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Spectral convolutional neural network chip
for in-sensor edge computing of incoherent
natural light

Kaiyu Cui 1,3 , Shijie Rao 1,3, Sheng Xu1, Yidong Huang 1 , Xusheng Cai2,
Zhilei Huang2, Yu Wang2, Xue Feng 1, Fang Liu 1, Wei Zhang 1, Yali Li1 &
Shengjin Wang1

Optical neural networks are considered next-generation physical imple-
mentations of artificial neural networks, but their capabilities are limited by
on-chip integration scale and requirement for coherent light sources. This
study proposes a spectral convolutional neural network (SCNN) with matter
meta-imaging. The optical convolutional layer is implemented by integrating
very large-scale and pixel-aligned spectral filters on CMOS image sensor. It
facilitates highly parallel spectral vector-inner products of incident incoherent
natural light i.e., the direct information carrier, which empowers in-sensor
optical analog computing at extremely high energy efficiency. To the best of
our knowledge, this is the first integrated optical computing utilizing natural
light. We employ the same SCNN chip for completely different real-world
complex tasks and achieve accuracies of over 96% for pathological diagnosis
and almost 100% for face anti-spoofing at video rates. These results indicate a
feasible and scalable in-sensor edge computing chip of natural light for various
portable terminals.

Artificial neural networks (ANNs) have demonstratedpowerful abilities
across numerous applications, such as the burgeoning ChatGPT1 and
AIGC2, and have altered many aspects of modern society. Because
vision is themost importantmethod for both humans andmachines to
perceive the world, among different ANNs, convolutional neural net-
works (CNNs) inspired by biological vision for image processing have
becomeone of themost commonly usedANN architectures3. Owing to
the convolutional layers that enable CNNs to extract high-level fea-
tures from raw image data and significantly reduce parametric
complexity3,4, CNNs have achieved considerable success in image
recognition5, segmentation6, and detection7 tasks. However, the con-
volutional processing of the network dominates the processing time
and computing power. This leads to significant computing cost chal-
lenges and severe limitations for CNNs on leading high performance
electronic computing platforms, such as graphic process units (GPU),
as reflected by Moore’s law8. The huge computational cost severely

limits the deployment of CNNs on portable terminals for edge
computing.

Optical neural networks (ONNs), or optical neuromorphic hard-
ware accelerators, have been regarded as one of the most promising
next-generation parallel-computing platforms to address the
limitations of electronic computing, with the distinct advantages
of fast computational speed, high parallelism, and low power
consumption9–14. Existing works on ONNs have achieved fully con-
nected neural networks (FCNs) based on the Reck design15–19 or dif-
fractive deep neural network (D2NN)20–25 and optical CNNs (OCNNs) or
optical convolutional accelerators by further introducing wavelength
division multiplexing26–29, attaining extraordinary computing speed
with low power consumption. However, existing on-chip OCNNs
hardly accept broadband incoherent natural light, i.e., the direct
information carrier. The requirement for a coherent light source limits
the scale of optical matrix multiplication30 and is insufficient for two-
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dimensional (2D) convolution calculations. Moreover, in these
works11,24,26,27,31–33, broadband incoherent natural light is usually cap-
turedbydigital cameras and then encoded to coherent light for optical
computing (Fig. 1a), which not only degrades the energy efficiency but
also loses the light field features containing rich matter information,
such as spectrum, polarization and incident angle. Especially, the
spectral features that can identify the composition of matter for
complex vision tasks cannot be directly introduced into OCNNs.

