x
https://doi.org/10.1038/s41598-024-83862-x
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/scientificreports


Jarrett31, Ji-yao Jiang69, Faye Johnson83, Kelly Jones63, Mladen Karan57, Angelos G. Kolias80, 
Erwin Kompanje84, Daniel Kondziella62, Evgenios Kornaropoulos58, Lars-Owe Koskinen85, 
Noémi Kovács86, Ana Kowark87, Alfonso Lagares73, Linda Lanyon69, Steven Laureys88, Fiona 
Lecky89,90, Didier Ledoux88, Rolf Lefering91, Valerie Legrand92, Aurelie Lejeune93, Leon 
Levi94, Roger Lightfoot95, Hester Lingsma75, Andrew I. R. Maas54,96, Ana M. Castaño-León73, 
Marc Maegele97, Marek Majdan30, Alex Manara98, Geoffrey Manley99, Costanza Martino100, 
Hugues Maréchal60, Julia Mattern101, Catherine McMahon102, Béla Melegh103, David 
Menon58, Tomas Menovsky54,96, Ana Mikolic75, Benoit Misset88, Visakh Muraleedharan69, 
Lynnette Murray39, Ancuta Negru104, David Nelson11, Virginia Newcombe58, Daan 
Nieboer75, József Nyirádi12, Otesile Olubukola89, Matej Oresic105, Fabrizio Ortolano38, 
Aarno Palotie106,107,108, Paul M. Parizel109, Jean-François Payen110, Natascha Perera22, 
Vincent Perlbarg26, Paolo Persona111, Wilco Peul112,113, Anna Piippo-Karjalainen114, Matti 
Pirinen108, Dana Pisica75, Horia Ples104, Suzanne Polinder75, Inigo Pomposo40, Jussi P. 
Posti115, Louis Puybasset116, Andreea Radoi117, Arminas Ragauskas118, Rahul Raj114, Malinka 
Rambadagalla119, Isabel Retel Helmrich75, Jonathan Rhodes120, Sylvia Richardson121, Sophie 
Richter58, Samuli Ripatti106, Saulius Rocka118, Cecilie Roe122, Olav Roise123,124, Jonathan 
Rosand125,126,127, Jeffrey V. Rosenfeld128, Christina Rosenlund129, Guy Rosenthal65, Rolf 
Rossaint87, Sandra Rossi114, Daniel Rueckert72, Martin Rusnák130, Juan Sahuquillo117, 
Oliver Sakowitz101,131, Renan Sanchez-Porras131, Janos Sandor132, Nadine Schäfer91, Silke 
Schmidt133, Herbert Schoechl134, Guus Schoonman135, Rico Frederik Schou136, Elisabeth 
Schwendenwein16, Charlie Sewalt75, Ranjit D. Singh112,113, Toril Skandsen137,138, Peter 
Smielewski37, Abayomi Sorinola139, Emmanuel Stamatakis58, Simon Stanworth50, Robert 
Stevens140, William Stewart141, Ewout W. Steyerberg75,142, Nino Stocchetti143, Nina 
Sundström144, Riikka Takala145, Viktória Tamás139, Tomas Tamosuitis146, Mark Steven 
Taylor30, Aurore Thibaut88, Braden Te Ao63, Olli Tenovuo115, Alice Theadom63, Matt Thomas98, 
Dick Tibboel147, Marjolein Timmers84, Christos Tolias148, Tony Trapani39, Cristina Maria 
Tudora104, Andreas Unterberg101, Peter Vajkoczy149, Shirley Vallance39, Egils Valeinis71, 
Zoltán Vámos61, Mathieu Jagt150, Gregory Steen54, Joukje Naalt81, Jeroen T. J. M. Dijck112,113, 
Inge A. M. Erp112,113, Thomas A. Essen112,113, Wim Hecke151, Caroline Heugten53, Ernest 
Veen75, Thijs Vande Vyvere152, Roel P. J. Wijk112,113, Alessia Vargiolu43, Emmanuel Vega93, 
Kimberley Velt75, Jan Verheyden151, Paul M. Vespa153, Anne Vik137,154, Rimantas Vilcinis146, 
Victor Volovici78, Nicole Steinbüchel49, Daphne Voormolen75, Petar Vulekovic57, Kevin K. W. 
