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As sequencing becomes more accessible, there is an acute need for novel compression methods to 
efficiently store sequencing files. Omics analytics can leverage sequencing technologies to enhance 
biomedical research and individualize patient care, but sequencing files demand immense storage 
capabilities, particularly when sequencing is utilized for longitudinal studies. Addressing the storage 
challenges posed by these technologies is crucial for omics analytics to achieve their full potential. 
We present a novel lossless, reference-free compression algorithm, GeneSqueeze, that leverages the 
patterns inherent in the underlying components of FASTQ files to solve this need. GeneSqueeze’s 
benefits include an auto-tuning compression protocol based on each file’s distribution, lossless 
preservation of IUPAC nucleotides and read identifiers, and unrestricted FASTQ/A file attributes (i.e., 
read length, number of reads, or read identifier format). We compared GeneSqueeze to the general-
purpose compressor, gzip, and to a domain-specific compressor, SPRING, to assess performance. 
Due to GeneSqueeze’s current Python implementation, GeneSqueeze underperformed as compared 
to gzip and SPRING in the time domain. GeneSqueeze and gzip achieved 100% lossless compression 
across all elements of the FASTQ files (i.e. the read identifier, sequence, quality score and ‘ + ’ lines). 
GeneSqueeze and gzip compressed all files losslessly, while both SPRING’s traditional and lossless 
modes exhibited data loss of non-ACGTN IUPAC nucleotides and of metadata following the ‘ + ’ on 
the separator line. GeneSqueeze showed up to three times higher compression ratios as compared to 
gzip, regardless of read length, number of reads, or file size, and had comparable compression ratios 
to SPRING across a variety of factors. Overall, GeneSqueeze represents a competitive and specialized 
compression method for FASTQ/A files containing nucleotide sequences. As such, GeneSqueeze has 
the potential to significantly reduce the storage and transmission costs associated with large omics 
datasets without sacrificing data integrity.
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The field of genomics, due to advancements in high-throughput sequencing technologies, has experienced a 
revolution in the past two decades, with almost a million-fold reduction (from 1 billion to hundreds of dollars) 
in the cost of sequencing1. The increase in accessibility has led to an increase in the quantity of omics data, 
with estimations predicting that 2–40 exabytes of data will be generated within the next decade2. Unfortunately, 
storage technology is advancing at a much slower pace, leading to critical technical and economic bottlenecks 
for omics-based discovery and their applications in biomedical or clinical research. Omics data is essential 
in personalized medicine, which relies on accurate omics data to extract biomarkers or signatures that can 
individualize a patient’s preventative measures, diagnoses, treatments, and monitoring3. To be practically used in 
biomedical research and patient care, omics data needs to be stored, retrieved, and transmitted in a manner that 
is cost-effective, time-efficient, and lossless for analysis and dissemination. Therefore, specialized compressors 
for omics data are needed to continue to support advancements in medicine.

Nucleotide-based omics data (i.e., genomics, transcriptomics, epigenomics) are commonly stored in FASTQ 
or FASTA text-based formats. FASTA format contains a read identifier line followed by either nucleotide or amino 
acid sequences. These nucleotide sequences can contain the classical A, C, G, and T nucleotides as well as non-
ACGT IUPAC nucleotides4. Non-ACGT IUPAC nucleotides aid in representing ambiguity in DNA sequences 
and therefore are often used during the genome assembly process. These bases are useful in metagenomics 
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studies, for use in accurately representing the genetic composition of complex microbial communities5,6, and in 
clinical diagnostics—notably in cancer genomics—to denote mutations and genomic variations7–9. Additionally, 
in the context of continual discoveries of new species, the need for efficient storage of genome assembly files 
continues to rise10. The FASTQ format is derived from FASTA and additionally stores the quality scores output 
by sequencing platforms (e.g., Illumina) which reflect the level of confidence in the read of each base in a 
sequence3. The maintenance of quality scores during storage is critical for analyses such as variant detection, 
in which accuracy and reliability of the base calls are foundational11,12. Both FASTA and FASTQ files can be 
large, particularly for high-coverage sequencing data, which makes them difficult to store and process efficiently. 
Therefore, FASTQ/A files are routinely compressed for more practical storage, management, and transfer. The 
similarities in structure between FASTA and FASTQ files led us to develop one algorithm which can be utilized 
across both file types, accommodating the non-ACGT IUPAC bases that are specifically noted in FASTA files.

The current standard practice for FASTQ/A compression across the omics industry is the general compressor 
gzip13, a general-purpose algorithm that combines Huffman encoding14 and LZ7715 to create a dictionary 
tailored to the frequency of word repetitions in the data. Unfortunately, gzip performs poorly on genomic data 
compression when compared to omics domain-specific compressors16–18, which leverage the inherent repetitive 
characteristics of FASTQ files. Despite this, gzip remains the de facto standard in the biomedical research 
domain due to its stability and popularity. gzipped files are accepted as input by various sequencing analysis 
tools and are used by public repositories of genomic data19. However, domain-specific algorithms that leverage 
the redundancy in FASTQ files have shown promise in reducing storage volume by achieving high compression 
ratios while maintaining high accuracy for downstream analysis. As clinical utilization of omics data increases, 
it appears likely that a need for highly accurate, domain-specific compression algorithms with great compression 
abilities will arise.

Various domain-specific genomic data compressors such as FaStore20, SPRING16, FQSqueezer21, PetaGene22, 
Genozip23, ColoRd24, repaq25, DSRC18,26, and MZPAQ27 have shown significant promise in addressing data 
size challenges within the domain. Unfortunately, each of the existing domain-specific compression methods 
exhibit one or more drawbacks which have precluded their widespread adoption in the space. Examples of these 
drawbacks include relatively poor compression ratios18,25–27, large memory and time requirements21, loss of read 
order20, lossiness for non-ACTGN IUPAC bases16, and not being open source22,23. As such, there is still a need 
for efficient domain-specific methods for next-generation sequencing (NGS) data compression.

Given the needs of the field, we chose to create a novel reference-free compressor, GeneSqueeze, which uses 
read-reordering-based compression methodology14 to maximally compress FASTQ files while maintaining 
complete data integrity, as verified by MD528 matching. To assess GeneSqueeze’s functionality as compared to 
the field, we chose to examine its performance as compared to the industry standard compressor, gzip13, and 
SPRING16, a ‘state of the art’3 open source compressor which supports lossless compression (with the exception 
of certain cases such as FASTQ/A files containing rare IUPAC nucleotides or specific read identifier formats), 
and has fast speeds and small compression ratios11,27.