In this work, we propose and demonstrate a spectral convolu-
tional neural network (SCNN) based on an optoelectronic computing
framework that accepts broadband incoherent natural light directly as
input (Fig. 1b). Hybrid optoelectronic computing hardware with an
optical convolutional layer (OCL) and a reconfigurable electrical
backend is employed to leverageoptical superioritywithout sacrificing

the flexibility of digital electronics19,20,28–30,32,34–36. The proposed OCL
works as the input and the first convolutional layer, which is imple-
mented by integrating very large-scale, pixel-aligned integration of
spectral filters on a CMOS image sensor (CIS), as is shown in Fig. 1c, d.
Here, the spectral filters can utilize dispersive nanostructures or
material with spectral modulation abilities. In this work, we provide
two implementations of the spectral filters. The first one is based on
metasurfaces which provide better spectral modulation capabilities
(Fig. 1c). The second one is achieved by pigments with mass produc-
tion on a 12-inchwafer (Fig. 1d). Theweights of theOCL areencodedon
the transmission responses of the spectral filters. It should be noted
that the proposed system actually functions as a high-speed custo-
mizable hyperspectral imaging method based on the new design
concepts and system framework of SCNN. However, previous
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Fig. 1 | Principles of the proposed spectral convolutional neural network
(SCNN). a Existing optical neural networks (ONNs) are based on coherent light
sources for computing. They are incapable of broadband light field sensing and in-
sensor computing. b In our design, we implemented an SCNN by integrating very
large-scale spectral filters on CMOS image sensor (CIS). Our SCNN can accept
incoherent natural light and perform analog 2D convolution calculations directly.

c Themetasurface-based optical convolutional layer (OCL) integrates pixel-aligned
metasurface units on a CIS. d The pigment-based OCL is fabricated by lithography
on a 12-inchwafer.eTheworkingprinciples of ourOCL.OneOCL contains anH ×W
array of identical OCUs and each OCU has K convolutional kernels, resulting in
calculation results of size H ×W ×K . xN : The input spectral signal. wKN : Transmis-
sion response of the spectral filter. IKN : Photocurrent of the CIS pixel.
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hyperspectral imaging works adopted spectral filters as the sensing
matrix and got the compressively sensed hyperspectral images37–40.
After capturing, the hyperspectral images require post-processing of
spectral reconstruction and further spectral analysis. In these systems,
the spectralfilters are designed to achieve high spectral resolution and
the post-processing of the captured data requires huge computational
cost, which is incapable of applying on edge computing. In this work,
the spectral filters are designed to be the first layer of the neural net-
work. Their transmission responses work as weights of the layer rather
than the sensing matrix. Therefore, we only need very few tailored
spectral filters to achieve real-world applications at high efficiency
because accurate spectral reconstruction is not required thus achiev-
ing edge computing. In this work, only 9 different spectral filters are
designed for the SCNN. More detailed comparison is described in
Supplementary Note 1.

After natural light transmits through the broadband spectral fil-
ters, CIS is used to detect the light intensity at different spatial loca-
tions (Fig. 1b),which sums the energy of the transmitted light along the
wavelength axis (i.e., the spectrum) at each image pixel, similar to the
functions of cone cells in the human eye. Therefore, the CIS and
spectral filters form an analog OCL with high spatial resolution and
process natural images directly without explicit image duplication. As
the OCL facilitates a highly parallel vector inner-product that is driven
by the energy of input natural light and completed during the light
field sensing process, it achieves real-time in-sensor computing. In this
framework, the OCL has adaptive computing speed based on the
imaging speed of the CIS. In other words, the faster the camera cap-
tures, the faster the OCL computes so that the OCL can always meet
the computing requirements of real-world vision tasks. Moreover, the
reduction in data throughput after the OCL is 96% so that the com-
putational load of the electrical backend can be significantly reduced.
On the other hand, incoherent natural light includes two spatial
dimensions and one spectral dimension, the composition of matter
can be identified and the mapping of its distribution in space can be
realized by the SCNN, which starts a new paradigm for matter meta-
imaging (MMI) beyond human eyes. To verify the capabilities of the
proposed SCNN framework, we conducted several real-world complex
vision tasks at video rate with the same SCNN chip, including patho-
logical diagnoses with over 96% accuracy and anti-spoofing face
recognition with almost 100% accuracy. Our implementation enables
low-cost mass production and integration in the edge devices or cell-
phones of the proposed SCNN. Therefore, the proposed SCNN pro-
vides new MMI vision hardware and edge computing abilities for
terminal artificial intelligence systems on diverse applications, such as
intelligent robotics, industrial automation, medical diagnosis, and
remote sensing.

