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ABSTRACT: From the perspectives of economy, low carbon, and
safety in DC microgrids, a multiscenario optimization control
method of low-voltage DC microgrids based on the nondominant
sorting arctic puffin optimization algorithm (NSAPOA) is
proposed in this paper. The Wasserstein generative adversarial
network with gradient penalty (WGAN-GP) is used to generate
typical output scenarios of photovoltaic and loads that are reduced
by the K-means clustering method to deal with the uncertainty of
photovoltaic and load. Based on the time of use electricity price,
the operating modes of the low-voltage DC microgrid system are
divided to formulate relevant energy exchange strategies. The
equivalent electricity weight method is used to evaluate the service
life of energy storage systems, and a multiobjective optimization control model of low-voltage DC microgrid for multiple scenarios is
established with the objective functions of maximizing daily net income, minimizing equivalent charging and discharging capacity of
energy storage systems, and minimizing carbon dioxide emissions. The NSAPOA is used to iteratively obtain the Pareto solution set,
and the final optimal solution is determined by employing the multiattributive border approximation area comparison (MABAC)
algorithm. Analysis results show that this can achieve economic and low-carbon optimization operation of the system throughout the
whole life cycle of energy storage systems.

1. INTRODUCTION
Microgrids have garnered significant focus to enhance the
efficiency of using renewable energy sources.1 Primarily
functioning as an alternating-current (AC) system, the micro-
grid system aids in the transfer of energy and the provision of
power for AC loads. However, as the proportion of direction
current (DC) load steadily rises and technology evolves, the
development of DC power supply technology is steadily
advancing toward full maturity.2 Currently, the bus voltage in
DC microgrids predominantly operates at a low voltage state,
and these low voltage microgrids are highly reliable in providing
electricity to domestic consumers.3 In DC microgrids, energy
storage is crucial due to its benefits such as two-way output and
adaptable configuration. The cost of investing in DC microgrid
energy storage devices is relatively low at present due to their
DC output character. As energy storage technology progresses
and renewable energy becomes more prevalent, an increasing
number of users are likely to switch to a low-voltage DC
microgrid mode, incorporating energy storage devices for future
power provision.4

Nonetheless, the operational optimization of each component
in DC microgrids varies from that in AC microgrids. Within AC
microgrids, busbars are capable of direct grid connection via
switches, whereas in DCmicrogrids, the busbars’ current output
is DC, preventing a direct link to the AC grid. The transfer of

energy between the busbars and the AC grid must be facilitated
by converters connected to the grid. Currently, the literature on
optimizing low-voltage DC microgrids is quite limited.
AlDavood et al.5 used a sturdy scheduling framework for
isolated microgrids, taking into account the demand response.
Utilizing sturdy optimization techniques, they simulated the
unpredictability of generating renewable energy and its demand
reaction, addressing the dual-layer optimization issue with a
combined approach involving genetic algorithms and mixed
integer programming;LiuDan et al.6 employed themultifaceted
particle swarm optimization algorithm to address microgrid
optimization issues, considering factors like power equilibrium
and solar energy production, aiming to reduce daily operational
expenses and enhance the rate of solar energy usage. Hayashi R
et al.7 employed a mix of particle swarm optimization and
quadratic programming techniques to perform numerical
simulations aimed at reducing the combined initial and
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operational expenses of microgrids; Liu Yong et al.8 employed a
refined particle swarm optimization technique to enhance the
financial efficiency of microgrids. Altering the particle swarm
algorithm’s velocity and positional development using various
normal random numbers, which confirmed the enhanced
particle swarm’s optimization capabilities and boosted the
microgrid’s economic productivity. Rodriguez M et al.9 used a
refined system for managing islanded microgrids, utilizing fuzzy
control to modify the parameters of fuzzy logic control via
particle swarm optimization and a cuckoo search algorithm,
aiming to lower the operational expenses of microgrids.
As microgrid power supply technology evolves and China

actively pursues the “dual carbon goals″,10 microgrids operators
must take into account not just economic effectiveness but also
the environmental effects of carbon emissions and the longevity
of different components in the system, like energy storage
systems. Fan Zixiao et al.11 unveiled an enhanced third-
generation multiobjective genetic algorithm designed to address
the economic challenges faced by microgrids, focusing on
reducing operational expenses, energy storage and discharge
capacities, and pollution. Factoring in limitations like the power
equilibrium and each unit’s output, they implemented quantum
local search to address the issue, enhancing the overall search
capability; Wang Shizhen et al.12 examined various operational
tactics for microgrid clusters, focusing on reducing investment
expenses and factoring in the lifespan of energy storage services.
The particle swarm optimization algorithm was employed to
enhance efficiency, reduce operational expenses, and prolong
the lifetime of energy storage facilities; Xiao Hao et al.13

