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Evaluating and predicting how carbon storage (CS) is impacted by land use change can enable 
optimizing of future spatial layouts and coordinate land use and ecosystem services. This paper 
explores the changes in and driving factors of Zunyi CS from 2000 to 2020, predicts the changes in CS 
under different development scenarios, and determines the optimal development scenario. Woodland 
and farmland are the main land use types in Zunyi. Land use change was reflected mainly in the 
mutual conversion among woodland, farmland, and grassland and by their conversion to construction 
land and water. In 2000, 2010, and 2020, the CS in Zunyi was 658.77 × 10^6 t, 661.44 × 10^6 t, and 
658.35 × 10^6 t, respectively. Woodland, farmland and grassland conversions to construction land and 
water were primarily responsible for CS loss. The normalized difference vegetation index (NDVI) is the 
main factor influencing the pattern of CS (q > 10%). Furthermore, the impacts of the human footprint 
index and population density are increasing. In 2030, the CS of Zunyi is trending downward. Under 
the ecological-farmland conservation scenario (ECS), the CS is estimated to be 656.67 × 10^6 t, with 
the smallest decrease (− 0.26%) among timepoints. The effective control of woodland and farmland 
weakens the trend of CS reduction.
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In recent years, the excessive emission of greenhouse gases has led to global warming and frequent extreme 
weather events, posing a serious threat to the stability of global ecosystems1,2. Terrestrial ecosystems absorb 
carbon through a series of biological processes and thus play crucial roles in the global carbon cycle and in 
mitigating climate change. They serve as vital components of the world’s carbon sink function2,3. Vegetation and 
soil provide the primary sources of carbon, acting as the backbone of the global carbon cycle4. Many studies 
have shown that changes in land use types profoundly affect the carbon sequestration capacity of terrestrial 
ecosystems, serving as a direct driving factor behind variations in CS5. In the past, rapid industrial development 
and urbanization in China have led to significant changes in land use patterns, as large areas of farmland and 
natural ecological land have been converted into artificial land. This process has resulted in noticeable carbon loss 
and has had a significant negative impact on the stability of China’s ecosystems4,6. As the world’s largest carbon 
emitter7, China has set an ambitious goal to peak its carbon emissions by 2030 and achieve carbon neutrality by 
20608,9. Therefore, exploring the response of terrestrial ecosystem CS to land use change and analyzing the deep-
seated driving factors affecting spatial heterogeneity are of paramount importance. These studies are crucial for 
enhancing terrestrial ecosystem carbon sequestration and maintaining the balance and stability of ecosystems.

Research on CS usually requires coupling multiple models for current situation analysis and future prediction. 
The Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model is widely used in current 
terrestrial ecosystem CS assessments10–12. Compared with traditional methods such as the Intergovernmental 
Panel on Climate Change (IPCC) inventory method13,14 and the atmospheric inversion method15, the InVEST 
model offers advantages such as parameter flexibility, high precision, and high efficiency. Furthermore, remote 
sensing technology can be combined with it to visually represent and reflect spatial distributions. This approach 
facilitates further analysis of the spatiotemporal evolution characteristics of CS and its response to land use 
changes16. In addition, many current studies have combined the InVEST model with predictive models such 
as CLUE17, FLUS18,19, and CA-Markov20 to evaluate changes in land use patterns and ecosystem CS under 
future scenarios based on analyses of historical evolutionary patterns and the driving factors of CS. The patch-
generating land use simulation (PLUS) model, through the land expansion analysis strategy (LEAS) and the 
cellular automata (CA) model, better captures the principles and patterns of various land use changes21. This 
model can simulate the changes in various land use patches during the research phase and accurately predict land 
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use change patterns under different policy scenarios. Therefore, under scenarios of intensified land succession in 
the future, the PLUS model can more accurately simulate future land use development22.

Zunyi is located in the Wujiang River Basin in the upper reaches of the Yangtze River. It plays a crucial role 
in strengthening the ecological barrier in the upper reaches of the Yangtze River. Zunyi is also a karst limestone 
distribution area in Southwest China23. The karst ecosystem in this region is characterized by low environmental 
carrying capacity, high sensitivity, and poor stability24. In recent years, with the continuous development of 
population growth and urbanization, land use changes have become relatively drastic, and the ecosystem balance 
in this region is facing great challenges23. Therefore, this study coupled the PLUS, InVEST, and optimal parameter 
geographic detector (OPGD) models to design a comprehensive research framework for evaluating CS under 
different future scenarios. The objectives of this study are as follows: (1) reveal the spatiotemporal changes in 
land use types and their responses to carbon storage; (2) identify the main driving factors and mechanisms 
influencing the CS patterns in Zunyi; and (3) predict CS changes under various development scenarios and 
determine the optimal development model. The findings of this study provide a reference for enhancing the 
ecosystem carbon sequestration capacity of Zunyi, optimizing ecological protection policies, reinforcing the 
ecological barrier in the upper reaches of the Yangtze River, and achieving green and sustainable economic 
development.