Results
SCNN architecture
Our proposed SCNN consists of various spectral filters integrated on a
CIS functioning as an on-chip analog OCL, followed by several elec-
trical network layers (ENLs), as shown in Fig. 1b. Here, the spectral
filters are designed to modulate light at different spectral and spatial
points, which applies the convolutional kernel weights. Each spectral
filter is completely aligned to a CIS pixel. K = k × k CIS pixels constitute
a super-pixel and N =n×n super-pixels form an optical convolutional
unit (OCU), as is shown in Fig. 1e. Furthermore, the entire OCL is an
array of H ×W OCUs. Because the OCUs are all identical, they perform
spatial parallel analog 2D convolution calculations at different loca-
tions with megapixels.

Taking one OCU as an example (Fig. 1e), it has K = k × k convolu-
tional kernels of size n×n and covers n×n super-pixels. The p-th
(1≤p≤K) kernel hasN =n×nweight vectorswp1 λð Þ,wp2 λð Þ, . . . ,wpN λð Þ,
where wpi λð Þ= tpi λð Þr λð Þ is determined by the transmission response
tpi λð Þ of the i-th filter in the kernel and the quantum efficiency r λð Þ of

the CIS. Assuming that the input visual information represented by the
superpixel is xi λð Þ ð1≤ i≤NÞ, the calculation result vp of the kernel is as
follows:

vp =
XN

i = 1
Ipi =

XN

i = 1

Z λ2

λ1

xi λð Þwpi λð Þdλ=
XN

i= 1
wT

kixi ð1Þ

where Ipi denotes the electrical signal output of the CIS pixel under the
i-th filter in the kernel. Each OCU contains K kernels, and the OCL is a
grid of H ×W identical OCUs. Assume that the p-th kernel in the OCU
located at h,w 1≤h ≤H, 1≤w≤Wð Þ has the output vðh,wÞp. Then, the 2D
convolutional results of the OCL are:

F= fv h,wð Þpg 2 RH ×W ×K ð2Þ

Therefore,OCLhasK convolutional kernels of sizen×n and stride
n×n. When n= 1, the OCL is a special convolutional layer with size 1 × 1
and stride 1 × 1, which can also be equivalent to a fully connected layer.
When n> 1, the OCL is a strided convolutional layer with equal stride
and kernel size, which can work as the combination of a convolutional
layer and a pooling layer. Both the 1 × 1 convolutions and strided
convolutions are widely adopted in CNNs such as ResNet5. Although
the stride is restricted to be equal with kernel sizes, our experimental
results have shown that our SCNN can still reach high performance for
real-world tasks. In this way, the input visual signal has a spatial reso-
lution ofnH ×nW andC spectral channel, which is equivalent to having
nH ×nW ×C voxels. C is determined by the sampling points in the
spectral dimension. We assume that the light is locally homogeneous
in one superpixel. The output featuremapof theOCLhasH ×W spatial
points and K channels. As usuallyK ≪C, the OCL can greatly compress
the information in the spectral domain.

After in-sensor computing by the OCL, the output feature map is
sent to the trained ENLs, which can comprise various ANN archi-
tectures such as FCNs and CNNs. Although the tailored OCL hardware
is fixed after fabrication in our SCNN framework, its kernel size n and
number of kernels K = k2 can be reconfigured as well as k � n is fixed to
the size of the OCU. A larger n leads to better capabilities of extracting
spatial features and a larger k means more powerful spectral sensing
abilities. Therefore, there is a trade-off between spatial and spectral
features. We can choose the optimal value for k and n based on the
actual needs of a specific task. Moreover, the ENLs can be changed and
trained dynamically to suit different objectives. For example, in our
disease diagnosis and face anti-spoofing tasks, we employed two dif-
ferent ENLs sharing the same OCL to perform pixel- and image-level
predictions. Therefore, our SCNN framework combines the advan-
tages of OCL by providing ultrafast sensing and processing of spatial
and spectral features of natural images and the flexibility of ENLs with
reconfigurable network designs for different tasks, enabling real-time
MMI for different machine intelligent systems. Particularly, the OCL
significantly reduces the computational load and data throughput of
the electrical backends. The whole system can run in real time without
the need for GPU. Therefore, the entire system is efficient and com-
pact, which open the way for edge computing applications.