suggested a two-tiered optimization approach for microgrids,
taking into account operational expenses and the longevity of
energy storage. This model employs a grid-adaptive direct search
and particle swarm optimization algorithm to enhance perform-
ance, decreasing the depth of charging and discharging for
energy storage batteries in order to extend their longevity, and
boost the system’s overall efficiency.
The existing research results indicate that both economic

benefits and low-carbon factors are crucial in optimizing the
operation of low-voltage DC microgrids, and an effective
optimization method can significantly improve the operational

efficiency and reliability of microgrids. In response to the above
issues, a diverse approach for optimizing control in low-voltage
DC microgrids, utilizing the Nondominated Sorting Arctic
Puffin Optimization Algorithm (NSAPOA) under given photo-
voltaic and energy storage capacities is proposed in this paper. In
order to eliminate the uncertainty of output, Wasserstein
Generative Adversarial Network with Gradient Penalty
(WGAN-GP) and K-means clustering method are used to
generate typical output scenarios of photovoltaic and loads. By
analyzing the correlation relationship between various system
operation modes and electricity prices, relevant energy exchange
strategies are formulated. With the objectives of minimizing
daily operating costs, equivalent battery charging and discharg-
ing capacity, and reducing carbon dioxide emissions, an
optimization operation model of the low-voltage DC microgrid
that takes into account battery lifespan is established to improve
the reliability of the microgrid is established. In the optimization
process, the Non-Dominated Sorting Arctic PuffinOptimization
Algorithm (NSAPOA) is used to obtain the Pareto optimal
solution set, and the final optimal solution is derived using the
Multi Attribute Boundary Approximate Area Comparison
(MABAC) algorithm, which can further improve the opera-
tional efficiency of the microgrid system. Due to the
consideration of DC loads connected to the grid and power
limitations of converters, the technique suggested in this
document significantly enhances the system’s energy efficiency,
reduces carbon dioxide emissions, and maintains the reliability
of the power supply.

2. TYPICAL SCENARIOS OF PHOTOVOLTAIC AND
LOAD GENERATED BY WGAN-GP

2.1. The Structure of Low-Voltage DC Microgrid
System with Photovoltaic and Energy Storage. The low-
voltage DC microgrid system consists of distributed photo-
voltaics, energy storage batteries, control systems, grid
connected converters, and user loads. The aspect of power
generation encompasses solar energy production, power grids,
and energy storage devices; The central distribution system
consists of a DC bus and a central control system, in which the
DC bus is responsible for the flow of energy, and the control

Figure 1. Structure of low-voltage DC microgrid system with photovoltaic and energy storage.
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system is responsible for collecting signals and executing control
instructions; The user loads include smart meters, household
loads, electric vehicle DC loads, etc.; Smart meters serve the
purpose of collect, measure, and transmit energy information
from user data, equipped with smart features like two-way
multirate measurement and user management. The structure of
low-voltage DC microgrid system with photovoltaic and energy
storage is shown in Figure 1.

In Figure 1, energy storage and photovoltaic power generation
systems coordinate with each other to achieve efficient energy
utilization and stable system operation. When the photovoltaic
power is greater than the load power, a portion of the
photovoltaic power is converted into AC power by the inverter
to supply power to the load, and the remaining inverter stores
the electrical energy in the energy storage system; When the
photovoltaic power cannot meet the load demand, the inverter
will convert the stored energy in the energy storage system to

Figure 2. Structure of WGAN-GP

Figure 3. Typical scenarios generation of photovoltaic and load.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c09671
ACS Omega 2024, 9, 51665−51678

51667

https://pubs.acs.org/doi/10.1021/acsomega.4c09671?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c09671?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c09671?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c09671?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c09671?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c09671?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c09671?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c09671?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c09671?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


supply the load, ensuring the continuity and stability of the
entire system operation.

2.2. Typical Scenario Generation of Photovoltaic and
Loads. Due to factors such as weather, photovoltaic and load
output have strong uncertainty. To address the above issues, the
Wasserstein Generative Adversarial Networks with Gradient
Penalty (WGAN-GP14) is used to generate typical output
scenarios for photovoltaics and loads, and the K-means
clustering method is applied to reduce the dimensionality of
the generated scenarios. WGAN-GP enhances algorithmic
efficiency by penalizing the gradient norm of the critic’s inputs,
rather than clipping weights. Compared to traditional WGAN,
WGAN-GP demonstrates superior performance and facilitates a
stable training process. Additionally, when using WGAN-GP,
almost no hyperparameter adjustments are necessary.
Figure 2 illustrates the core structure of WGAN-GP used for