GeneSqueeze algorithm
The GeneSqueeze algorithm is designed to fully leverage the inherent repetitions of FASTQ/A files and thus 
independently reduces the instances of k-mers within the nucleotide sequences prior to further compression 
of the nucleotides, quality scores, and read identifier sequences using a general compressor (Fig.  1) Within 
each branch of the algorithm, specific groups of activity are described as ‘blocks’ to provide greater clarity of 
overall function. Each block is explained below. Additionally, the GeneSqueeze algorithm processes each file 
independently, under the assumption that files will have a more similar distribution of sequences within a file 
than within a dataset containing multiple files from multiple disparate samples from disparate sources.

FASTQ/A splitter
The GeneSqueeze algorithm begins with the FASTQ/A Splitter block which loads and reads the FASTQ/A files 
to memory. As FASTQ/A files can be large, the FASTQ/A Splitter block breaks large files (≥ 50 GB) into smaller 
sub-files to facilitate their loading into memory. Once files are in memory, the files are then parsed into their 
nucleotide sequences, read identifiers, and quality score sequences (for FASTQ only). For large datasets, all sub-
files proceed through the algorithm individually and are restored to the single original FASTQ/A file during the 
decoding step.

Sequence segmenter
Once FASTQ/A file components are held in their own lists, the Sequence Segmenter splits nucleotide sequences 
and quality score sequences from longer reads into smaller segments. The Sequence Segmenter is designed this 
way for two reasons: (1) similar to our design to split files into chunks small enough to hold in memory, our 
Sequence Segmenter splits reads into lengths small enough to be held in memory and which our algorithm 
can easily process and enables the algorithm to be functional across all read sizes, (2) our preliminary studies 
found that there exists an ideal sequence segment length (ideal_len) for maximal GeneSqueeze compression 
efficiency.

Utilizing a fixed value for the hyperparameter ideal_len, the Sequence Segmenter then calculates the number 
of segments (num_seg, Eq. 1) each sequence will be split into and the length of each segment (seg_len, Eq. 2).

 
num_seg =

⌊
seq_len

ideal_len

⌋
 (1)

Scientific Reports |          (2025) 15:322 2| https://doi.org/10.1038/s41598-024-79258-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 1. GeneSqueeze compression flow-diagram. A diagram depicting the overall methodology of the 
GeneSqueeze algorithm. A blue outline denotes the quality score branch, a red outline indicates the nucleotide 
sequence branch, and a black outline designates the read identifier branch. The duplication removal, semi-
duplication removal, k-mer removal, and nucleotide sequence regulator all output auxiliary information, which 
refers to all of the information necessary to losslessly decompress the file.
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seg_len =

⌊
seq_len

num_seg

⌋
 (2)

The algorithm necessitates all segments are of equal length for use in downstream blocks and thus, if 
(seq_len > num_seg × seg_len), the remainder (extra_len characters, Eq.  3) of the sequences are 
separated and concatenated together to make a long sequence to be processed separately.

 extra_len = seq_len − num_seg × seg_len (3)

The following is a numerical example:

 (seq_len = 251, ideal_len = 80) ⇒ (num_seg = 3, seg_len = 83, extra_len = 2)

After processing the nucleotide and quality score components to the desired lengths, these components of the 
FASTQ/A file are sent to their specific branches of the GeneSqueeze algorithm for further processing.

Nucleotide compression branch
The segmented nucleotide sequences are passed to the nucleotide sequence compression branch of the algorithm, 
which consists of the following blocks: Duplication Removal (DR), Sequence Reversion, Random Sequence 
Selector, k-mer Dictionary Optimizer, k-mer Removal, Semi-Duplication Removal (SDR), Nucleotide Sequence 
Regulator, and Nucleotide Sequence Binary Encoding. This branch utilizes block-constrained read-reordering-
based methodology to reduce computational load while maintaining overall read order15.

Duplication removal (nucleotide branch)
The nucleotide branch begins with the Duplication Removal block, which finds, groups, encodes, and removes 
all duplicative reads within a given set of sequences. The duplication removal workflow (Fig. 2) first creates an 
array containing all sequences and a temporary index value, called original_index, for each sequence, to preserve 
a reference to the original sequence order. The sequences are then sorted alphabetically and identical sequences 
are grouped. Within a group of identical sequences, the first instance of a sequence is labeled as a parent sequence 
and any subsequent instances of the same sequence are designated as child sequences. Parent sequences with 
child sequences are given a separate designation from parent sequences without any associated child sequences. 
This designation is stored in the dr_identifier variable to enable the retrieval of all parent and child sequences 
during decompression. The child sequences are then removed from the sequences array, followed by the re-
sorting of the parent sequences using their original indices, prior to deletion of the original_index.

The pseudocode presented below shows the duplication removal process:

The dr_identifier is encoded as a string and directed to the General-Purpose Compressor and the parent 
sequences are passed to the Sequence Reversion and then to the Semi-Duplication Removal (SDR) blocks for 
further processing.

Semi-duplication removal (SDR)
The semi-duplication removal block finds similar, but not identical, nucleotide sequences, in order to encode 
their similarities and differences to enable removal of the similar subsequences within each group in a manner 
that efficiently reduces the compression ratio. The semi-duplication removal workflow is depicted in Fig. 3. In 
this context, two subsequences are considered semi-identical if their initial non-identical character falls within a 
certain number of characters from their respective beginnings, defined as the sdr_threshold.