Metasurface based SCNN chip
In this work, we provide two implementations of the spectral filters
for the SCNN. The first one is based on metasurfaces which provide
flexible designed spectral modulation for the kernel weights of the
OCL. Since different functions and applications require distinct
metasurface designs to achieve the best results, we propose a
gradient-based metasurface topology optimization (GMTO) algo-
rithm to achieve an application-oriented metasurface design for
different tasks such as thyroid disease diagnosis and anti-spoofing
face recognition (Fig. 2a). Here, we first adopted freeform-shaped
meta-atom metasurfaces40 to generate millions of different
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metasurface units and arranged all the metasurfaces into a 2D
array. Thus, each metasurface unit can be uniquely represented by
a pair of coordinates ðp, qÞ. To design N metasurfaces, the objective
can be considered a function of 2N independent variables:
Lðp1, q1, . . . ,pN , qNÞ. We then utilized the GMTO algorithm to find the
minimum points of L p1,q1, . . . ,pN ,qN

� �
, obtaining the optimized

design (see Supplementary Note 3 for details).
We found that OCL, designed by GMTO, could extract dis-

criminating featureswith as few as nine kernels for live human skin and
the thyroid tissue. The visualization results by principal component
analysis (PCA)41 are shown in Fig. 2b and Fig. 3c, respectively. Fewer
kernels enable higher feature compression capability, higher spatial

resolution, and lower computing costs for ENLs. Particularly, com-
pared with our previous hyperspectral imaging works34–37, SCNN uses
very small number of metasurface units and provides an ONN-based
approach for hyperspectral sensing, effectively avoiding the need for
as many metasurface units as possible for high-precision spectral
reconstruction (see Supplementary Note 1 for details). Finally, we
implemented the OCUs with H = 122 and W = 160 by integrating mil-
lions of pixel-alignedmetasurface units on top of a CIS (see “Methods”
for details). The scanning electron microscopy (SEM) images of the
fabricated metasurfaces are shown in Fig. 2a.

As is mentioned above, the size and number of convolutional
kernels can be reconfigured. For example, theOCL shown in Fig. 1c can
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Fig. 2 | Metasurface based spectral convolutional neural network (SCNN) chip
canbe used formultiple vision tasks related to face recognition. aThe gradient-
basedmetasurface topologyoptimization (GMTO) algorithm is achieved byfinding
the minimum point of the designed loss function. b Spectral feature extraction
results of the optical convolutional layer (OCL) visualized by PCA. Live skin and
three spoof materials are separated. c The OCL has 9 kernels with size 1 × 1. By

changing the electrical network layers (ENLs), the sameSCNNchipcanbe trained to
complete face anti-spoofing, face detection, and face recognition tasks. d Our
SCNNchip can combine spectral features with spatial features and perform reliable
anti-spoofing face recognition. e Confusion matrix for the pixel-level and image-
level liveness detection results.
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also be regarded as having 1 ðk = 1,K = k2 = 1Þ convolutional kernel of
size 3 × 3 and stride 3 × 3 (n=3). In this configuration, we need to sum
the outputs of all of the CIS pixels in one OCU to generate an output
feature map of size 160× 122× 1. We find this configuration performs
worst in experiments because spectral features are more important
than spatial features in the two applications. Therefore, we adopt the
configuration of 9 convolutional kernels of size 1 × 1 and stride 1 × 1 to
conduct further experiments.