Wang155, Daniel Whitehouse58, Eveline Wiegers75, Guy Williams58, Lindsay Wilson7, Stefan 
Winzeck58, Stefan Wolf156, Zhihui Yang125,126,127, Peter Ylén157, Alexander Younsi101, Frederick 
A. Zeiler58,158, Veronika Zelinkova30, Agate Ziverte71 & Tommaso Zoerle38

11Department of Physiology and Pharmacology, Section of Perioperative Medicine and Intensive Care, Karolinska 
Institutet, Stockholm, Sweden. 12János Szentágothai Research Centre, University of Pécs, Pécs, Hungary. 13Division 
of Clinical Neuroscience, Department of Physical Medicine and Rehabilitation, Oslo University Hospital and 
University of Oslo, Oslo, Norway. 14Department of Neurosurgery, University Hospital Northern Norway, Tromso, 
Norway. 15Department of Physical Medicine and Rehabilitation, University Hospital Northern Norway, Tromso, 
Norway. 16Trauma Surgery, Medical University Vienna, Vienna, Austria. 17Department of Anesthesiology and 
Intensive Care, University Hospital Nancy, Nancy, France. 18Raymond Poincare Hospital, Assistance Publique – 
Hopitaux de Paris, Paris, France. 19Department of Anesthesiology and Intensive Care, S Raffaele University Hospital, 
Milan, Italy. 20Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands. 
21Department of Neurosurgery, University of Szeged, Szeged, Hungary. 22International Projects Management, 
ARTTIC, Munchen, Germany. 23Neurological Intensive Care Unit, Department of Neurology, Medical University of 
Innsbruck, Innsbruck, Austria. 24Department of Neurosurgery and Anesthesia and Intensive Care Medicine, 
Karolinska University Hospital, Stockholm, Sweden. 25NIHR Surgical Reconstruction and Microbiology Research 
Centre, Birmingham, UK. 26Anesthesie-Réanimation, Assistance Publique – Hopitaux de Paris, Paris, France. 
27Department of Anesthesia and ICU, AOU Città della Salute e della Scienza di Torino - Orthopedic and Trauma 
Center, Torino, Italy. 28Department of Neurology, Odense University Hospital, Odense, Denmark. 29BehaviourWorks 
Australia, Monash Sustainability Institute, Monash University, Melbourne, VIC, Australia. 30Department of Public 
Health, Faculty of Health Sciences and Social Work, Trnava University, Trnava, Slovakia. 31Quesgen Systems Inc., 
Burlingame, CA, USA. 32Department of Epidemiology and Preventive Medicine, Australian and New Zealand 
Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, 
Australia. 33Department of Surgery and Perioperative Science, Umeå University, Umeå, Sweden. 34Department of 
Neurosurgery, Medical School, University of Pécs, Pécs, Hungary. 35Neurotrauma Research Group, János 
Szentágothai Research Centre, University of Pécs, Pécs, Hungary. 36Department of Medical Psychology, 
Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany. 37Brain Physics Lab, Division of Neurosurgery, 
Department of Clinical Neurosciences, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK. 38Neuro 
ICU, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy. 39Department of Epidemiology and 

Scientific Reports |           (2025) 15:95 16| https://doi.org/10.1038/s41598-024-83862-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Preventive Medicine, ANZIC Research Centre, Monash University, Melbourne, VIC, Australia. 40Department of 
Neurosurgery, Hospital of Cruces, Bilbao, Spain. 41NeuroIntensive Care, Niguarda Hospital, Milan, Italy. 42School of 
Medicine and Surgery, Università Milano Bicocca, Milano, Italy. 43NeuroIntensive Care Unit, Department 
Neuroscience, IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy. 44Department of Neurosurgery, Medical 
Faculty, RWTH Aachen University, Aachen, Germany. 45Department of Anesthesiology and Intensive Care Medicine, 
University Hospital Bonn, Bonn, Germany. 46Department of Anesthesia and Neurointensive Care, Cambridge 
University Hospital NHS Foundation Trust, Cambridge, UK. 47School of Public Health and PM, Monash University 
and The Alfred Hospital, Melbourne, VIC, Australia. 48Radiology/MRI Department, MRC Cognition and Brain 
Sciences Unit, Cambridge, UK. 49Institute of Medical Psychology and Medical Sociology, Universitätsmedizin 
Göttingen, Göttingen, Germany. 50Oxford University Hospitals NHS Trust, Oxford, UK. 51Intensive Care Unit, CHU 
Poitiers, Potiers, France. 52University of Manchester NIHR Biomedical Research Centre, Critical Care Directorate, 
Salford Royal Hospital NHS Foundation Trust, Salford, UK. 53Movement Science Group, Faculty of Health and Life 
Sciences, Oxford Brookes University, Oxford, UK. 54Department of Neurosurgery, Antwerp University Hospital, 
Edegem, Belgium. 55Department of Anesthesia and Intensive Care, Maggiore Della Carità Hospital, Novara, Italy. 
56Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium. 57Department of Neurosurgery, 
Faculty of Medicine, Clinical Centre of Vojvodina, University of Novi Sad, Novi Sad, Serbia. 58Division of Anaesthesia, 
Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK. 59Center for Stroke Research Berlin, Charité – 
Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and 
Berlin Institute of Health, Berlin, Germany. 60Intensive Care Unit, CHR Citadelle, Liège, Belgium. 61Department of 
Anaesthesiology and Intensive Therapy, University of Pécs, Pécs, Hungary. 62Departments of Neurology, Clinical 
Neurophysiology and Neuroanesthesiology, Region Hovedstaden Rigshospitalet, Copenhagen, Denmark. 63 
Faculty of Health and Environmental Studies, National Institute for Stroke and Applied Neurosciences, Auckland 
University of Technology, Auckland, New Zealand. 64Department of Neurology, Erasmus MC, Rotterdam, The 
Netherlands. 65Department of Anesthesiology and Intensive Care, University Hospital Northern Norway, Tromso, 
Norway. 66Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel. 
67Fundación Instituto Valenciano de Neurorrehabilitación (FIVAN), Valencia, Spain. 68Department of Neurosurgery, 
Shanghai Renji Hospital, Shanghai Jiaotong University/School of Medicine, Shanghai, China. 69INCF International 
Neuroinformatics Coordinating Facility, Karolinska Institutet, Stockholm, Sweden. 70Emergency Department, CHU, 
Liège, Belgium. 71Neurosurgery Clinic, Pauls Stradins Clinical University Hospital, Riga, Latvia. 72Department of 
Computing, Imperial College London, London, UK. 73Department of Neurosurgery, Hospital Universitario, 12 de 
Octubre, Madrid, Spain. 74Department of Anesthesia, Critical Care and Pain Medicine, Medical University of Vienna, 
Vienna, Austria. 75Department of Public Health, Erasmus Medical Center-University Medical Center, Rotterdam, 
The Netherlands. 76College of Health and Medicine, Australian National University, Canberra, Australia. 
77Department of Neurosurgery, Neurosciences Centre and JPN Apex Trauma Centre, All India Institute of Medical 
Sciences, New Delhi 110029, India. 78Department of Neurosurgery, Erasmus MC, Rotterdam, the Netherlands. 
79Department of Neurosurgery, Oslo University Hospital, Oslo, Norway. 80Division of Neurosurgery, Department of 
Clinical Neurosciences, Addenbrooke’s Hospital and University of Cambridge, Cambridge, UK. 81Department of 
Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands. 
82Neurointensive Care, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK. 83Salford Royal Hospital 
NHS Foundation Trust Acute Research Delivery Team, Salford, UK. 84Department of Intensive Care and Department 
of Ethics and Philosophy of Medicine, Erasmus Medical Center, Rotterdam, The Netherlands. 85Department of 
Clinical Neuroscience, Umeå University, Neurosurgery, , Sweden. 86Hungarian Brain Research Program - Grant No. 