In SDR operation, the sequences are first ordered alphabetically while retaining their original indices. Once 
sorted, semi-duplicate nucleotide sequences are referred to as groups. For each group, the first instance of the 
sequence is designated as the parent sequence and is assigned a parent_index. The remaining semi-duplicate 
sequences within the group are designated as the child_sequences. Each child sequence is assigned a child_index 
associated with the parent_index to which it belongs. GeneSqueeze then examines the non-identical nucleotides 
between the parent sequence and the child sequence. GeneSqueeze identifies the first non-identical character in 
the child sequence and encodes the sub-subsequence from the first non-identical character to the last character 
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of the sequence as noise (noise). The GeneSqueeze algorithm continues to iterate through the group, identifying 
noise between the first child and its parent and between any subsequent child with its preceding child. The length 
of the noise_sequence is also encoded as noise_length. Noise length along with child identifier indices are passed 
to the General-Purpose Compressor (noise_length, child_index). Meanwhile, the noise_sequences are directed to 
the Nucleotide Sequence Regulator block. Finally, the parent_sequences are resorted using their original indices 

Fig. 2. GeneSqueeze duplication removal process. An example of this process is depicted, showing the initial 
creation of an index for the original order of the sequences. The process then illustrates the alphabetical 
re-ordering of the sequences based on the first nucleotide of the sequence, and the retention of the original 
index position of each sequence. The original index position of duplicate sequences is then associated with 
the original index identifier for the sequence that is the initial occurrence of the duplicate sequences (the 
‘parent’ sequence). The duplicate sequences are then removed from the data frame, and an index of the original 
identifiers, and the duplication removal identifiers is created to store the identity and relationships between the 
retained sequences and any removed duplicate sequences. S denotes a parent with no duplicates. M denotes a 
parent with duplicate ‘child’ sequences. For the duplicated sequences, the DR_Identifier indicates the original 
index identifier of their parent sequence.
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and directed to either the Sequence Reversion or the Nucleotide Sequence Regulator, for the first or second SDR 
operation, respectively.

The pseudocode presented below shows the semi-duplication removal process:
FUNCTION semi_duplication_removal(sequences, sdr_threshold).

 1.  Convert sequences to an array.
 2.  Sort the sequences and keep track of their original indices.
 3.  Calculate the differences between adjacent sorted sequences.
 4.  Prepare data structure to store information about sequences, groups, noise sequence, and noise lengths.
 5.  Create groups of sequences based on the cut points.
 6.  Identify the first sequence in each group as parent sequence and rest of the sequences as child sequences.
 7.  Calculate the noises between each sequence and its previous sequence for each group.
 8.  Calculate the length of obtained noises.

Fig. 3. Semi-duplication removal (SDR) process. An example of this process is depicted, showing the 
creation of an array of sequences and their associated indices. The sequences are then sorted alphabetically 
while retaining their original indices (OI). Semi-duplicative sequences are identified and grouped (grey 
background). Within the semi-duplicative sequence group, the first sequence (OI #4) is identified as the first 
parent sequence, with the second sequence (OI #1) as its child sequence. The mismatch between parent OI #4 
and child OI #1 is C, which is encoded as noise. The SDR block then identifies OI#1 as a parent to OI#5 with 
a mismatch of TT, which is encoded as the child’s noise. The child sequences are then removed from the array, 
with the parent sequences and their original indices retained as the output of the SDR block.
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 9.  Build a DataFrame to organize the information for the child indices.
 10.  Sort sequences by original indices.
 11.  Extract the indices of the child sequences as child indices.
 12.  Join noise sequences as a single string.
 13.  Return the child indices, noise lengths, noise sequences, and the parent sequences.

Sequence reversion
As mentioned in the semi-duplication removal block, the GeneSqueeze SDR block is crafted to identify and 
eliminate sequences that exhibit semi-duplication at the beginning of a sequence. To ensure the maximum 
removal of semi-duplicate sequences across the entire sequence, this block reverses the sequences prior to 
sending the sequences back through the SDR block. After passing through SDR, the output parent sequences 
are reverted to their original orientation using the Sequence Reversion block before being sent to the k-mer 
Dictionary Optimizer. The Sequence Reversion block is only utilized for the first instance of the SDR process.

Random sequences selector
To reduce computational load, we utilized the random sequence selector block, which randomly selects a subset 
of nucleotide sequences to be used in the k-mer dictionary optimizer block. The percentage of sequences selected 
is defined by the hyperparameter, random_subset %.

k-mer dictionary optimizer
The k-mer dictionary optimizer block utilizes a k-mer dictionary to encode k-mers by replacing the k-mers with 
short indices to maximize the compression ratio. Theoretically, the k-mer dictionary could contain many k-mers 
of numerous k lengths. Given the myriad of potential combinations, the creation and storage of this dictionary 
can be an expensive process. There is a trade-off between the optimal length k of each k-mer, the optimal 
frequency of k-mers, and the optimal total number of k-mer–index pairs in the k-mer dictionary. The elimination 
of longer k-mers can result in larger deletions overall, but only if these k-mers are sufficiently high in frequency. 
Removing shorter k-mers results in removing less information per sequence; however, given their higher 
likelihood of occurrence, removal of high frequency short k-mers can lead to a greater number of nucleotides 
being eliminated. The addition of each k-mer to the dictionary adds to the dictionary length and increases the 
total amount of data required for compression. Given this intrinsic linkage, these factors require simultaneous 
computation. Additionally, the problem is further complicated by the removal of each k-mer sequence from 
the original sequences, as this may affect the frequency of other k-mers within the remaining sequences. This 
requires the algorithm to iteratively select the ‘best’ remaining k-mer to add to the k-mer dictionary. Moreover, 
the removal of k-mers from within a read often leaves a preceding sequence and a succeeding sequence, which 
are henceforth referred to as prefix and suffix sequences, respectively.

Overall, this leads to a complex multi-objective optimization problem which balances k-mer length, k-
mer frequency, and both prefix and suffix length and content to maximize compression ratio and reduce the 
computational costs of compression. Importantly, the storage space required for both the k-mer dictionary and 
the additional encoding information needed for k-mer removal must not exceed the space saved by removing 
the k-mers. This constraint provides ideal stopping criteria for the algorithm.

Given the numerous coupled factors and computational iterations involved in k-mer dictionary creation, the 
GeneSqueeze algorithm works to reduce overall computation requirements by identifying the k-mer dictionary 
from the randomly selected sequences generated by the Random Sequence Selector in the following 4 main 
phases: the pre-competition phase, the internal competition phase, the external competition phase, and stopping 
criteria phase as depicted in Fig. 4.

The k-mer dictionary optimizer block’s pre-competition phase creates an initial list of k-mers utilizing the 
sequences output by the Random Sequence Selector. A pre-selected list of k values, referred to as k_list, is used 
for the k-mer selection process. As previously noted, there exists a trade-off between the length of the k-mer (k) 
and the frequency of the k-mers. Correctly balancing the interplay between these values is crucial to ascertain 
the optimal k-mers. As sequencing is related to sequences from the genome, the k-mers and their preceding and 
succeeding sequences should align to specific locations in a reference genome. This means they are inherently 
not randomly distributed, meaning that when we expand our examination from the k-mers to the surrounding 
sequences, it is likely that we will find highly similar sequences. This biological context can be leveraged in 
the optimization process to further reduce the compression ratio. Henceforth, we refer to a k-mers preceding 
sequence as the prefix, and their succeeding sequences as the suffix, with the goal of removing the most highly 
represented similar sequences (prefix—k-mer—suffix) to enhance compression ratio (example in Fig. 5).