To test the capabilities of the proposed SCNN framework, we
employed the proposed SCNN for face anti-spoofing (FAS) to verify its
performance. Nearly all of the current face recognition systems can be
deceived by high-fidelity (HiFi) silicone masks, posing a great risk to
privacy and security. However, when powered by our MMI,

discriminative features can be extracted to detect HiFi masks. We
captured images and obtained a test set containing 108 test samples
from 31 different people, including several HiFi silicone masks, under
natural light, and evaluated the performance of our SCNN chip. The
results are shown in Fig. 2c, d. We can observe that our SCNN chip can
effectively recognize live pixels, which are marked in green. Figure 2e
shows the confusion matrix of the SCNN for all the test samples. The
SCNN framework achieved 100% and 96.23% accuracy in image- and
pixel-level liveness detection on our test dataset, demonstrating that
our SCNN chip can achieve high reliability in anti-spoofing liveness
detection applications (more results can be found in Supplementary
Note 4). These results indicate the considerable potential for FAS
systems.

a

Normal Simple 

goiter

Toxic 

goiter

Thyroid

adenoma

Thyroid

carcinoma

Raw inputs

Feature maps

Normal Thyroid 
carcinoma

Simple 
goiter

Toxic 
goiter

Thyroid 
adenoma

Image-level prediction

Pixel-level prediction

OCL

ENL1

ENL2

Image-level Acc: 96.4%

Tr
ue

L
ab

el

Pixel-level Acc: 82.0%

With OCL Without OCL

Pixel-level 82.0 60.6

Image-level 96.4 93.6

Accuracy (%)

Tr
ue

L
ab

el

Predicted Label Predicted Label

b

c

d e

Fig. 3 | Experimental results of thyroid histological section diagnosis by the
Metasurface based SCNN. a We exploit our SCNN to sense the raw datacube of
thyroid histological section through a microscope. After the data are processed by
the optical convolutional layer (OCL) and electrical network layers (ENLs), thyroid
disease is automatically determined via image-level prediction. After the data are
processed furtherby additional ENLs, thepotential pathological areas are labeled in
different colors via pixel-level prediction. b Without OCL, the classification

accuracy based on the same monochromatic sensor decreases considerably for
both image- and pixel-level predictions. c The spectral features from OCL can be
visualized by principal component analysis (PCA). Normal and pathological tissues
are separated. d Confusion matrix of the image-level thyroid pathology classifica-
tion results of the SCNN chip on the test set. Our SCNN chip achieves 96.4%
accuracy. e Confusion matrix of the pixel-level results. Our SCNN chip achieves
82.0% accuracy.
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Furthermore, we employed the designed SCNN chip to perform
real-time anti-spoofing pixel-level liveness detection at different video
frames. In this experiment, the entire system was run on a traditional
Intel Core i5-6300HQ CPU, and the frame rate of the results was only
limited by the CIS exposure time. The HiFi siliconemasks can be easily
detected at pixel level (more results can be found in the Supplemen-
tary Video 1). Thus, the proposed SCNN framework is expected to be
widely used in the real-world applications of MMI. By simply rede-
signing and retraining the ENLs according to the needs of specific
tasks, the function of the SCNN can be customized, such as face
detection and recognition, as shown in Fig. 2c (more details of the
redesigned ENLs can be found in Supplementary Note 5). The results
show that the SCNN can accurately predict the locations of faces and
achieve face recognition. This experiment indicates that the final
output of the SCNN is highly customizable. The SCNN can flexibly
adapt to various advanced CV tasks at video rates by simply changing
and retraining the ENLs.