Materials and methods
Study area
Zunyi (105°36′–108°13′E, 27°8′–29°12′N) is located in the northern part of Guizhou Province and is situated 
in the transitional slope zone that stretches from the Yunnan–Guizhou Plateau to the Hunan Hills and the 
Sichuan Basin (Fig. 1). The area features complex topography and is part of the ecological barrier in the upper 
reaches of the Yangtze River, where it plays a crucial role in the ecological stability of Guizhou Province and 
even the Yangtze River Basin (data sourced from the Zunyi Municipal Government website, ​h​t​t​p​s​:​/​/​w​w​w​.​z​u​n​y​
i​.​g​o​v​.​c​n​/​​​​​)​. The terrain within Zunyi is diverse and consists primarily of basins and hills, ranging from 1000 to 
1600 m in elevation. It has a subtropical humid monsoon climate; its vegetation is predominantly subtropical 
evergreen broad-leaved forests. Zunyi is also a biodiversity hotspot in Guizhou Province, and its unique 
topography and climate provide a sanctuary for numerous rare and endangered species, such as Trachypithecus 
francoisi and Cathaya argyrophylla Chun & Kuang25. Zunyi has established nature reserves covering an area of 
294,600 hm2, accounting for 9.57% of the total land area. These reserves form a relatively complete system of 

Fig. 1.  Study area. This map was created via ArcGIS 10.8 (http://www.esri.com/). The administrative division 
data of China in the map come from the Data Center for Resources and Environmental Sciences, Chinese 
Academy of Sciences. (https://www.resdc.cn/).
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natural protected areas. This is highly important for the ecological protection strategy of Guizhou Province26. 
Zunyi has a high forest coverage rate, but the karst landscape dominated by carbonate rocks results in a relatively 
fragile ecosystem23. In recent years, with the rapid development of the wine industry and urbanization, land use 
changes have been drastic, as the demand for construction land has increased. This situation has created a stark 
conflict between urban development and ecological protection, significantly challenging the ecosystem’s carbon 
sequestration capacity.

Data sources
The basic land use datasets (2000, 2010 and 2020) used in this study were sourced from the Data Center for 
Resources and Environmental Sciences, Chinese Academy of Sciences (https://www.resdc.cn/), which are based 
on Landsat remote sensing image data interpretation. According to the land resources and their utilization 
attributes, the data were divided into 6 categories: farmland (land used for growing crops, including paddy 
fields and dry fields), woodland (forestry land where trees, shrubs, bamboo, and coastal mangroves grow), 
grassland (various types of land dominated by herbaceous plants, with coverage of over 5%), water (natural 
terrestrial water bodies and land used for water conservancy facilities), construction land (land used for urban 
and rural residential areas, as well as industrial, mining, and transportation purposes) and unused land (land 
that is currently unused, including land that is difficult to utilize, such as sandy land, gobi, saline‒alkali land, 
marshland, bare land, and exposed rocky areas), with a spatial resolution of 30 m. Other data sources for PLUS 
simulation and driver exploration are shown in Table 1.

Methods
The research framework, as shown in Fig. 2, comprises three main components. The PLUS model was used 
to predict the spatial patterns of land use and CS under different scenarios. The InVEST model was used to 
evaluate the spatiotemporal characteristics of the ecosystem CS in Zunyi, and the impact of land use changes 
on the carbon sequestration capacity was explored. The OPGD model was used to analyze the driving factors 
influencing ecosystem CS.

PLUS model
The PLUS model is suitable for accurately simulating future land use development in scenarios where land 
selection intensifies in the future. The PLUS model is suitable for accurately simulating future land use 
development in the case of intensified land separation. The model includes two modules: the land expansion 
analysis strategy (LEAS) and the CA model, which is based on many random patch seeds (CARSs)22,27.

LEAS
It employs the random forest algorithm to analyze the relationships between various driving factors and the 
expansion of different land use types, with the aim of assessing the development probability of future land 

Type Data Data usage Type/resolution Data resource

Basic data

Administrative boundary – shp https://www.resdc.cn/

Land use datasets (2000\2010\2020) Land use change and PLUS tif/30 m https://www.resdc.cn/

Protected area vector data in Zunyi PLUS-Restricted area shp https://zrzy.guizhou.gov.cn/

Climatic and 
topographic data

DEM PLUS and OPGD(X1) tif/30 m

https://www.gscloud.cn/Slope PLUS and OPGD(X2) tif/30 m

Aspect of slope PLUS tif/30 m

Annual average temperature PLUS and OPGD(X3) tif/1000 m

https://www.resdc.cn/
Annual average precipitation PLUS and OPGD(X4) tif/1000 m

NDVI PLUS and OPGD(X5) tif/30 m

Soil type PLUS

Socioeconomic data

Night-time light index PLUS and OPGD(X6) tif/1000 m ​h​t​t​​​​p​s​:​/​​/​d​a​t​​a​​v​e​r​s​​e​.​​h​a​r​​v​a​r​​d​.​​e​​d​u​​/​​d​a​t​a​s​e​t​.​x​h​t​m​l​
?​p​e​r​s​i​s​t​e​n​t​I​d​=​d​o​i​:​1​0​.​7​9​1​0​/​D​V​N​/​G​I​Y​G​J​U​​​​​​