To decide which k-mer sequence of length k is more qualified to be added to the k-mer dictionary, we begin 
by calculating the frequencies (νkmer) of all the individual k-mers of length k in the dictionary. GeneSqueeze 
then ranks each k-mer based on their frequency to obtain a ranked k-mer list. The top ranked k-mers, which are 
the number of k-mers defined by the hyperparameter top_check, then proceed to the prefix and suffix sequence 
identification stage.

To identify which prefix and suffix sequences are most highly represented within all sequences, we first 
calculate the prevalence_ratio (Eq. 6) for each nucleotide (A, C, T, G) at each position in the concatenated prefix 
and suffix sequence, ps, associated with every instance of a given k-mer using Eq. 4, wherein the prevalence_ratio 
(PrevR) for position i (ith character) of the ps, P revRi, is defined as the total frequency of the nucleotides A, C, 
T, or G in position i , ωi, over the frequency of the k-mer itself, νkmer .

 P revRi = ωi/νkmer  (4)

Scientific Reports |          (2025) 15:322 7| https://doi.org/10.1038/s41598-024-79258-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


To maximize the number of potential removed prefix and suffix sequences, we then identify the nucleotide 
which is most prevalent in a given position within ps using Eq. 5, the dominance_ratio (DomR) equation, in 
which the DomR for position i of concatenated prefix and suffix, ps, is the frequency of the dominant nucleotide 
at position i, λi, over the total frequency of all bases in position i of the concatenated prefix and suffix of the k-
mer affix, ωi. An example is shown in Fig. 5.

Fig. 4. GeneSqueeze k-mer dictionary optimizer process. A sequence diagram depicting the methodology 
of the k-mer dictionary optimization flow diagram. The black block denotes the Pre-Competition Phase. The 
orange block outlines the Internal Competition Phase. The dark blue block indicates the external competition 
phase, and the red block depicts the Stopping Criteria Phase.
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 DomRi = λi/ωi (5)

Unlike k-mers, which our algorithm requires to be 100% identical, GeneSqueeze does not constrain the prefixes 
and suffixes of a prefix–k-mer–suffix sequence to be identical to the prefix–k-mer–suffix sequence in the optimal 
k-mer dictionary. Instead, the GeneSqueeze algorithm encodes the non-identical nucleotides in the ps sequence 
as noise. GeneSqueeze utilizes a prevalence_ratio_threshold and a dominance_ratio_threshold for PrevR and 
DomR, respectively, to ensure that the chosen ps sequence will lead to sufficient compression even including the 
resultant encoded noise.

The length of the final ps sequences of the top ranked k-mers of length k is then averaged and assigned as the 
initial ps length for all k-mers. This averaged calculation aids in the reduction of computational load across the 
dataset, as calculation of all true optimal ps sequences would be computationally expensive.

An internal competition score (ICS), is calculated for each prefix–k-mer–suffix of length k to estimate the 
optimality of removing these prefix—k-mer—suffix subsequences from each sequence. In the ICS equation, as 
defined in Eq. 6, νkmer  represents the frequency of a k-mer, len(ps) represents the length of the concatenated 
prefix and suffix sequences (ps), and k represents the length of the k-mer. The optimal k-mer for each k value in 
the k_list is defined as the prefix–k-mer–suffix sequence with the highest ICS.

 ICS = νkmer(1 + [len(ps)]/k) (6)

After initialization of the ps length, all of the k-mers then enter the internal competition phase. In the first step 
of the internal competition phase, the true ICS value is calculated for the top ranked k-mer. The top ranked k-
mer’s ps length is again calculated using the PrevR and DomR equations prior to calculation of the k-mers’ ICS. 
The ICS of the top ranked k-mer is then updated and compared to the averaged initialized ICS of the second 
ranked k-mer. If the top ranked k-mer’s ICS is greater than the ICS of the second ranked k-mer, then the top 
ranked k-mer is declared the winner of the internal competition and sent to the external competition phase. If 
the recalculation using the updated ps length for the top ranked k-mer leads to the top ranked k-mer’s ICS being 
less than that of the second ranked k-mer’s ICS based on the second ranked k-mers initialized ps length, then 
the top ranked k-mer is moved to its new ranking in the list and all k-mers now above the inserted k-mer are 
promoted. This means the second ranked k-mer is promoted to the first ranked position, the third ranked k-mer 
is promoted to the second rank position, and the internal competition restarts between the new first and second 
ranked k-mers. The internal competition process concludes with a declaration of an internal competition winner 
when the first ranked k-mer’s ICS ranking is greater than the second ranked k-mer, as depicted in the internal 
competition phase section of Fig. 4.

The winners of each internal competition (one winner for each k value in the k_list) then participate in an 
external competition to determine the overall optimal k-mer for inclusion in the k-mer dictionary. This external 
competition evaluates which k-mer among the most qualified candidates from all k-values in the k_list is most 
suitable for inclusion in the final optimal k-mer dictionary, using the external competition score (ECS), which 
is defined in Eq. 7.

 
ECS = 2νkmer

(
k + [len(ps)] − ηpenalty ×

[
len(suffix)∑

p=1

NDomRsuffix
p +

len(prefix)∑
q=1

NDomRprefix
q

])
 (7)

where, ηpenalty  is the penalty factor for the fraction of nucleotides that do not match the prefix and/or suffix, 
νkmer  represents the frequency of the k-mer, len(ps) represents the length of the concatenated prefix and suffix 
sequences ps, ηpenalty  represents the cost of encoding prefix and/or suffix mismatch (i.e. noise), and NDomR 
is defined in Eq. 8 as the non-dominance ratio for position i of ps and where DomR is the dominance ratio for 
position i of ps. The NDomR identifies all the locations in the ps for a given k-mer where mismatches will be 
found and thus noise will need to be encoded; as such, NDomR acts as a penalty against the given k-mer.

Fig. 5. GeneSqueeze prefix and suffix identification process. An example is depicted with prevalence_ratio_
threshold = 0.6 and dominance_ratio_threshold = 0.5. Grey highlight indicates the selected k-mer. Blue highlight 
indicates the dominant nucleotide at each position before and after the selected k-mer. Nucleotides highlighted 
in green are shown to have surpassed both the prevalence ratio and dominance ratio thresholds and have been 
selected as the k-mer prefix and suffix.