generating renewable energy and load scenarios. Figure 2
primarily consists of a pair of deep neural network models, with
generator G and discriminator D. Both G and D may include
convolutional neural networks or fully connected neural
networks. The generator G, through understanding the possible
distribution of past renewable energy photovoltaic or load data,
analyzes the noise signal z, adhering to the probability
distribution Pz(z) (like Gaussian distributions), to derive the
resultant data f = G(z) in line with the probability distribution
PG(z). G’s objective is to align the probability distribution G(z)
of the produced data with that of the historical data. The
discriminator evaluates both the generator’s generated data
G(z) and the historical data r which aligns with the probability
distribution Pdata(r) and calculates the likelihoodD(G(z)) of the
produced data G(z) mirroring the actual distribution Pdata(r).
D’s aim is to ascertain as precisely as possible if the input data is
historical or generated.
Once the training goals of G and D are established,

constructing the loss functions LG and LD of G and D
respectively, is essential for training purposes. In the case of G,
a reduced LG indicates an increased likelihood of the produced
data adhering to Pdata(r). In the case of D, a lesser LD indicates
D’s enhanced capability to differentiate among various data
sources. LG and LD can be depicted in the following manner:

= [ ]L D G z( ( ))G
pz z( )z (1)

= [ ] + [ ]
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U[0,1],λ symbolizes the gradient penalty term’s weight
coefficient, while ∥ · ∥2 signifies the ι2-norm.
To facilitate concurrent game training for G and D, we merge

eqs 1 and 2 to develop a minimum-maximization game model
focusing on the value function V(D, G):
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As iterations advance, G modifies the generator network’s
weight to increasingly resemble the actual sample, while the
discriminator network enhances its discriminant capacity via

learning. The process involves continuous cycles until the
discriminator network fails to precisely identify the origin of the
input data sample, after which the generator undergoes training
to create photovoltaic and load situations. The load and PV data
used for WGAN-GP model training both come from North
China. Figure 3 (a) displays the outcomes of creating
photovoltaic and load scenarios via WGAN-GP, while Figure
3 (b) illustrates the effects of scenario reduction using the k-
means clustering technique.

2.3. Operation Mode and Working Condition Division
of the System. The electricity of low-voltage DCmicrogrids in
multiple scenarios comes from photovoltaic power generation
and electricity purchased from the large grid. The principle of
energy exchange is to prioritize the consumption of photo-
voltaics, the energy storage system charges when the load is low,
the energy storage system discharges when the load is high, and
the purchase of electricity is reduced from the grid in the peak
period. Figure 4 displays the spot electricity pricing graph for a
specific day, with the data from the time-of-use electricity prices
in northern China.

It can be seen from Figure 4 during 1:00−7:00 and 22:00−
24:00, the time-of-use electricity price belongs to the valley
period, with a minimum of 0.0674 USD in the whole day; during
8:00−11:00 and 16:00−18:00, the time-of-use electricity price
belongs to the flatting period, with a tariff of 0.1095 USD; during
12:00−15:00 and 19:00−21:00, the time-of-use electricity price
belongs to the peek period, with the highest tariffs of 0.1544
USD in the whole day.
Compared to traditional AC microgrids, the energy flow of

DCmicrogrids is achieved with the grid through grid-connected
converters. Therefore, the different operating modes of the
system are determined by the different working states of grid-
connected converters.15 The working states of grid-connected
converters mainly include stop working, unidirectional con-
nection, and bidirectional connection. The corresponding
operating modes of DC microgrids are off-grid, unidirectional
connection, and bidirectional connection. The grid-connected
operation mode is divided into operating conditions 1−5, and
the off-grid operation mode is divided into operating conditions
6−7. The different operating modes and operating conditions of
the system combined with the time of use electricity price are
shown in Figure 5.

Figure 4. Curve of time-of-use electricity prices
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2.3.1. Bidirectional Grid Connection Mode. The system
purchases and sells electricity from the grid through grid-
connected converters to meet the load demand, achieving
bidirectional energy flow with the grid and reducing load
shortage caused by insufficient power generation.
Condition 1. In the valley period, when the output of

photovoltaic power PV is 0, the output of the DC microgrid is
sufficient, that is, Pgrid > Pload. If the SOC of the energy storage
system is less than 20%, the energy storage system is charged by
purchasing electricity from the grid; If the SOC of the energy
storage system is between 20% and 90%, the energy storage
system is in a charging state; If the SOC of the energy storage
system is greater than 90%, the system will switch to a discharge
state and supply power together with the DC microgrid to meet
the load demand; When Pgrid < Pload, switch to Condition 5.
Condition 2. In the flat period, when PV > Pload, if the SOC of

the energy storage system is greater than 90%, the excess
electricity is sold to the grid through grid-connected converter,
and the grid-connected interface is in an inverter state; If the
SOC of the energy storage system is less than 90%, the energy
storage system is in a charging state. When PV < Pload, switch to
working Condition 5.
Condition 3. In the peak period, when PV > Pload, except for

supplying the load, all excess electrical energy is sold to the grid
through grid-connected converters, and the grid-connected
interface is in an inverter state; When PV < Pload, switch to
Condition 5.
2.3.2. Unidirectional Grid Connection Mode. The energy

flow of grid-connected converters operates in a unidirectional
manner, meaning that the system can only purchase electricity
from the grid through grid-connected converters and cannot sell
electricity, resulting in the abandoned photovoltaic.