Human footprint index PLUS and OPGD(X7) tif/1000 m https://doi.org/10.1038/s41597-022-01284-8

GDP PLUS and OPGD(X8) tif/1000 m
https://www.resdc.cn/

Population density PLUS and OPGD(X9) tif/1000 m

Proximity to water PLUS tif/30 m

https://www.webmap.cn/

Proximity to railway PLUS tif/30 m

Proximity to highway PLUS tif/30 m

Proximity to primary road PLUS tif/30 m

Proximity to secondary road PLUS tif/30 m

Proximity to tertiary road PLUS tif/30 m

Proximity to country road PLUS tif/30 m

Proximity to government seat PLUS tif/30 m

Table 1.  Data sources.
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use types. For this analysis, we selected 19 factors based on environmental, geographical, and socioeconomic 
elements. Using land use data from 2000, 2010, and 2020, we predicted the development probabilities of different 
land use types in Zunyi.

CARS
This module integrates the generation of random patch seeds to simulate future land use patterns. During this 
process, we did not restrict the land use transfer cost matrix; instead, we designed different probabilities for land 
use type transitions based on various scenarios. The probability of random patch seeding was set as 0.1, and the 
neighborhood factors of farmland, woodland, grassland, water, construction land and unused land were set as 
0.49, 0.98, 0.62, 0.21, 0.66, and 0.01, respectively, and its range was 0–1 (the closer to 1, the higher the expansion 
capacity of the land use type).

Model accuracy verification
To ensure that the model can be used for future land use simulation predictions in the study area, 2020 land 
use data were simulated and compared with actual land use data for validation. The results revealed that the 
kappa coefficient was 0.84, and the overall accuracy was 0.90 (Fig. 3). The results show high simulation accuracy, 
indicating its feasibility for predicting land use changes in 2030.

Simulations of multiple scenarios for 2030
We fully integrated the population growth and urbanization development trends in Zunyi, determined the 
historical development patterns of land use types, and referred to relevant data from the overall land spatial 
planning of Guizhou Province (https://zrzy.guizhou.gov.cn/) and Zunyi (https://zrzyj.zunyi.gov.cn/). According 
to relevant documents, Zunyi will strengthen the core status of the central urban area while strictly controlling 
the “three control lines” to effectively protect farmland, adhere to the bottom line of ecological security, and 

Fig. 2.  The research framework (created by the Adobe Photoshop 2020, https://www.adobe.com/).
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improve the construction of the natural protected area system. Therefore, the following three scenarios are used 
to simulate the land use situation in 2030:

Natural development (NDS)
Based on the land use pattern of 2020 and without considering other interfering factors, the conversion rate of 
land use types has remained unchanged over time.

Ecological-farmland conservation (ECS)
Farmlands and woodlands are directly related to national food security and ecological security. The protection 
of ecology and farmland will be prioritized in future social development, thereby promoting high-quality 
economic development. Therefore, in the ECS scenario, the natural reserves, reservoirs, and river basins are 
used as restriction areas, thus decreasing the probability of woodland and farmland conversion to construction 
land by 40% while decreasing the probability of conversion to grassland by 30%. Moreover, the probability of 
grassland conversion to woodland will increase by 30%, and the probability of conversion to construction land 
will decrease by 20%.

Urban development (CDS)
The scenario assumes that the region experiences rapid economic development, leading to the expansion of 
construction land. The probability of woodland, forestland, and grassland conversion into construction land 
increases by 20%, and the probability of unused land conversion into construction land increases by 30%. The 
probability of construction land conversion into grassland, woodland, and water decreased by 50%.

InVEST-CS module
The InVEST model has strong spatial analysis capabilities and enables the visualization of dynamic ecosystem 
service functions. The carbon storage and sequestration module of InVEST 3.14.0 divides CS into four basic 
carbon pools: above carbon, below carbon, soil carbon, and dead organic carbon. The CS of the ecosystem is 
calculated as follows:

	 Ctotal = Cabove + Cbelow + Csoil + Cdead� (1)

where Ctotal is the total carbon density (t·hm−2), Cabove is the aboveground carbon density of living plants, Cbelow 
is the belowground carbon density of living plants, Csoil is the soil carbon density, and Cdead is the dead organic 
carbon density.

Fig. 3.  Comparison of land use simulation results (A) and actual data (B) from ZunYi for 2020 (created by 
ArcGIS 10.8, http://www.esri.com/).
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To obtain accurate carbon density values for various land use types, we referenced empirical carbon density data 
from studies conducted in Zunyi and its surrounding areas28–30. Additionally, we applied a correction formula 
for carbon density proposed by Alam et al.31–33, and the correction was combined with the precipitation factor.

	 CBP = e0.0054×MAP × 6.798� (2)

	 CSP = 3.3958 × MAP + 1996.1� (3)

	
KBP = C1

BP

C2
BP

� (4)

	
KSP = C1

SP

C2
SP

� (5)

where CBP is the corrected biomass carbon density; CSP is the corrected soil carbon density; MAP is the mean 
annual precipitation; KBP is the correction for the biomass carbon density precipitation factor; and KSP is the 
correction for the soil carbon density precipitation factor. The final corrected carbon density data for various 
land use types are shown in Table 2.