KTIA_13_NAP-A-II/8, University of Pécs, Pécs, Hungary. 87Department of Anaesthesiology, University Hospital of 
Aachen, Aachen, Germany. 88Cyclotron Research Center, University of Liège, Liège, Belgium. 89Health Services 
Research Section, Centre for Urgent and Emergency Care Research (CURE), School of Health and Related Research 
(ScHARR), University of Sheffield, Sheffield, UK. 90Emergency Department, Salford Royal Hospital, Salford, UK. 
91Institute of Research in Operative Medicine (IFOM), Witten/Herdecke University, Cologne, Germany. 92VP Global 
Project Management CNS, ICON, Paris, France. 93Department of Anesthesiology-Intensive Care, Lille University 
Hospital, Lille, France. 94Department of Neurosurgery, Rambam Medical Center, Haifa, Israel. 95Department of 
Anesthesiology and Intensive Care, University Hospitals Southhampton NHS Trust, Southhampton, UK. 
96Department of Translational Neuroscience, Faculty of Medicine and Health Science, University of Antwerp, 
Antwerp, Belgium. 97Department of Traumatology, Orthopedic Surgery and Sportmedicine, Cologne-Merheim 
Medical Center (CMMC), Witten/Herdecke University, Cologne, Germany. 98Intensive Care Unit, Southmead 
Hospital, Bristol, Bristol, UK. 99Department of Neurological Surgery, University of California, San Francisco, CA, 
USA. 100Department of Anesthesia and Intensive Care, M. Bufalini Hospital, Cesena, Italy. 101Department of 
Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany. 102Department of Neurosurgery, The Walton 
Centre, NHS Foundation Trust, Liverpool, UK. 103Department of Medical Genetics, University of Pécs, Pécs, Hungary. 
104Department of Neurosurgery, Emergency County Hospital Timisoara, Timisoara, Romania. 105School of Medical 
Sciences, Örebro University, Örebro, Sweden. 106Institute for Molecular Medicine Finland, University of Helsinki, 
Helsinki, Finland. 107Analytic and Translational Genetics Unit, Department of Medicine, Psychiatric and 
Neurodevelopmental Genetics Unit, Department of Psychiatry, Department of Neurology, Massachusetts General 
Hospital, Boston, MA, USA. 108Program in Medical and Population Genetics, The Stanley Center for Psychiatric 
Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA. 109Department of Radiology, University of 
Antwerp, Edegem, Belgium. 110Department of Anesthesiology and Intensive Care, University Hospital of Grenoble, 
Grenoble, France. 111Department of Anesthesia and Intensive Care, Azienda Ospedaliera Università di Padova, 
Padova, Italy. 112Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands. 
113Department of Neurosurgery, Medical Center Haaglanden, The Hague, The Netherlands. 114Department of 
Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland. 115Division of Clinical Neurosciences, 
Department of Neurosurgery and Turku Brain Injury Centre, Turku University Hospital and University of Turku, 

Scientific Reports |           (2025) 15:95 17| https://doi.org/10.1038/s41598-024-83862-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Turku, Finland. 116Department of Anesthesiology and Critical Care, Pitié -Salpêtrière Teaching Hospital, Assistance 
Publique, Hôpitaux de Paris and University Pierre et Marie Curie, Paris, France. 117Neurotraumatology and 
Neurosurgery Research Unit (UNINN), Vall d’Hebron Research Institute, Barcelona, Spain. 118Department of 
Neurosurgery, Kaunas University of Technology and Vilnius University, Vilnius, Lithuania. 119Department of 
Neurosurgery, Rezekne Hospital, Latvia. 120Department of Anaesthesia, Critical Care and Pain Medicine NHS 
Lothian and University of Edinburg, Edinburgh, UK. 121MRC Biostatistics Unit, Cambridge Institute of Public Health, 
Cambridge, UK. 122Department of Physical Medicine and Rehabilitation, Oslo University Hospital/University of 
Oslo, Oslo, Norway. 123Division of Orthopedics, Oslo University Hospital, Oslo, Norway. 124Institue of Clinical 
Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway. 125Broad Institute, Cambridge, MA, USA. 126Harvard 
Medical School, Boston, MA, USA. 127Massachusetts General Hospital, Boston, MA, USA. 128National Trauma 
Research Institute, The Alfred Hospital, Monash University, Melbourne, VIC, Australia. 129Department of 
Neurosurgery, Odense University Hospital, Odense, Denmark. 130International Neurotrauma Research Organisation, 
Vienna, Austria. 131Klinik Für Neurochirurgie, Klinikum Ludwigsburg, Ludwigsburg, Germany. 132Division of 
Biostatistics and Epidemiology, Department of Preventive Medicine, University of Debrecen, Debrecen, Hungary. 