Condition 4. When PV > Pload, if the SOC of the energy
storage system is greater than 90%, it is in a state of the
abandoned photovoltaic; If the SOC of the energy storage
system is between 20% and 90%, the energy storage system
switches to the charging state; If the SOC of the energy storage
system is less than 20%, the system is charged by purchasing
electricity from the grid through grid-connected converters;
When PV < Pload, switch to Condition 5.
Condition 5.When PV < Pload or Pgrid < Pload, if the SOC of the

energy storage system is greater than 20%, the energy storage
system discharges to meet the load demand; If the SOC of the
energy storage system is less than 20%, the load demand can be
met by purchasing electricity from the grid through grid-
connected converters.
2.3.3. Off-Grid Mode. The grid-connected converter stops

working and only relies on the output of photovoltaic and energy
storage system for power supply. The DC microgrid operates as
an independent system in off grid mode, achieving independent
generation and distribution of electricity.
Condition 6. When PV > Pload, if the SOC of the energy

storage system is greater than 90%, it enters the abandoned
photovoltaic state; If the SOC of the energy storage system is
less than 90% and the energy storage system is charging, then the
energy storage system will be charged by all excess energy.
Condition 7. When PV < Pload, When the SOC of an energy

storage system exceeds 20%, it remains in a state of discharge to
satisfy the load requirements; conversely, if the SOC falls below
20%, the insufficient power will be recorded as load loss of
power.
In summary, through the analysis of energy exchange

strategies, in the bidirectional grid connected operation mode,
due to the bidirectional energy flow between the low-voltage DC

Figure 5. Operation mode and working condition division of the system.
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microgrid and the power grid, the system has advantages such as
good economy, high reliability, and low abandoned photo-
voltaic. Therefore, this paper mainly focuses on the research of
optimization control methods for low-voltage DC microgrid
systems in connected-grid operation mode.

3. ESTIMATION OF BATTERY LIFE USING THE
EQUIVALENT ELECTRIC QUANTITY WEIGHTING
METHOD

When lithium iron phosphate batteries participate in the
optimization operation of low-voltage DC microgrids as energy
storage links, their capacity progressively diminishes from the
rated level, correlating with the rise in full charging and
discharging cycles and alterations in discharge depth. The main
methods for evaluating battery life include curve fitting
method,16 rain flow counting method,17 and equivalent power
weight method.18 In contrast to the other two methods, the
equivalent electricity weight method considers the equivalent
discharge amount during battery charging and discharging
cycles. In the optimized operation of low-voltage DC micro-
grids, batteries have different charging and discharging powers
and depths at different times, and the equivalent electricity
weight method can effectively evaluate the battery life and
calculate the battery life loss based on the equivalent cumulative
discharge amount. The calculation formula can be described as
eq 4.

=L
A

A
c

loss
total (4)

whereAtotal represents a battery’s total discharge capacity over its
entire life cycle (kW·h), equivale to the product of the number of
cycles of the battery and its rated capacity; Ac is the equivalent
cumulative discharge of the battery during the period (kW·h).
The equivalent cumulative discharge of the battery can be

yielded by eq 5.

= ·A Ac ssoc (5)

where λsoc is the weight factor; As is the actual discharge capacity
(kW·h).
The weight factor can be obtained by eq 6.

l
mooo
n
ooo=

<

· + <
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, 0 ( ) 0.5

( ) , 0.5 ( ) 1
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The relationship between weight factor values and SOC is
shown in Figure 6.19

It can be seen from Figure 6 that when 0 < SOC(t) ≤ 0.5, the
weight factor is only related to d1, here d1 = 1.32. When 0.5 <
SOC(t)≤ 1, the weight factor is related to the values of d2 and d3,
where here d2=-1.8, d3 = 2.22. During operation, the life loss of
the battery is accumulated to obtain the battery life at time t, as
shown in eq 7.

= ·U
dt

1
s t A t

A0

( )ssoc

total (7)

4. OPTIMIZATION CONTROL MODEL FOR
LOW-VOLTAGE DC MICROGRID BASED ON
NSAPOA

The optimization control of low-voltage DC microgrid system
aims at system economy, environmental protection, and safety,
fully considering system balance and constraints such as energy
storage charging and discharging power, to achieve economic
and low-carbon operation of low-voltage DC microgrid system.