OPGD model
Geographic detector models can explore the impact mechanism of different potential factors from single-factor 
and two-factor combinations and are widely used in the field of ecological environment research34,35. The OPGD 
model based on R4.3 automatically selects the optimal spatial discretization method to handle continuous 
variables, thus overcoming the subjectivity of manual discretization36 and significantly improving the accuracy 
and applicability of factor detection results37,38. Therefore, in this study, the OPGD model was used to investigate 
the driving factors in different periods. Based on the availability of data and previous relevant studies, we selected 
9 factors from the perspective of natural and socioeconomic data, including DEM (X1), slope (X2), annual 
average precipitation (X3), annual average temperature (X4), NDVI (X5), nighttime light index (X6), human 
footprint index (X7), GDP (X8), and population density (X9). With the assistance of ArcGIS 10.8 software, 1389 
sample points were randomly sampled within the study area (with a threshold of 2000 m), and variable data were 
extracted. The impacts of the individual environmental factor q (X1) and the combined factor q (X1 ∩ X2) on the 
spatial distribution of ecosystem CS were analyzed (Table 3). The formula for calculating the q value is as follows:

	
q = 1 − 1

Nσ2

n∑
i=1

Niσ
2
i � (6)

where Ni and N are the numbers of cells in region i and the whole region, respectively; and σ2
i  and σ2 are the 

variances in region i and the entire region, respectively. n is the number of regions. The value of q ranges from 0 
to 1, indicating the degree to which the driving factor explains the CS in the region. A q value closer to 1 indicates 
a greater impact on the differentiation of CS in the region, and vice versa.

Judgment basis Interaction types

q (X1 ∩ X2) < min[q(X1), q(X2)] Nonlinear strengthening weakened

min[q(X1), q(X2)] < q (X1 ∩ X2) < max[q(X1), q(X2)] Single factor nonlinear weakening

q (X1 ∩ X2) > max[q(X1), q(X2)] Two-factor enhancement

q(X1 ∩ X2) = q(X1) + q(X2) Independence

q(X1 ∩ X2) > q(X1) + q(X2) Nonlinear enhancement

Table 3.  Types of two-factor interactions with the CS.

 

Land use type Cabove Cbelow Csoil Cdead

Farmland 36.48 6.93 109.68 1.02

Woodland 58.27 17.50 173.40 3.50

Grassland 1.32 1.40 135.00 1.00

Water 2.75 0.00 112.50 0.00

Construction land 0.00 0.00 108.50 0.00

Unused land 0.74 0.13 69.92 0.00

Table 2.  Carbon density table of land use types (t·hm−2).
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Hot-spot analysis (Getis-Ord Gi*)
Hotspot analysis can reveal the spatial clustering patterns of high and low CS values within a certain spatial 
range39. This study aims to characterize the regional carbon sequestration capacity by using the changes in CS 
from 2000 to 2020 to identify hot spots and cold spots related to the carbon sequestration capacity.

First, global Moran’s I was used to conduct spatial autocorrelation analysis40. When the value is between − 1 
and 1, a positive correlation is realized when it is > 0, and the closer the value is to 1, the greater the clustering 
effects of CS. The formula for calculating the global Moran’s I index is as follows:

	
Q =

n
∑n

i=1

∑n

j=1 ωij (xi − x) (xj − x)∑n

i−i
(xi − x)2 � (7)

	
Zscore = I − E (Q)√

V AR (Q)
� (8)

where Q is the global Moran’s I index; n is the total number of regions; xi and xj  are the CSs of region i and 
region j, respectively; x is the average CS; n is the total number of study units; ωij  is the spatial weight coefficient 
matrix of region i to region j; and E(Q) and VAR(Q) are the expected value and variance of the global Moran’s I 
index x, respectively.

Second, using the hot-spot analysis tool, which is based on a grid scale of 1000 m × 1000 m, the aggregation 
phenomenon of CS in Zunyi was detected, and the carbon sequestration capacity hotspots were identified. The 
calculation formula is as follows:

	

G∗
i =

∑n

j=1 wijxj − x
∑n

j=1 wij

S

√[
n

∑n

j=1
w2

ij
−

(∑n

j=1
wij

)]2

n=1

� (9)

where wij is the spatial weight matrix of grid i and grid j; and xj is the CS of grid j, where x is the average CS, S 
is the standard deviation of the CS, and n is the total number of grids.