 

Scientific Reports |          (2025) 15:322 9| https://doi.org/10.1038/s41598-024-79258-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


 NDomRi = 1 − DomRi (8)

The winning prefix–k-mer–suffix sequence of the external competition is added to the optimal k-mer dictionary. 
The external winner is then removed from the list of candidate k-mers that are available to participate in 
future internal competitions and all sequences which contain the winning k-mer are removed from the future 
internal competition rounds. The removal of these sequences may alter the frequencies of the remaining k-
mers. Consequently, for each k value within the k_list, the internal competition process continues to update the 
frequency of the highest ranked k-mer (i.e. the k-mer with the highest ICS in the previous round who did not 
win the external competition) and revise its ICS value after the external competition winner k-mer is removed. 
The external competition phase is then repeated to identify the next external winner, which will be the next k-
mer added to the optimal dictionary.

This process persists until one of the following stopping criteria is fulfilled:

 1.  The number of consecutive cycles with an increase in cost function score exceeds the tolerance_threshold.
 2.  The length of the k-mer dictionary reaches the limit set in hyperparameter max_dict_len, which defines the 

maximum allowed length of the k-mer dictionary.

The cost function, referred to as the βcompressed_seqs, is defined in Eq. 9 and further expanded into component 
equations in Eqs. 10–19. The βcompressed_seqs equation is designed to provide an estimation in bits, assuming 
all bases are regular (A,C,T,G) of the encoded size (β) of the compressed_seqs as a function of dict_len 
for the existing distribution of k-mers in the FASTQ/A file. GeneSqueeze allows for temporary increases in the 
βcompressed_seqs over a set number of cycles, set in the hyperparameter tolerance_threshold, assuming that 
temporary increases in βcompressed_seqs  may be resolved after the removal of an additional k-mer. When the 
number of consecutive cycles in which βcompressed_seqs is greater than the tolerance_threshold , all competitions 
are stopped and all k-mers which when added to the k-mer dictionary led to an increase in the cost function over 
the tolerance_threshold are removed. The optimal k-mer dictionary is now finalized and the finalized dictionary 
is sent to the k-mer Removal block.

The βcompressed_seqs is defined in Eq. 9, where βoriginal_Seqs represents the estimated size of encoding all 
remaining original sequences as defined in Eq. 10, βkmer_all represents the estimated size to encode all k-mers, 
and βps_all represents the estimated size to encode all ps sequences as defined by Eq. 17.

 βcompressed_seqs = βoriginal_Seqs + βkmer_all + βps_all (9)

Equation  10 defines βoriginal_Seqs as the estimated size of the binary-encoded input nucleotide sequences 
of this block in bits in which num_seq and seq_length are the number and length of the input nucleotide 
sequences, respectively.

 βoriginal_seqs = 2 × num_seq × seq_length (10)

Equation 11 defines βkmer_all as the estimated size of encoding of all k-mers that are selected and included 
in the optimal k-mer dictionary, where βremoved_kmer_seqs represents the total bit size of all removed k-mer 
sequences as defined in Eq. 12,  βkmer_position represents the bits required to encoded each k-mers position as 
defined in Eq. 13, βkmer_index represents the bits encoded for each index as defined in Eq. 14, βkmer_existence 
represents the total bits of the k − mer_existence binary vector of length num_seq to show which nucleotide 
sequence includes any k-mer of the final dictionary as defined in Eq. 15, and βkmer_dictionary_only  represents 
the bits required to encode k-mers into the optimal k-mer dictionary, as defined in Eq. 16.

In Eqs. 12–16, HI stands for the binary code length of Huffman encoded k-mer in k-mer dictionary, dict_len 
denotes the number of k-mers added to the dictionary, νkmer(i) denotes the frequency of each k-mer, kkmer  
represents the length of a given k-mer, num_seq and seq_length are the number and length of the input 
nucleotide sequences, respectively.

 βkmer_all = −βremoved_kmer_seqs + βkmer_position + βkmer_index + βkmer_existence + βkmer_dictionary_only  (11)

In Eq. 11, the contribution of removed k-mers to the encoding size (compared to a scenario without these k-mers 
having been removed) is negative, hence the negative sign for βremoved_kmer_seqs which indicates it is better to 
remove k-mers and encode the relevant information to decode the k-mers as opposed to encoding the original 
sequence. Conversely, the remaining k-mer elements, which need to be encoded into the compressed file, are 
positive and are calculated in Eqs. 13–16. Meanwhile, the absolute value of βremoved_kmer_seqs is calculated 
in Eq. 12.

 
βremoved_kmer_seqs =

dict_len−1∑
i=0

νkmer(i) ×
(
2 × kkmer(i)

)
 (12)

 
βkmer_position =

dict_len−1∑
i=0

νkmer(i) × ⌈(seq_length − kkmer(i))⌉ (13)
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βkmer_index =

dict_len−1∑
i=0

[νkmer(i) × len(HIkmer(i))] (14)

 βkmer_existence = num_seq (15)

 
βkmer_dictionary_only =

dict_len−1∑
i=0

[(
2 × kkmer(i)

)
+

⌈
log

(len(klist))
2

⌉
+ len(HIkmer(i))

]
 (16)

Equation 17 defines βps_all as the estimated size required to encode all of the concatenated prefixes and suffixes 
sequences (ps) associated with the k-mers defined in the optimal k-mer dictionary, where βremoved_ps_Seqs 
represents the bits of the ps sequences removed from the final sequence array, βps_noise_position represents the 
bits for all the information encoded as noise for a given ps,βps_number_noise represents the bits the number 
of mismatched ‘noise’ nucleotides in a ps sequence, βps_noise_type represents the bits for storing the noisy 
nucleotides in the ps sequence, βps_seqs represents the bits not used to store the removed sequences penalized 
by the bits necessary to store all non-dominant nucleotides as noise as defined in Eq. 18, and.

βps_dictionary_only  represents the bits necessary to store the ps sequences in the optimal k-mer dictionary. 
Similar to the removed k-mers in Eq. 11, the contribution of removed prefix and suffix nucleotides to the ultimate 
encoding size is negative compared to a scenario without the removed prefix and suffix nucleotides, which is why 
βremoved_ps_Seqs has a negative sign in Eq. 17.