In addition to face anti-spoofing, we conducted automatic thyroid
disease diagnosis experiments. The samples included normal thyroid
tissue and tissues from four different diseases: simple goiter, toxic
goiter, thyroid adenoma, and thyroid carcinoma. As shown in Fig. 3a,
natural images of thyroid histological sections were first detected and
processed using OCL. The feature maps output by the OCL is further
processed by the ENLs to output the image-level thyroid disease
classification results. Finally, the pixel-level disease detection results
were output by other ENLs (see Supplementary Note 6 for details
about the network). Figure 3d, e show that our SCNN framework can
diagnose these four thyroid diseases, achieving an image-level testing
accuracyof 96.4%, the ENLs only need 81.26MOPs,more results canbe
found in Supplementary Note 9. Moreover, the SCNN chip auto-
matically labeled the potential pathological areas in different colors at
high spatial resolution. To study the role of the OCL, we conducted
another experiment by replacing the OCL with a CIS without meta-
surfaces. After repeating the same ENLs training procedure, the image-
level prediction accuracy decreased from 96.4% to 93.6%, and the
pixel-level prediction accuracy decreased from 82.0% to 60.6%
(Fig. 3b). The performance is much worse than using the OCL because
OCL provides extra spectral sensing capabilities. Therefore, for the
vision tasks related to spectral information, we need hyperspectral
images rather than RGB images or grayscale images to get a good
performance. If we complete the whole process by capturing data
using a hyperspectral camera and implementing all neural network
layers on the electrical computing platform, then we can get similar
results compared with SCNN. However, the hyperspectral cameras
usually have a very high cost and need time to scan a hyperspectral
image. Moreover, the storing and processing cost of a hyperspectral
image on an electrical computing platform is also very high (see Sup-
plementary Note 2 for details). Therefore, conventional hyperspectral
camera is not practical to be used in real-time edge computing appli-
cations, while the SCNN provides a simple but highly effective way to
sense and process hyperspectral images for various portable
terminals.

Pigments based SCNN chip with mass production
Besides metasurface-based spectral filters, we have also achieved the
mass production of the SCNN on a 12-inch wafer utilizing pigments as
spectral filters. The spectral filters are achieved by mixing several
pigments with different organic solvents including ethyl acetate,
cyclohexanone, and propylene glycol methyl ether acetate (PGMEA).
The 12-inchwafer of the fabricated chips tapedby lithography is shown
in Fig. 4a. Each chip is only about 3 × 3:5 mm2 and can be integrated
into any mobile device such as a smartphone to enable MMI. Focused
ion beam-scanning electron microscope (FIB-SEM) image of the SCNN
chip is shown in Fig. 4d. Each pigment-based filter is precisely aligned
to a CIS pixel.

We selected 9 different pigments to form the spectral filters from
several candidates that are compatible with lithography to make the
differences between different targets in the featuremaps outputted by
the OCL as large as possible. Lithography enables large-scale integra-
tion of spectral filters, and the SCNN chip has a total of
400× 533ðH =400,W = 533Þ superpixels. Therefore, the size of the
feature map output by OCL is 400× 533 ×9. The spatial resolution is
sufficient for most computer vision tasks, and OCL empowersmassive
parallel analog computing.

The fabricated chip is packaged into a tiny camera, as shown in
Fig. 4b. The size of the camera is approximately 6:5 × 7mm2.We placed
the pathological thyroid sections immediately above the camera lens
without any microscope, which is impossible for traditional patholo-
gical diagnosis. Natural images of thyroid histological sections were
first obtained and processed using OCL. The feature maps output by
the OCL is then further processed by the ENLs to output the image-
level thyroiddisease classification results. The camera cancaptureonly
a blurry image rather than a sharp image showing clear textures since a
microscope is not used. Some samples of pathological sections and
their feature maps outputted by the OCL are shown in Fig. 4f. The
feature maps display few spatial features. However, we still reach a
classification accuracy of 96.46%. Furthermore, we also conducted
another experiment by replacing OCLwith CIS without pigment-based
filters to study the role ofOCL.After repeating the samedata collection
and ENL training procedure, the classification accuracy decreased
from96.46% to 47.09%. The tiny size of the finished camera allows it to
be integrated into various medical instruments such as laparoscopes.
Thus, the proposed SCNN framework shows considerable potential as
an ancillary diagnostic tool in clinical medicine and might assist doc-
tors in precisely localizing lesions in real-time during surgery.