Results
Spatiotemporal evolution of land use and CS from 2000–2020
Characteristics of the land use changes
The main land use types in Zunyi are woodland and farmland. Woodlands are widely distributed in the study 
area (> 62%) and are concentrated in the northwest and middle parts. Additionally, it highly overlaps with 
protected areas. The farmland area accounts for approximately 30% of the total area, which is fragmented and 
dispersed. The construction land is concentrated in southern China and southwest China, with a noticeable 
expansion trend (Fig. 4a,b). Other types of land are sporadically distributed. From 2000 to 2020, areas involving 
various types of land use underwent varying degrees of change. Woodlands experienced significant fluctuations 
from 2000 to 2020, with a total increase of 10,623.42 hm2 and a proportional increase of 0.35%. It increased by 
26,279.91 hm2 (+ 0.86%) from 2000 to 2010, followed by a decrease of 15,656.49 hm2 (− 0.51%) from 2010 to 

Fig. 4.  (a,b) Land use pattern. (c) String map of land use transfer from 2000 to 2020 (created by ArcGIS 10.8, 
http://www.esri.com/).
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2020. Farmland and grassland decreased by 28,371.87 hm2 and 23,398.2 hm2, respectively, representing decreases 
of 0.92% and 0.76%, respectively, indicating a continuous downward trend. Construction land experienced 
significant outward expansion, increasing from 0.25 to 1.17%, with an increase of 28,160.82 hm2. Concurrently, 
the water area grew by 12,996.99 hm2.

From 2000 to 2020, Zunyi experienced a total land use change of 204,073.02  hm2, characterized by the 
mutual conversions among woodland, farmland, and grassland and by their conversions to construction land 
and water (Fig. 4c). Farmland experienced a net outflow of 28,372.05 hm2, which was converted primarily to 
construction land (17,017.11 hm2). Grassland experienced a net outflow of 23,398.2 hm2 and was converted 
mainly to woodland (23,486.31 hm2) and cropland (10,328.31 hm2). Construction land significantly expanded, 
with a net inflow of 28,160.82  hm2, sourced mainly from the conversion of farmland (17,017.11  hm2) and 
woodland (9,443.52 hm2). There was also a net inflow of 12,996.9 hm2 of water, primarily from the conversion 
of woodland (8,546.76 hm2) and farmland (4,150.62 hm2).

Spatial‒temporal distribution of CS
The total CS in Zunyi in 2000, 2010 and 2020 was 658.77 × 10^6 t, 661.44 × 10^6 t and 658.35 × 10^6 t, 
respectively. Compared with that in 2000, the total CS in 2020 decreased by 0.42 × 10^6 t, a decrease of 0.06%. 
During the study period, the total CS initially increased but then decreased. In 2010, the total CS increased by 
2.67 × 10^6 t compared with that in 2000, an increase of 0.4%; however, in 2020, it decreased by 3.08 × 10^6 t 
compared with that in 2010, a decrease of 0.47%.

The average grid-based CS levels were 19.29 t/hm2, 19.36 t/hm2, and 19.27 t/hm2 for 2000, 2010, and 
2020, respectively. Spatially, the high-value CS area was distributed mainly in the western and central areas of 
woodland concentration, whereas the low-value CS areas, such as the main urban area and Renhuai, were found 
where construction land was concentrated. In addition, the construction of artificial lakes in the southeastern 
region transformed part of the woodland into water, resulting in areas with low-value CS (Fig. 5).

Response of CS to land use change
First, we used the Kendall coefficient to test the correlation between land use change and CS variation. The results 
indicate a significant negative correlation between land use change and CS (− 0.298, P = 0.0000). Woodland and 
farmland contributed to more than 90% of the total CS in Zunyi (Table 4). From 2000 to 2010, the increase in CS 
came mainly from woodland expansion, which contributed to 6.64 × 10^6 t of CS growth and thus compensated 
for the decrease in CS caused by reductions in farmland and grassland areas. From 2010 to 2020, the common 

Fig. 5.  (a,b,c) Distribution of CS in ZunYi. d. Distribution of CS changes (created by ArcGIS 10.8, ​h​t​t​p​:​/​/​w​w​w​
.​e​s​r​i​.​c​o​m​/​​​​​)​.​​​​
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reduction in farmland, woodland and grassland areas led to the loss of 6.95 × 10^6 t of CS; this decrease was 
primarily responsible for the decrease in total CS during this period. Construction land and water expanded 
significantly; however, owing to their low carbon density, their expansion could not compensate for the overall 
decline in CS.

Among the changes in CS caused by land use transfer, from 2000 to 2010, the transfer of land use resulted 
in a net increase of 2.67 × 10^6 t of CS, which was due mainly to the expansion of woodland. The transfer 
of farmland and grassland to woodland resulted in a net increase of 5.21 × 10^6 t of CS, but the transfer of 
woodland to farmland, construction land and water also caused a loss of 2.25 × 10^6 t of CS. From 2010 to 2020, 
land use transfer caused a net loss of 3.08 × 10^6 t of CS, which was due mainly to the transfer of woodland 
and farmland. The transfer of both construction land and water resulted in a total loss of 2.96 × 10^6 t of CS. In 
general, the change in CS in the study area is strongly affected by changes in woodlands and farmlands (Table 5). 
When farmland and woodland areas with relatively high carbon densities are transferred or construction land is 
significantly expanded, many CS losses occur16,41.

CS hot spots from 2000 to 2020
The global Moran’s I indices of CS in 2000, 2010 and 2020 were 0.6168, 0.6115 and 0.6009, respectively 
(P = 0.0000), indicating that the spatial aggregation effect of CS in Zunyi was significant but gradually weakened.