4.1. Objective Function. The objective function is to
maximize daily net income, minimize equivalent total battery
charge and discharge, and minimize CO2 emissions. The overall
objective function expression is described as eq 8.
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4.1.1. Maximum Daily Net income. Assume that the
purchase cost for photovoltaic panels and batteries based on a

Figure 6. Relationship between weight factor values and SOC.
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given capacity configuration is fixed. In actual operation, due to
different daily loads, photovoltaic output and real-time
electricity prices, the amount of electricity purchased and sold
and the amount of abandoned solar energy each day are
different. Therefore, the daily net income is mainly related to the
income from selling electricity to the user load every day, as well
as the cost of purchasing and selling electricity from the grid
through grid-connected converters and the cost of abandoned
solar energy. The objective function f1 can be described as eq 9.

=
=

f F t C t C tmax ( ( ) ( ) ( ))
t

T

q1
1

con
(9)
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where F(t) is the electricity sales revenue to the user load at time
t(USD); Ccon(t) is the cost of purchasing and selling electricity
through the grid-connected converter at time t(USD); Cq(t) is
the cost of abandoned photovoltaic at time t(USD); Pload(t) is
the user load at time t (kW); Rprice(t) is the real-time electricity
price at time t(USD/kW·h); Pcon(t) is the power of the grid-
connected converter at time t (kW);When Pcon(t)>0, the system
purchases electricity from the grid through a grid-connected
converter, and sells electricity to the grid when Pcon(t)<0;
Cbuy(t) and Csale(t) are the unit purchase price and unit sales
price (USD/kW·h) at time t, respectively; Pq(t) is the power of
abandoned photovoltaic at time t (kW); c is the corresponding
unit cost of abandoned photovoltaic (USD/kW·h).
4.1.2. Minimum Equivalent Full Cycle Counts of the

Battery. A battery’s time of service can be accurately calculated
using the equivalent electric quantity weighting method, and the
total equivalent discharge amount is equivalent to the total
discharge amount under the charging and discharging cycle of
the battery at different discharge depths. During operation, it is
also necessary to consider the battery’s SOC to store excess
electricity to absorb photovoltaic energy. Therefore, the
objective function f 2 is to minimize the equivalent charge and
discharge capacity of the battery, as shown in eq 11.
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where PBd(t) represents the equivalent power of charging and
discharging at time t (kW); PB(t) represents the battery’s actual
output/input power at time t (kW); λsoc is the weight factor;
SOC(t) is the battery’s state of charge at time t.
4.1.3. Minimum Carbon Emission. Based on the dual carbon

target background, minimize emissions of CO2 during operation
and add the minimum emissions of CO2 to the objective
function. In the system operation model, there are no diesel

generators, gas turbines, and other units. The load is met by
photovoltaic, energy storage, and electricity purchase from the
grid. Only when the electricity is purchased from the grid
through grid-connected converters, carbon emissions can occur.
Therefore, the minimum emissions of CO2 is regarded as the
objective function f 3. It can be given in eq 13.Ä
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where eco2 is the amount of carbon dioxide (kg/kW·h) that needs
to be emitted from the power grid for every kW·h.

4.2. Constraints. 4.2.1. Power Balance Constraint.

= + +P t P t P t P t( ) ( ) ( ) ( )Bload pv con (14)

where Pload(t) is the load power of the user at time t (kW); Ppv(t)
is the photovoltaic power at time t (kW); Pcon(t) is the power of
the grid connected converter at time t (kW); PB(t) is the energy
storage charging and discharging power at time t (kW).
At every moment, the total load power should be equal to the

total of the power from energy storage, (both charging and
discharging) the power emitted from photovoltaic sources, and
the energy exchanged from the grid via grid-linked converters.
4.2.2. Current Limitation Constraint. Ensuring that the

current used for charging and discharging lithium iron
phosphate batteries during use is not excessively high is crucial
to avoid permanent harm and potential ignition of the battery.
The current should not be greater than 0.3Iin when charging, and
0.5Iin when discharging.
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where Ic is the charging current (A); Id is the discharging current
(A); UEV is the discharging voltage (A); Eb is the rated capacity
(kW·h).
4.2.3. Power Limitation Constraint. The charging and

discharging power ought to be less than the power rated for
energy storage. When the power used for charging and
discharging exceeds the rated limit, the battery’s over elevated
temperature can trigger explosions, compromising its safety and
operational stability.

P P t P( )Brate rate (16)

where Prate represents the battery’s rated power (kW).
4.2.4. SOC Constraint.

SOC SOC t SOC( )min max (17)
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where SOCmin and SOCmax are the upper and lower limits of the
SOC of the battery, respectively; ηdc refers to the energy
conversion efficiency of the battery in discharging; ηch represents
the energy conversion efficiency of the battery in charging.
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4.2.5. Grid-Connected Converter Constraints. The grid-
connected converter adjusts its transmission power based on
power instructions, and when it reaches its power limit, it
operates at rated power.