133Department Health and Prevention, University Greifswald, Greifswald, Germany. 134Department of 
Anaesthesiology and Intensive Care, AUVA Trauma Hospital, Salzburg, Austria. 135Department of Neurology, 
Elisabeth-TweeSteden Ziekenhuis, Tilburg, The Netherlands. 136Department of Neuroanesthesia and Neurointensive 
Care, Odense University Hospital, Odense, Denmark. 137Department of Neuromedicine and Movement Science, 
Norwegian University of Science and Technology, NTNU, Trondheim, Norway. 138Department of Physical Medicine 
and Rehabilitation, St.Olavs Hospital, Trondheim University Hospital, Trondheim, Norway. 139Department of 
Neurosurgery, University of Pécs, Pécs, Hungary. 140Division of Neuroscience Critical Care, John Hopkins University 
School of Medicine, Baltimore, USA. 141Department of Neuropathology, Queen Elizabeth University Hospital and 
University of Glasgow, Glasgow, UK. 142Dept. of Department of Biomedical Data Sciences, Leiden University 
Medical Center, Leiden, The Netherlands. 143Department of Pathophysiology and Transplantation, Milan University, 
and Neuroscience ICU, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Italy. 144Department of 
Radiation Sciences, Biomedical Engineering, Umeå University, Umeå, Sweden. 145Perioperative Services, Intensive 
Care Medicine and Pain Management, Turku University Hospital and University of Turku, Turku, Finland. 
146Department of Neurosurgery, Kaunas University of Health Sciences, Kaunas, Lithuania. 147Intensive Care and 
Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children’s Hospital, Rotterdam, The Netherlands. 
148Department of Neurosurgery, Kings College London, London, UK. 149Neurologie, Neurochirurgie und Psychiatrie, 
Charité – Universitätsmedizin Berlin, Berlin, Germany. 150Department of Intensive Care Adults, Erasmus MC– 
University Medical Center Rotterdam, Rotterdam, The Netherlands. 151icoMetrix NV, Leuven, Belgium. 152Radiology 
Department, Antwerp University Hospital, Edegem, Belgium. 153Director of Neurocritical Care, University of 
California, Los Angeles, USA. 154Department of Neurosurgery, St.Olavs Hospital, Trondheim University Hospital, 
Trondheim, Norway. 155Department of Emergency Medicine, University of Florida, Gainesville, FL, USA. 
156Department of Neurosurgery, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, 
Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany. 157VTT Technical Research Centre, 
Tampere, Finland. 158Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University 
of Manitoba, Winnipeg, MB, Canada.

Scientific Reports |           (2025) 15:95 18| https://doi.org/10.1038/s41598-024-83862-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	TILTomorrow today: dynamic factors predicting changes in intracranial pressure treatment intensity after traumatic brain injury
	Methods
	Study design and participants
	Ethics declaration
	Therapy intensity level (TIL)
	Model variables
	TILTomorrow modelling strategy
	Model and information evaluation
	Contributors to transitions in TIL

	Results
	Study population
	Reliability and performance of TILTomorrow
	Differential explanation of next-day changes in TIL
	Variables associated with next-day changes in TIL
	Conceptual model of changes in treatment intensity

	Discussion
	References