The Getis–Ord G*i analysis results revealed that the hot spots of CS in all of Zunyi were clustered in the 
western and central regions but gradually decreased over the study period. In contrast, the cold spots of CS were 
relatively dispersed and exhibited a certain degree of expansion (Fig. 6a,b). On a temporal scale, the change 
in CS in Zunyi from 2000–2020 was analyzed to characterize the carbon sequestration capacity (Fig. 6c). The 
results revealed that the number of hot spots for carbon sequestration was less than the number of cold spots. 
Carbon sequestration hotspots were distributed in the northern part of Zunyi. The vector boundaries of the 
natural reserves were overlaid, and the results revealed that the majority of the hot spots were distributed 
in natural reserves and adjacent areas. This finding indicates that the policy constraints of natural reserves 
restricted the outflow of woodland and, to some extent, positively drove changes in adjacent areas by promoting 
the transformation of land from protected areas and surrounding areas into woodland, thus improving the 
carbon sequestration capacity. Carbon sequestration cold spots were concentrated in the southern and western 
parts of the country. Additionally, there were cold spots in Yuqing in the southeastern part, mainly due to the 
transformation of woodland into water.

2000

2020

Farmland Woodland Grassland Water Construction land Unused land Total

Farmland 0.00 6,081,557.27 − 128,734.03 − 172,624.25 − 775,809.83 − 67.47 5,004,321.69

Woodland − 5,131,894.52 0.00 − 563,796.21 − 1,197,999.46 − 1,361,472.36 − 2799.13 − 8,257,961.68

Grassland 158,746.10 2,676,265.48 0.00 − 21,455.30 − 64,831.85 − 73.36 2,748,651.08

Water 7549.83 41,643.11 861.33 0.00 − 123.12 0.00 49,931.15

Construction land 12,444.70 22,797.60 712.59 84.96 0.00 0.00 36,039.85

Unused land 1896.74 343.75 85.59 93.85 0.00 0.00 2419.93

Total − 4,951,257.15 8,822,607.22 − 690,870.73 − 1,391,900.19 − 2,202,237.16 − 2939.97 − 416,597.99

Table 5.  CS change due to land use transfer (t).

 

Type 2000 2010 2020

Farmland
area(hm2) 941,317.29 930,905.19 912,945.42

CS (10^6 t) 145.05 143.44 140.68

Woodland
area(hm2) 1,915,771.77 1,942,051.68 1,926,395.19

CS (10^6 t) 484.06 490.70 486.74

Grassland
area(hm2) 203,814.81 182,065.05 180,416.61

CS (10^6 t) 28.27 25.26 25.03

Water
area(hm2) 4905.54 7154.91 17,902.53

CS (10^6 t) 0.55 0.80 2.01

Construction land
area(hm2) 7690.05 11,348.19 35,850.87

CS (10^6 t) 0.83 1.23 3.89

Unused land
area(hm2) 57.60 32.31 46.71

CS (10^6 t) 0.00 0.00 0.00

Table 4.  CS contributions by land use type (2000–2020).
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Driving factors of the spatiotemporal pattern of CS
The factor detection results revealed that both natural and human factors have significant impacts on the spatial 
distribution of CS in Zunyi, but the influence of each driving factor varies across different periods. In terms 
of individual factors, NDVI(X5) > population density(X9) > human footprint index(X7) > DEM(X1) > annual 
average temperature(X4); the other factors have relatively low explanatory power. The explanatory power of X5 
(0.11, 0.11, 0.16, p = 0.00) exceeded 10% during the study period, which was the main factor driving the spatial 
pattern of CS in Zunyi. Additionally, the explanatory power of the human footprint index (X7) and population 
density (X9) continuously increased.

The interaction detection results show that each driving factor exhibits nonlinear enhancement or two-factor 
enhancement, indicating that the combined effects of various factors have a greater impact on the spatial pattern 
of CS. In 2000, the types of synergy that had the greatest impact on the spatial pattern of CS were GDP and 
NDVI, with q values of 0.16. In 2010, the greatest impact was from the synergy between population density 
and the NDVI, with an interaction detection q value of 0.15. In 2020, the greatest impact was from the synergy 
between the annual average temperature and the NDVI, with an interaction detection q value of 0.19 (Fig. 7b–
d). The synergies between the NDVI and GDP, population density, and annual average temperature exhibited 
significant nonlinear enhancements, greatly influencing the spatial distribution pattern of CS.

Multiscenario simulation forecast for 2030
2030 Land use pattern
Under the NDS, the area of construction land in Zunyi increases the most, and the encroachment on farmland and 
woodland is obvious. Under the ECS, the area of construction land increases relatively little, and the expansion 
mode is obviously different, mainly because the existing construction land has expanded slowly. Farmland 
and ecological protection policies limit the arbitrary expansion of construction land and play a certain role in 
protecting farmlands and woodlands. Under the CDS, except for the increase in construction land and water 
body areas, all other land types decrease, with the construction land area increasing the most, and woodland and 
farmland decreasing the most (Fig. 8).