 

βps_all = βps_seqs + βps_dictionary_only

= (−βremoved_ps_Seqs + βps_noise_position + βps_number_noise + βps_noise_type) + βps_dictionary
 (17)

 

βps_seqs =
dict_len−1∑

i=0

2νkmer(i) ×




len
(
prefixkmer(i)

)
+ len

(
suffixkmer(i)

)
− ηpenalty×[

len(suffixkmer(i))∑
p=1

NDomRp +
len(prefixkmer(i))∑

q=1
NDomRq

]

 (18)

 

βps_dictionary_only =
dict_len−1∑

i=0

(
2 × 2 × len

(
prefixkmer(i) + suffixkmer(i)

))

+ log
seq_length−kkmer(i)
2 + log

seq_length−kkmer(i)−len(suffixkmer(i))
2

 (19)

Once the stopping criteria is met and the optimal k-mer dictionary is found, the GeneSqueeze algorithm sends 
the optimal k-mer dictionary and the current non-duplicative, non-semi-duplicative array of nucleotides 
sequences to the k-mer Removal block for removal of k-mers.

K-mer removal
The k-mer removal block utilizes the final k-mer dictionary to remove duplicative k-mers in the sequence 
array. The function first checks each nucleotide sequence of the input sequences to determine if there is a full 
match for the k-mers in the finalized dictionary. If there is a match, it removes the prefix–k-mer–suffix sequence 
and encodes its existence (one bit per nucleotide sequence), the k-mer index, the k-mer position in original 
nucleotide sequence and its index (dictionary value), as well as any noise in the prefix and suffixes. After removal 
of the prefix–k-mer–suffix sequence, the subsequences before and after the removed part of the sequence 
are concatenated and sent to the Nucleotide Sequence Regulator block. The untouched nucleotide sequences 
(nucleotide sequences with no identified k-mers) are passed to the Semi-Duplication Removal block to remove 
any additional semi-duplicative sequences. The indices, positions, and other values necessary to encode the 
removed prefix–k-mer–suffix sequences are sent to the General-Purpose Compressor block. An example of the 
k-mer removal process is shown in Fig. 6.

Nucleotide sequence regulator
This block encodes any nucleotides other than A, C, G and T. The input for this block is the output of all 
other blocks that are in the nucleotide sequence branch. Given that the predominant characters in nucleotide 
sequences are usually A, C, G, and T, and considering that four characters can be encoded using only two bits in 
binary, this block encodes the information of non-ACGT characters separately and then replaces them with A in 
the nucleotide sequence. Therefore, the output of this block is the nucleotide sequences that only include A, C, G 
and T, as well as the position of non-ACGT characters. They are directed to Nucleotide Sequence Binary Encoding 
and General-Purpose Compressor blocks, respectively.

This block assumes by default that all irregular (non-ACGT) nucleotides characters are N- (which is the most 
common irregular nucleotide) and encodes their nucleotide sequence position. In cases where any irregular 
non-N nucleotide is observed, its actual character is also encoded in addition to the position.

Nucleotide sequence binary encoding
The nucleotide sequences are then encoded in binary using the hash table presented in Table 1. As mentioned in 
the Nucleotide Sequence Regulator block, irregular nucleotides are encoded as A: [0 0] since their information is 
recorded separately. The hash table is then sent to the General-Purpose Compressor block for further compression.
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Fig. 6. GeneSqueeze k-mer removal process. An example of the k-mer removal process is depicted, illustrating 
the identification and encoding of k-mers, as well as the outcome for sequences that contain no k-mers 
(untouched sequences) or mismatches (post k-mer removal nt). The initial array shows the original indices 
and original sequences, with the k-mers highlighted in yellow, the prefixes and suffixes highlighted in green, 
and noise highlighted in red. The second array illustrates the k-mer dictionary. The third table illustrates the 
presence or absence of k-mers in each sequence, as well as the position and type of any noise detected in each 
sequence.
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Quality score compression branch
The segmented quality scores are passed to the quality score compression branch of the algorithm, which has one 
block dedicated to duplication removal.

Duplication removal (quality score)
After quality scores are segmented in the Sequence Segmenter block, they proceed through the duplication 
removal block. This block searches across the quality score sequences to find and group identical sequences 
and encodes only the first instance of a specific quality score sequence of each group, which is designated as 
the parent sequence. The other sequences of each group are designated as child sequences following the same 
methodology as defined in the nucleotide compression Branch. The encoded files are sent to the general-purpose 
compressor.

Read identifier compression branch
The segmented read identifiers are passed through the read identifier compression branch of the algorithm 
which has one block in which the read identifiers are encoded.

Read identifier encoder
The read identifier encoder block stores the first read identifier. The block then identifies which portions of the 
identifier are fixed or variable and subsequently encodes only the change in variables for each ensuing read. The 
encoded information is then sent to the general-purpose compressor to be further compressed.

General-purpose compressor
All the generated files are then sent to a general-purpose compressor to achieve a higher compression ratio. 
GeneSqueeze uses BSC, which is a general-purpose compressor built based on the Burrows–Wheeler Transform 
(BWT)24.

Methods
Dataset
We tested the performance of each compression algorithm on a collection of 283 FASTQ files totaling 1572 GB 
(uncompressed). The largest file size was 56  GB and the longest read length was 202 bases. The full list of 
the datasets used for experiments is found in Supplemental Table 1 and the ranges for read length (Table 2), 
number of reads (Table 3), and file size (Table 4) can be found in Tables 2, 3 and 4, respectively. In the following 
experiments using GeneSqueeze, each FASTQ file is compressed independently. The characteristics of each 
dataset can directly affect the performance of a compression algorithm, thus the algorithm performance was 
analyzed in the context of each dataset’s characteristics. Natively, these datasets contained N nucleotides but did 
not contain non-N irregular nucleotides, thus to test the losslessness of non-N irregular IUPAC nucleotides, two 
N characters were replaced with non-ACGTN IUPAC characters in a FASTQ file.

Resource conditions
We utilized SPRING version 1.1.1 in lossless mode, enabling the lossless compression of non-ACTGN IUPAC 
nucleotides and gzip version 1.9. All results were generated using a n2-highmem-80 virtual machine on Google 
Cloud Platform, equipped with 80 cores (vCPUs), 640 GB of RAM, and 600 HDD, facilitating the concurrent 
processing of files.