We have also achieved the face anti-spoofing task using the
pigment-based SCNN (Fig. 4g). The confusion matrix of the classifi-
cation results and more experimental results can be found in Supple-
mentary Note 7 and Supplementary Video 2. Compared with
metasurface-based SCNN, pigment-based SCNN achieved mass pro-
duction by lithography, thus obtaining high integration and high
spatial resolution. However, the metasurfaces can provide more
powerful light field modulation capabilities and greater design
freedom36–39,42, resulting in more spectral information andmore space
for customization. Based on the concept of the SCNN, the
metasurface-based architecture also has further potential in sensing
and processing other light dimensions, e.g., polarization and
phase43–46. Besides, metasurfaces also have the potential to achieve
mass production via standard semiconductor lithography process.
Therefore, in practical, we can choose and design the optimal SCNN
chip depending on the specific requirements of the application. It can
be predicted that SCNN chips will have more potential in various
applications.

Discussion
We proposed an integrated SCNN framework that achieves in-sensor
edge computing of incoherent natural light. It can detect visual
information in natural raw 3D datacube with both spatial and spectral
features by performing optical analog computing in real-time. Lever-
aging both the OCL and ENLs, SCNN can achieve high performance
even on edge devices with limited computing capabilities, which
enables edge computing withMMI functions. In practical applications,
utilizing the high versatility of ENLs, a specific SCNN chip can be easily
adapted to various advanced vision tasks asdemonstrated in thiswork.
For the OCL, it is designed to perform inferencing for spectral sensing
and computing in edge devices rather than in-situ training. Therefore,
for a specific application, the weights can be fixed. To achieve a
completely new task at high performance, we need to re-design and re-
fabricate the chip. For optical neural networks (ONNs) with weights
encoded by non-tunable optical structures, we can adopt a similar
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strategy as refs. 21,22,24,29, which is to design the network by elec-
trical computing and then fabricate the optical computing layer for
specific tasks in terminal devices for edge computing. It is a tailored
chip for a specific task for edge computing applications. The com-
puting speed and power consumption of OCL depend only on the
exposure time and the power of the CIS, empowering ultrafast optical
computing at high energy efficiency.

To achieve hyperspectral imaging and sensing, we can also adopt
a conventional hyperspectral camera to scan hyperspectral images,
and then process the images on GPU. However, such a system cannot
be integrated on edge devices because GPU has large size, high energy
consumption, and high cost that cannot meet the requirements of
edge devices with limited computing capabilities. Besides, the con-
ventional hyperspectral camera is also bulky, expensive, and not

capable of real-time imaging. Our OCL is in-sensor computing that
provides a substantial reduction of 96% in data throughput. The
computing speed of OCL only depends on the imaging speed of the
CIS. The faster theCIS captures, the faster the computing speedofOCL
can be. Therefore, the OCL can always satisfy the computing require-
ments of real-world tasks. Besides, the SCNN makes it possible to
process hyperspectral images using only a few extra digital neural
network layers on edge devices. It can empower edge devices with
both sensing and computing capabilities for various real-world com-
plex vision tasks.

Compared with existing on-chip works, as is shown in Fig. 1 and
Table 1, our SCNN can process natural hyperspectral images with high
spatial resolution/pixels. It does not rely on coherent light sources,
fiber coupling, or waveguide delay. Although CIS is relatively slow
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OCL
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e f
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OCL
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= Feature maps by OCL
Liveness detection results

g

Fig. 4 | Spectral convolutional neural network (SCNN) chip implemented by
utilizing pigments as spectral filters and achieving mass production on a 12-
inchwafer. a The fabricated SCNN chips on a 12-inchwafer by lithography. bA tiny
camera equippedwith the SCNNchip. It can achieve in-sensor edge computing and
spectral sensing. The size of the SCNN chip is only about 3 × 3:5mm2 and the size of
the whole camera is about 6:5 × 7mm2 c A microscope image of the fabricated
SCNN chip. It has 9 convolutional kernels of size 1 × 1 and stride 1 × 1. A super-pixel
contains 9 image sensor pixels. d The focused ion beam-scanning electron