The farmland area decreases under NDS and CDS (− 7956.54 hm2 and − 12,133.53 hm2, respectively) and 
decreases the most under CDS (− 0.39%); however, it increases under ECS (+ 841.68 hm2). The area of woodland 
decreases under all three scenarios, with reductions exceeding 1% under NDS and CDS, but this reduction 
is somewhat mitigated under the ECS scenario (− 0.4%). The areas of water and construction land expand, 
with those of construction land expanding significantly. Under the CDS, construction land expanded the most, 
increasing by 32,151.06 hm2, a 1.05% increase. However, it only increased by 5,012.73 hm2 (+ 0.16%) in the ECS.

2030 CS
In 2030, the total CS values under the NDS, ECS and CDS scenarios are 653.46 × 10^6 t, 656.67 × 10^6 t, and 
652.79 × 10^6 t, respectively. CS high-value areas are still widely distributed, with concentrations in the western 
and central forested areas, whereas low-value CS areas are concentrated in the southern main urban area and 
the southwest. These low-value areas continue to expand beyond the 2020 baseline, concentrating in areas of 
construction land and expanding water bodies (Fig.  9a–c). Among them, under the CDS and NDS, the CS 
of Zunyi is reduced by 5.57 × 10^6 t and 4.89 × 10^6 t, respectively, compared with that in 2020, with large 
decreases (0.85% and 0.74%, respectively). Under the ECS, the downward trend is significantly mitigated, with 
a decrease of only 1.68 × 10^6 t (0.26%) (Fig. 9d). Analyses of the spatial‒temporal changes in CS from 2020 to 
2030 show that, in general, the area of CS reduction is significantly larger than the area of CS increase under 
the three scenarios in Zunyi. The increased area is scattered and dotted throughout the whole region, and the 
decreased area is mainly in the southern and southwestern regions.

Fig. 6.  (a,b) Carbon density hot/cold spots. (c) Distribution of carbon sequestration hot/cold spots from 2000 
to 2020 (created by ArcGIS 10.8, http://www.esri.com/).
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The analysis of CS changes caused by land use changes reveals that under NDS, a reduction in farmland area 
leads to a loss of 1.22 × 10^6 t of CS, whereas a reduction in woodland area leads to a loss of 8.25 × 10^6 t of CS. 
Together, these two factors account for 1.94 times the total CS loss in this scenario, whereas the expansion of 
construction land leads to an increase of only 2.64 × 10^6 t of CS. Under the ECS, the increase in farmland results 
in an increase of 0.13 × 10^6 t of CS, and the loss of CS caused by woodland reduction is effectively controlled, 
leading to a CS reduction of only 3.08 × 10^6 t. Under the CDS, the significant reductions in woodland and 
farmland areas result in losses of 1.87 × 10^6 t and 9.07 × 10^6 t, respectively, whereas the large-scale expansion 
of construction land contributes to a CS increase of only 3.49 × 10^6 t. This situation shows that the effective 
control of woodland and farmland in the ECS weakens the trend of CS reduction. Owing to the high carbon 
density of woodlands, reasonable control of woodland transfer is the key to protecting ecosystem CS.

Discussion
Response of CS to land use change
Changes in land use types can alter the structure of ecosystems, leading to variations in soil carbon sequestration 
and vegetation carbon fixation capacity, which in turn cause changes in regional CS42,43. In this study, woodlands 
account for more than 62% of the area and are widely distributed, so the average values of both the total CS and 
the unit area in this region are high. Although the CS in the past 20 years tended to stabilize overall, it first tended 
to increase but then tended to decrease, similar to the change in forestland, which was consistent with the results 
of Yang et al. and Fu et al.18,44. From 2000 to 2010, the implementation of national policies such as returning 
farmland to forest and the construction of a nature protected area system enabled the woodland in Zunyi to be 
effectively protected and further expanded45. The transfer of farmland and grassland to woodland resulted in a 
net increase of 2.67 × 10^6 t CS, which was the main contributor to the increase in CS during this stage, which is 
consistent with the conclusion of Wu et al.46. From 2010 to 2020, the economy of Zunyi was effectively promoted. 
The urban expansion in southern China, the urbanization of counties and towns, and the rapid expansion of 
the wine-making scale of Renhuai in the southwest led to land use changes in this stage, which manifested as 
a reduction in farmland and woodland and an increase in construction land and water, resulting in the loss of 
CS47–49.

Driving factors of CS
The OPGD model optimizes the discretization process of continuous variables and improves the accuracy of the 
detection results. Some studies have shown that there are differences in the q values detected by driving factors at 
different analysis scales37,50. Some studies choose the administrative region as the unit for driver factor analysis, 
whereas we choose to randomly select sampling points for analysis at a scale of 2 km within the research region. 
This may be the reason why the detection of driving factors generally results in lower values. The results indicate 
that both natural factors and socioeconomic factors have important impacts on the spatial distribution pattern 
of CS51. However, unlike previous studies44, our study results show that the NDVI has a more significant impact. 