P P t P( )rcon con rcon (19)

where Pcon(t) is the power of the grid-connected converter at
time t (kW); Prcon is the rated power of the grid-connected
converter (kW).

4.3. Model Solving. Wang et al.20 introduced the Arctic
puffin optimization algorithm (APOA) in 2023, introduces an
innovative meta heuristic algorithm centered on population
dynamics, drawing inspiration from the collective dynamics and
survival abilities of Arctic puffins in aerial and diving hunting.
The APOA includes two stages: exploration and exploitation,
corresponding to aerial flight and underwater foraging. In the
APO algorithm, the behavioral conversion factor B demon-
strates both adaptability and dynamic behavior, adeptly
harmonizing the dynamic interplay of exploration and
exploitation and play an important role in the algorithm’s
robustness. The algorithm employs Levy flight coefficients and
synergy factor to boost convergence in its development stage,
incorporating behavioral transition factors to maintain a balance
between exploration and exploitation, thereby offering almost
universally optimal answers to intricate optimization challenges.
Solving multiobjective optimization issues often involves

addressing a range of contradictory goals, with some focusing on
maximizing functions and others onminimizing functions.21 For
addressing the issue of multiobjective optimization, NSAPOA, a
hybrid algorithm for nondominant sorting, has been created,
utilizing the technology of nondominant sorting optimization.
Figure 7 illustrates the methodology of the NSAPOA.

The algorithm implementation process of the NSAPOA is as
follows:
4.3.1. Step1: Set control parameters, initialize the number

individuals in the Arctic puffin colony, the number of iterations,
cooperative factor, factor reference value of behavior conversion
and initializing positions of Arctic Puffins.
4.3.2. Step2: Evaluate each position of Arctic Puffins and

finding the one with the best fitness in all of Arctic Puffins.
Calculate the behavior conversion factor B of the one has best
fitness.

=B rand t T2 log(1/ ) (1 / ) (20)

where rand represents a random figure within the range (0,1),
and t andT denote the present andmaximum iteration numbers,
in that order. During its initial phase, the Arctic Puffin tends to
seek appropriate feeding waters, but in its advanced stages, it
shifts its focus to scuba diving for sustenance.
4.3.3. Step3: Compare the size of the behavioral conversion

factor B with its reference value C to deter mine the next
behavior phase of the Arctic Puffin.
4.3.3.1. Exploration Phase.
1) Aerial Search Strategy

= + *

+ * + *

+Y X X X L D

round rand

( ) ( )

(0.5 (0.05 ))
i
t

i
t

i
t

r
t1

(21)

where r represents a random integer ranging from 1 to N
− 1, excluding i; Xi

t→ denotes the population’s present ith
potential solution; Xr

t→ represents a randomly chosen
candidate solution from the existing population, withXi

t→
≠ Xr

t → ; L(D) represents a stochastic figure produced via
Levy flight; D signifies the dimensionally; α ∼

Figure 7. Process of the NSAPOA
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Normal(0,1) symbolizes a stochastic shape conforming to
a standard normal distribution sequence.

2) Swooping Predation Strategy

= *+ +Z Y Si
t

i
t1 1 (22)

where S = tan ((rand − 0.5) * π) serves as a speed variable
to modify the puffin’s movement during a swoop.
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where Xi
t+1→ is the new population; Yi

t+1 → , Zi
t+1→

indicate different positions in the current phase.
4.3.3.2. Exploitation Phase.
1) Gathering Foraging
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where F symbolizes the collaborative element, modifying
the predatory actions of Arctic puffins. Within this
document, F is set to 0.5; Random integers r1, r2, r3 fall
within the range of 1 toN − 1, i not included, and Xr1

t → ,
Xr2
t → , Xr3

t → represent randomly chosen potential
solutions from the existing population, and r1 ≠ r2 ≠ r3,
Xr2
t → ≠ Xr3

t →.
2) Intensifying Search
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where T signifies the aggregate count of iterations, and t
indicates the present iteration tally. rand is a stochastic
figure, symbolizing variations derived from the original
position.

3) Avoiding Predators
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where β represents a random number distributed evenly
from 0 to 1; F serves as an adaptive variable to modify the
Arctic puffin’s location in aquatic environments.
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where Xi
t+1→ is the new population; Wi

t+1 → , Yi
t+1 → ,

Zi
t+1→ indicate different positions in the current phase.