Hyperparameters
The values of the hyperparameters for GeneSqueeze are presented in Table 5. GeneSqueeze’s k-mer Dictionary 
Optimizer block selected the optimal length of the k-mer dictionary and the k-mers via the optimization process 

FASTQ file size (GB) Number of files

0–4 156

4–8 75

8–12 48

54–57 4

Table 2. FASTQ file size (GB) of the datasets used for experiments.

 

Nucleotide Binary code

A 00

C 01

G 10

T 11

Table 1. Nucleotides binary encoding hash table.
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presented in the Methods section (k-mer Dictionary Optimization block). In the current version of GeneSqueeze, 
we employed a static value for the rest of the hyperparameters. Our current use of this static value is not 
optimized. As such, our future directions include upgrading the algorithm to dynamically determine and adapt 
the values of the hyperparameters for each dataset or sample to further improve our compression ratios.

Evaluation metrics
We measured the performance of GeneSqueeze against gzip and SPRING using the evaluation metrics presented 
in Eqs. 20 and 21:

 
avg_comp_ratio =

∑m

i=0(βi
compressed/βi

original)
m

% (20)

 
πlossless = MD5_matched

m
% (21)

where avg_comp_ratio and πlossless are average compression ratio (%) and losslessness ratio (%), respectively. 
Here, m represents the total number of FASTQ files in the test set, while MD5_matched denotes the number 
of files with matched MD5 sums. The metric compression ratio was chosen to assess the total reduction in file 
size after compression, and losslessness ratio was chosen to understand if total data integrity was preserved 
after compression. These represent important factors in the overall efficiency and integrity of each compression 
algorithm.

Results
All three algorithms were able to significantly compress the datasets. The individual metrics for all 273 files in the 
dataset across all algorithms can be found in Supplementary Table 2. Overall, the average compression ratios of 
SPRING and GeneSqueeze were similar (7.61% vs 7.70%), and both were significantly lower than gzip (21.20%) 

Hyperparameter Value

k_list [10, 25]

random_subset 1%

EI_threshold 0.1

DI_threshold 0.5

tolerance_threshold 10

max_dict_len 64

top_check 10

ηpenalty 6

ideal_len 80

sdr_threshold (1st SDR block) 5

sdr_threshold (2nd SDR block) 10

Table 5. Hyperparameter values used by the GeneSqueeze algorithm.

 

Read length (nucleotide sequence) Number of files

35–36 106

50–51 107

100–101 63

202 7

Table 4. Read length (nucleotide sequence) of the datasets used for experiments.

 

Number of reads (million reads per sample) Number of files

1–20 172

20–35 40

35–65 67

215–224 4

Table 3. Number of reads (million reads per sample) of the datasets used for experiments.
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(Table 6). FASTQ files can vary in size, number of reads, and read length, which were characteristics that we 
hypothesized could lead to changes in algorithmic efficiency.

To understand which FASTQ files GeneSqueeze excelled at compressing, we examined compression ratio 
amongst FASTQ files with differing dataset sizes (Table 7), number of reads (Table 8), and read lengths (Table 9). 
We found that both GeneSqueeze and SPRING outperformed gzip in all categories. We found that GeneSqueeze 
compressed files of size 8–12 GB most efficiently and was least efficient at compressing large files (54–57 GB). Notably, 
GeneSqueeze compressed smaller files (0–4 GB) better than SPRING (Table 7). When examining GeneSqueeze’s 
performance on files with differing number of reads, we found that GeneSqueeze was best at compressing files 
with 35–65 million reads and performed worst when compressing files with 215–224 million reads. GeneSqueeze 
outperformed SPRING when compressing files with 1–20 and 20–35 million reads (Table 8). Next, we examined 
the compression ratio based on read length. We found that GeneSqueeze had the greatest compression on files 
with read lengths of 50–51 nucleotides and the least compression on reads of 100–101 nucleotides. GeneSqueeze 
outperformed SPRING on files with read lengths of 35–36, 50–51, and 202 nucleotides (Table 9). Figure 7 presents 
a comprehensive analysis of these factors influencing compression ratio across various datasets. In Fig.  7a, a 
scatter plot visually represents the relationship between dataset size and compression ratio, highlighting how the 
compression ratio varies with sample size. The data indicate that GeneSqueeze and SPRING are similar in their 
compression ratio of samples in similar file sizes up to approximately 12 GB, and that both of these algorithms 
outperformed gzip in compression ratio across files irrespective of file size. In terms of compression ratios on files 
above 50 GB, it appears that GeneSqueeze suffers from drawbacks likely related to implementation limitations, 
as its compression ratio falls behind that of SPRING when compressing these larger files. Additionally, Fig. 7b 
and c provide further insights by illustrating the fluctuations in compression ratio relative to read length and the 
number of reads, respectively. Both figures illustrate similar trends, with GeneSqueeze and SPRING demonstrating 
similar compression ratios at lower read lengths and smaller numbers of reads, outstripping gzip, and with SPRING 
outperforming GeneSqueeze when applied to files with read lengths in excess of 200 bp and numbers of reads above 
200 million.

Read length Gzip (%) SPRING (%) GeneSqueeze (%)

35–36 20.59 7.69 7.56

50–51 17.82 5.36 5.25

100–101 27.16 10.60 11.64

202 28.39 13.93 11.62

Table 9. Average compression ratio (%) of samples by read length.

 

Number of reads Gzip (%) SPRING (%) GeneSqueeze (%)

1–20 22.11 9.01 8.99

20–35 20.33 6.43 6.25

35–65 18.69 4.31 4.57

215–224 32.63 14.56 18.76

Table 8. Average compression ratio (%) of samples by differing number of reads (million reads per sample).

 

FASTQ file size (GB) Gzip (%) SPRING (%) GeneSqueeze (%)

0–4 20.50 8.01 7.90

4–8 23.17 8.10 8.35

8–12 19.42 4.96 5.12

54–57 32.63 14.56 18.76

Table 7. Average compression ratio (%) of samples by FASTQ file size (GB).