Fig. 7.  (a) The q value of a single driver. (b,c,d) Explanatory power q value of the CS driven by two factors in 
Zunyi city (created by OriginLab Origin2021, https://www.originlab.com/).
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The NDVI reflects vegetation cover and serves as a crucial indicator for quantifying vegetation growth conditions 
and the overall ecological environment. In Zunyi, many large natural forests with high vegetation coverage 
exist. Therefore, the NDVI value is relatively high, which directly affects the spatial pattern of CS. Additionally, 
research has shown that socioeconomic drivers such as the human footprint and population density significantly 
affect the CS. The 2021 Seventh National Population Census Report indicates that Zunyi city’s population has 
increased by 479,593 people over the past 10 years (a growth rate of 7.83%)52, and the urbanization process 
and population growth have led to an increase in the scale of central urban construction land and population 
density, thereby resulting in a decrease in CS. The human footprint index is a comprehensive indicator that 
reflects the pressure of human activities in a region, and it covers a variety of variables, such as buildings, the 
population, and roads53. Therefore, as Zunyi’s economic development and human activities increase, the impact 
of the human footprint on the CS of the region continues to rise.

CS in future scenarios
Owing to the effective implementation of a series of ecological protection policies, such as the National Grain for 
Green Program and the Natural Forest Protection Project, the total CS of Zunyi remained relatively stable from 
2000 to 202054. During this era of sustainable economic development, we should focus on reasonably controlling 
the loss of CS. Some studies have shown that both farmland and woodland have strong carbon sequestration 
capacities because crops growing on the surface absorb carbon through photosynthesis; furthermore, soil 
has the ability to store carbon17,55. Therefore, enhancing the protection and utilization of farmland can help 
stabilize CS in urban areas and mitigate its decline27,43. Therefore, in this study, an ECS for the simultaneous 
protection of ecology and farmland was established56. Guided by the relevant opinions on overall national land 
space planning, this study aimed to limit the conversion of land types within nature reserves while reducing 
the probability of farmland and woodland conversion to other land types. This approach effectively curbs the 

Fig. 8.  The land use patterns of Zunyi in 2030 under multiple scenarios (created by ArcGIS 10.8, ​h​t​t​p​:​/​/​w​w​w​.​e​
s​r​i​.​c​o​m​/​​​​​)​.​​​​
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continuous reduction in woodlands and farmlands under the NDS scenario. At the same time, construction 
land effectively expanded on its original basis, contributing to the region’s low-carbon sustainable development.

Limitations and prospects
First, although this study considered the influence of natural and socioeconomic factors on land use changes 
when the PLUS model was used for simulation, deviations still exist in the simulation results. For example, a 
comparison between 2020 simulation data and actual land use data revealed that the expansion of construction 
land exceeded expectations. Therefore, future simulation processes should fully consider the impacts of economic 
and regional policies to improve the accuracy of land use simulations. Second, only the carbon density of six 
land use types was considered in the evaluation of CS, and the differences in carbon density caused by different 
vegetation types were ignored57. The carbon pool data were corrected based on previous studies of carbon 
density in the region, introducing certain inaccuracies. In addition, this study only considers three scenarios. 
In particular, under the ECS, we have accounted for the importance of China’s "Three Red Lines" policy in land 
use planning4. However, unfortunately, owing to data confidentiality, we were unable to obtain and apply this 
information in our simulation predictions. In the future, scenarios such as climate change should be considered 
to simulate future CS comprehensively from multiple perspectives58,59.

Conclusions
In this study, we designed an integrated framework by combining the PLUS-InVEST-OPGD model, completing 
multi-scenario predictions of CS driven by multiple natural and socioeconomic factors. The final conclusions 
are as follows: 

	(1)	� Woodland and farmland are the main land use types in Zunyi. From 2000 to 2020, the land use transferred 
in Zunyi was 204,073.02 hm2, which is reflected mainly in the mutual conversion among woodland, farm-
land, and grassland and by their conversion to construction land and water.

	(2)	� The total CS of Zunyi is high and exhibits spatial clustering effects, with swoodland and farmland contrib-
uting more than 90% of the total CS. The total CS in Zunyi from 2000 to 2020 fluctuated, with an initial 
increase followed by a decrease, with land use changes significantly impacting this trend. In particular, the 

Fig. 9.  (a,b,c) The land use patterns in 2030 under multiple scenarios. d. CS contributions by land use type 
under multiple scenarios (created by ArcGIS 10.8, http://www.esri.com/).
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transfer of woodland, farmland and grassland to construction land and water was the main source of CS 
loss.

	(3)	� Both natural and socioeconomic factors have significant impacts on the spatial distribution of CS. The 
NDVI is the main driving factor (q > 10%), and its synergistic effects with population density and GDP ex-
hibit a nonlinear enhancement on the CS. The impacts of the human footprint index and population density 
continuously increased.

	(4)	� In 2030, the CS of Zunyi still shows a decreasing trend under the NDS, ECS and CDS. Under the ECS, the 
CS is the highest, with a reduction of only 1.68 × 10^6 t compared with that in 2020 (− 0.26%). The effective 
control of woodland and farmland in the ECS weakens the trend of CS reduction.

Data availability
The datasets used and/or analysed during the study available from the corresponding author on reasonable 
request.
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