4.3.4.. Step4: Update the phase, stages and position of Arctic
puffins, and redo fitness computations to derive the Pareto
optimal set of solutions until the cycle count is attained, and
terminate the output.
4.3.5.. Step5: The algorithm concludes once the quantity of

public iterations is restricted. Otherwise, move on to 4.3.2.
4.3.6.. The MABAC method. While the NSAPOA is capable

of deriving the Pareto optimal solution set for multiobjective
programming, it lacks the capability to directly acquire the
optimal solution. Utilizing the MABAC22 technique is essential
for achieving the best solution. MABAC, an impartial method
for assigning weights, calculates the size of the weight by
analyzing the relationship between target values or the extent of
variation in these values during data processing. To determine
the best solution, assess how closely each solution aligns with
either the positive or negative ideal solution by analyzing both
positive and negative ideal solutions of the issue.
The specific procedure of the MABAC method is as follows:
1) Determine the decision matrix: The performance data of

all optional solutions form a decision matrix, where each
row represents a solution and each column represents a
decision criterion.

2) Standardize the decision matrix: Standardize the decision
matrix to ensure that the values of different criteria have
the same weight.

3) Calculate relative importance: Determine the relative
importance of each solution under different criteria by
calculating the performance score of each solution under
different criteria.

4) Calculate the fuzzy matrix: Calculate the fuzzy matrix of
each solution to other solutions based on relative
importance.

5) Calculate the fuzzy comprehensive score: Using the fuzzy
matrix, calculate the fuzzy comprehensive score of each
solution.

6) Sort and select: Sort all solutions according to the fuzzy
comprehensive score, and select the solution with the
highest fuzzy comprehensive score as the best solution.

5. RESULTS AND DISCUSSION
5.1. Data Sources. The bus voltage of a low-voltage DC

microgrid project in a certain area is ±375 V, the rated power of
grid-connected converters is 200 kW, the rated power of
photovoltaic power stations is Ppv = 488 kW, the rated power of
the energy storage is Prate = 220.03 kW, and the capacity of the
energy storage is Eb = 1265.77 kW·h. The operation process of
the DC microgrid is optimized every 15 min, and the grid-
connected converter adopts a bidirectional grid connected
operation mode. The actual operation data including load, PV
and electricity price are from North China. In order to compare
the economic performance of low-voltage DC microgrid
systems based on energy storage under different objectives,
MOPSO,23 NSGA-II,24 and NSAPOA were used for com-
parative analysis.
The parameter settings of three optimization algorithms are

shown in Table 1. The three objective functions are divided as
follows:
f1: Maximize net income;
f 2: Minimize carbon emissions;
f 3:Minimize equivalent charging and discharging capacity of

the battery.
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5.2. Comparison of Optimization Effect under Differ-
ent Targets and Different Methods. 5.2.1. Comparison of
Optimization Effects Considering Net Income Only. For the
optimization model established under a single objective
function, PSO, GA and APOA are used to solve the model.
The optimization results under a single objective are shown in
Table 2. The charging and discharging curve of the energy
storage system under a single objective obtained by PSO, GA
and APOA is shown in Figure 8.

It can be seen from Table 2 and Figure 8 that compared with
the other two algorithms, the net profit of the DC microgrid
system obtained by the APOA is the maximum of 2425.52 USD.
However, due to only taking daily net income as the objective
function without considering the impact of carbon emissions on
the environment, the achievement of the “dual carbon” goal has
been hindered. The carbon emission is the maximum of 1307.36
kg. And the equivalent charging and discharging capacity of the

energy storage system is 2957.57 kW·h, which is relatively high
and can lead to the aging of the energy storage battery.
5.2.2. Comparison of Optimization Effects Considering Net

Revenue and Carbon Emissions.To diminish carbon emissions
and showcase the benefits of renewable energy in lowering
carbon in DC microgrid systems, carbon emissions are
incorporated as the goal function, and a two-pronged
optimization model is formulated, taking into account both
the overall advantages and carbon emissions. Given that the two
goal functions aim for the highest net gains and lowest carbon
emissions, a negative indicator precedes the net gains in
establishing the function, and a multiobjective algorithm
resolves the minimum to fulfill both goals of maximizing net
income and reducing carbon emissions.25 The Pareto optimal
sets obtained by MOPSO, NSGA-II and NSAPOA are shown
respectively in Figure 9.
It can be seen from Figure 9 that the Pareto solution set

obtained by the NSAPOA algorithm is optimal compared to the
other two algorithms; When the net benefit is equal, the carbon
emission obtained by the NSAPOA is the lowest; When carbon
emissions are equal, the algorithm optimizes the net benefit to its
highest level. The optimal solution is selected from the Pareto
sets generated by three optimization algorithms using the
MABACmethod, with results of 0.097286 (MOPSO), 0.098037
(NSGA-II), and 0.10749 (NSAPOA), respectively.
The power output curves of the battery energy storage system

and the optimization results obtained by the three optimization
algorithms under the optimal solution are shown in Figure 10
and Table3, respectively.
It can be seen from Table 3 and Figure 10 that compared with

the other two algorithms, the score obtained by the NSAPOA is
the highest. The net income of the DC microgrid system is the
maximum of 1357.64, 17.8% higher than the lowest. Carbon
emissions is between the results of the other two algorithms in
order to achieve a balance between the two goals, but only 1.1%
more than the minimum. However, since the third objective is
not considered, the equivalent charging and discharging capacity
of the three algorithms are all relatively high.
5.2.3. Comparison of Optimization Effects Considering Net