microscope (FIB-SEM) image of the SCNN chip. One image sensor pixel is covered
by a pigment-based spectral filter and a micro-lens. The fabrication process is
completely standard semiconductor lithography process. e We place the thyroid
pathological sections right above the lens without amicroscope. f The sections and
the corresponding feature maps outputted by optical convolutional layer (OCL).
g The face anti-spoofing results of the pigment-based SCNN. ENL: Electrical
convolutional layer.
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comparedwith the commonly used high-speed photodetector, we still
achieve considerable computing speed and density compared with
existing photodetector-based works because CIS has high integration
and can take full advantage of space division multiplexing. If we
replace the CIS with high-speed PD array, there is still great potential
for improvement in computing speed. More detailed analysis about
computing speed can be found in Supplementary Note 2. Actually, as
CIS is the most integrated optoelectronic device, we can have hun-
dreds of millions of pixels at a very low cost. The SCNN provides the
strategyof utilizing every single pixel to performoptical computing via
CIS to achieve high computing density and reduce the number of
photoelectronic conversions. Based on the above advantages of SCNN
architecture, we have achieved mass production on a 12-inch wafer of
the pigment-based SCNN. Thus, the proposed SCNN opens a new
practical in-sensor computing platform for complex vision tasks with
MMI functions in the real world.

Methods
Fabrication of the metasurface-based SCNN Chip
The designed metasurfaces were formed using EBL on a silicon-on-
insulator (SOI) chip. The silicon layer was 220 nm thick. The metasur-
face patterns were transferred onto the silicon layer via inductively
coupled plasma etching (ICP). To remove the silicon layer from the
underlayer, buffered hydrofluoric acid was used towet etch the silicon
dioxide layer. Finally, the entire top Si layer with the designed meta-
surfaces was transferred and attached to the surface of the CIS using
polydimethylsiloxane (PDMS). We used a Thorlabs CS235MU camera
for CIS. The proposed SCNN chip can be fabricated using a CMOS-
compatible process and can be mass-produced at low cost.

Fabrication of the pigment-based SCNN chip
The pigment-based SCNNChip is produced at semiconductor foundry
on a 12-inch wafer, employing a standard color filter array process via
I-line lithography. The CIS wafer is uniformly coatedwith a color resist.
To render the pattern insoluble, it is UV-cured by exposure through a
carefully designed photomask. Subsequent to this, any unnecessary
portions of the color resist are removed using the developing solution.
Following this removal, the pattern is further solidified through a
baking process. This comprehensive sequence of steps is repeated
nine times.

Following the color filter layer process, a planarization layer was
established using the Chemical Mechanical Polishing (CMP) technique
to ensure a flat and uniform surface. Subsequently, a photoresist layer
was uniformly applied onto this planarized surface using a spin-

coating method. This photoresist layer was patterned by UV light
exposure through a predefinedmask. The excess photoresist was then
removed in a development process, leaving behind the desired pat-
terns. The wafer was subjected to a reflow baking process, during
which the patterned photoresist naturally reflowed into the shape of
microlenses, driven by surface tension and thermodynamic effects.

Implementation of the ENLs
The ENLs in the SCNN are realized using the TensorFlow47 framework
and trained on an NVIDIA RTX3080 GPU. Several volunteers have
participated in the face anti-spoofing task. The authors affirm that
human research participants provided informed consent for publica-
tion of the images in Figs. 2, 4. The study is conducted under the
guidelines provided by Tsinghua Ethics Committee. Additional
implementation and training details of ENLs are provided in Supple-
mentary Note 6 and 7. After training, the ENLs and OCL formed a fully
functional SCNN. The electrical components of the SCNN were run on
an Intel Core i7-11700 @2.5 GHz CPU for real-time applications.

Data availability
The data for Figs. 1c, 2b, 3c are provided in Source Data file. The
authors declare the other data supporting the findings of this study are
available within the paper (and its supplementary information
files). Source data are provided with this paper.

Code availability
We have developed codes for training the ENLs. A surrogate forward
prediction model is also designed to fast predict the transmission
responses of meta-atoms. The codes and detailed information can be
found at our GitHub Page48 (https://github.com/rao1140427950/scnn_
mpcf). Other algorithms and methods are included in this published
article (and its supplementary information files).
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