 

Gzip SPRING GeneSqueeze

Average compression ratio (%) 21.20% 7.61% 7.70%

Average compression time (sec/GB) 44.4 36.7 550.3

Average Decompression time (sec/GB) 5.2 5.6 606.5

Table 6. Average compression ratio (%), average compression time per sample (sec/GB) and average 
decompression time per sample (sec/GB) using gzip, SPRING, or GeneSqueeze algorithms.
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The average compression times (sec/GB) of SPRING and gzip were similar at 36.7 and 44.4 s/GB, respectively, 
and both were significantly faster than GeneSqueeze, which averaged 550.3 s/GB (Table 6). Similarly, the average 
decompression times (sec/GB) for SPRING and gzip were 5.2 and 5.6  s/GB, respectively, much lower than 
GeneSqueeze’s 605.5  s/GB (Table 6). This indicates that GeneSqueeze’s current Python implementation has 
significant speed drawbacks compared to SPRING and gzip, which are predominantly implemented in C/C +  + .

Quality scores are typically more challenging to compress than nucleotide sequences3. Thus, quality score 
compression represents an area with opportunities for further improvement in the field. GeneSqueeze uniquely 
pre-compresses quality scores with a domain-specific compression process and then feeds that to the general-
purpose compressor. Our method allows us to further reduce the file size dedicated to quality scores without 
any loss or impact on downstream analysis. The pie charts in Fig.  8 indicate how much—on average—each 
component of a FASTQ file contributes to the total size, before and after GeneSqueeze compression. The 
difficulty in compressing quality scores is indicated by 60% of GeneSqueezed FASTQ file sizes, on average, being 
allotted to quality scores (Fig. 8). We observed that read identifiers were the easiest to compress due to their fixed 
template.

We also investigated the ability of GeneSqueeze to recapitulate original data upon compression and 
decompression. In order to do so, we cross-referenced MD5 checksums for 283 FASTQ files before and after 
their compression via GeneSqueeze and found that 100% of the files showed were identical to their original 
format, showing lossless compression and decompression. To compare, we performed the same experiment 
using SPRING on the same 283 files and found that only 10 of the files (3.5%) maintained the same MD5 hash 
before and after the experiment. We investigated what these files had in common with one another, and found 

Fig. 7. Compression ratio distribution across files. Scatter plots depicting compression ratio variations across 
files in relation to (a) original file size, (b) read length, and (c) number of reads in FASTQ files.
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that in each of these 10 files, the separator line solely contained a ‘ + ,’ whereas in the other 273 files there was 
additional information following the ‘ + .’ This behavior is expected according to SPRING, as the algorithm 
discards information following the ‘ + ’ after compression even in the ‘lossless’ mode of SPRING, which leads to 
technical “loss” in the decompressed files16,29. While the information typically following the ‘ + ’ in these files is 
not generally considered essential for performing downstream analysis, we considered it critical to recapitulate 
the entirety of the original files for the purposes of maintaining perfect losslessness.

As our datasets did not natively include non-N irregularities, we changed two nucleotides in a FASTQ file 
to non-N irregularities in a separate experiment to confirm which of the algorithms tested could perfectly 
recapitulate the original file. We observed that SPRING was not able to decode the non-ACGTN letters that 
existed in the IUPAC nucleotide code, but that both GeneSqueeze and gzip losslessly encoded and decoded the 
file, with matching MD5 hashes for the original and decoded files.

Discussion
Nucleotide sequencing data contains intricate patterns of redundancy and variation that require specialized 
data compression techniques. The unique features of nucleotide sequences, such as hierarchical structure 
and redundancy, can be utilized to achieve high compression ratios while minimizing loss of information. 
Developing effective compression algorithms for sequencing data requires a deep understanding of the data 
and the biological processes that generate it. The GeneSqueeze algorithm is capable of compressing FASTQ 
and FASTA data containing nucleotide sequences and is designed to be lossless for all parts of the FASTQ 

Fig. 8. Contribution to File Size. Average contribution of each of the three parts of FASTQ files to final file 
sizes in (a) uncompressed files and (b) GeneSqueezed files. Pink illustrates the contribution of quality scores. 
Red indicates the contribution of read identifiers. Blue depicts the contribution of the nucleotide sequences.
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format, including the read identifier, quality score, and nucleotide sequence. GeneSqueeze relies on reducing the 
dimension and redundancy in genomic data in a unique and efficient way prior to data storage in binary format.

The results of our comparison demonstrate the effectiveness and efficiency of our novel data compressor, 
which showed both high compression ratios and accurate data recapitulation in our experiments.

This algorithm’s unique key features are:

 1.  Presenting a dynamic protocol for efficiently encoding high frequency k-mers.
 2.  Leveraging the innate redundancy in quality scores before passing them to the general-purpose compressor.
 3.  Encoding and losslessly decoding all IUPAC characters.
 4.  Expressing no capability limitations in context of read length and number of reads, allowing for flexibility in 

long-read / high-throughput FASTQ/As compression.
 5.  Compatible with all FASTQ/As sequence identifier formats.

Overall, we observed that GeneSqueeze performed competitively against a domain-specific comparison 
algorithm, SPRING, with both GeneSqueeze and SPRING performing better than the general-purpose 
compressor, gzip, for compression ratios. GeneSqueeze and gzip maintained losslessness when decompressing 
compressed files, whereas SPRING exhibited loss in the files which contained data following the “ + ” in the 
separator lines, as assessed via MD5 sums. Our goal in this version of the GeneSqueeze algorithm was to 
present a new methodology for genomic compression which prioritizes losslessness and compression ratio and 
allows for future iterations which address speed and memory in a manner which enables further reductions 
in compression ratios. Due to this, and in particular to GeneSqueeze’s current Python implementation, our 
current version of GeneSqueeze has drawbacks in speed and memory usage when compared to SPRING 
and gzip, which are predominantly implemented in C/C + + . Despite these drawbacks, GeneSqueeze’s novel 
approach, competitive performance, and complete preservation of genomic data ensures that GeneSqueeze is 
able to support the growing applications of omics technologies in the biomedical and clinical research space. 
Our forthcoming emphasis will be focused on: improving GeneSqueeze’s speed and memory via implementation 
in a more efficient programming language, upgrading the algorithm to dynamically optimize the values of 
hyperparameters across multiple blocks, upgrading the usability for general practitioners to enable the setting of 
individual thresholds and algorithm priorities such as compression ratio or speed, ensuring optimal adaptation 
for each dataset, sample, or file, and testing GeneSqueeze’s performance when used on other sequencing types, 
such as whole metagenome sequencing or functional genomics data. The efforts put forth in these future 
endeavors will expand GeneSqueeze’s ability to serve the needs of the biomedical space.

Data availability
Datasets are sourced from the public databases listed in Table 1 in the Supplementary data. Also, the details of 
the results are presented in Table 2 in the Supplementary data.
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