Profit, Carbon Emissions, and Service Life of the Battery. To
prolong the battery’s service lifespan, the corresponding charge
and discharge potential of the energy storage battery are
incorporated into the stated objective function, leading to the
creation of a multiobjective function optimization system that

Table 1. Parameter Settings for Different Algorithms

algorithms

MOPSO
NSGA-
II NSAPOAparameters

population size 100 100 100
number of decision variable 96 96 96
number of iterations 10,000 10,000 10,000
global learning factor 1.7 1.5
mutation probability 0.1
cross probability 0.8
individual learning factor 1.7
maximum speed 2
factor of inertia 0.9 0.9
synergy factor 0.5
reference value of behavior conversion
factor

0.5

Table 2. Optimization Results of Different Optimization
Algorithms under a Single Objective

f1

net
income/
USD

carbon
emissions/kg

equivalent charging and discharging
capacity/kW·h

PSO 1520.6 1197.59 2798.40
GA 2397.79 1304.72 3042.50
APOA 2425.52 1307.36 2957.57

Figure 8. Charging and discharging curve of the energy storage system under a single objective obtained by three algorithms.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c09671
ACS Omega 2024, 9, 51665−51678

51674

https://pubs.acs.org/doi/10.1021/acsomega.4c09671?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c09671?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c09671?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c09671?fig=fig8&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c09671?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


accounts for net profit, carbon emissions, and the battery’s
equivalent charge and discharge capacities. Figure 11 illustrates
the range of Pareto solutions derived from MOPSO, NSGA-II
and NSAPOA for three goals, where the NSAPOA’s Pareto
solution set distribution stands out as the most consistent and
comprehensive, boasting robust overall search capabilities.
The optimal solution is selected from the Pareto sets

generated by three optimization algorithms using the MABAC

Figure 9. Pareto optimal solution set obtained through MOPSO, NSGA-II and NSAPOA.

Figure 10. Battery’s output curves of different algorithm’s optimal solution.

Table 3. Comparison Results of MOPSO, NSGA-II and
NSAPOA Considering Two Goals

f1 & f 2

net
income/
USD

carbon
emissions/

kg

equivalent charging and
discharging capacity/

kW·h scores

MOPSO 1152.40 957.17 2724.22 0.097286
NSGA-II 1202.25 921.35 2786.97 0.098037
NSAPOA 1357.64 931.66 2836.35 0.10749

Figure 11. Pareto solution sets obtained by different optimization algorithms under three objectives
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method, with results of 0.1233(MOPSO), 0.14476(NSGA-II),
and 0.17476(NSAPOA), respectively. The optimization results
under three objective functions are shown in Table 4. The
output curve of the energy storage system under three objective
functions obtained by three multiobjective algorithms is shown
in Figure 12.

It can be seen from Table 4 and Figure 12 that compare with
the other two algorithms, the score obtained by the NSAPOA is
the highest (0.17476). The net income of the DC microgrid
system is the maximum of 1082.11, 59.1% higher than the
lowest. However, due to the consideration of equivalent
charging and discharging capacity, the net income needs to be
compromised, which is lower than both in the single and dual
goal cases. Carbon emissions is only 1.8% more than the
minimum and is the lowest among the three cases. Equivalent
charging and discharging capacity is slightly higher but is 7.7%
lower than the maximum, also the lowest among the three cases.
Considering three goals resulted in the most comprehensive
solution, which improves the battery’s operational lifespan and
reduces environmental pollution with the reduction of carbon
emissions.
The optimized operational curve for DC microgrid system

obtained by the NSAPOA, taking into account three different
optimization goals is shown in Figure 13.
It can be seen from Figure 13 that during 0:00−7:00, real-time

electricity prices are the lowest, and the generation from the PV
plant is close to zero. During this period, the load is primarily
supplied by energy storage and electricity purchased from the
grid via grid-connected converters. Due to the low demand,
energy storage and the grid-connected converters alternate in
supplying power, ensuring a stable energy provision. During
7:00−11:00, electricity prices are in the middle level, while the
generation from the PV plant steadily increases to its maximum.
When the generated energy exceeds the load demand, the

energy storage system begins charging to store excess energy. If
capacity limitations restrict energy storage, surplus electricity is
fed back into the grid via grid-connected converters, thus
avoiding photovoltaic curtailment. During 11:00−17:00,
electricity prices remained at a relatively high level, and the
photovoltaic output continues to exceed the load demand. The
energy storage system remains in charging mode until reaching
full capacity, after which the surplus electricity is sold back to the
grid through the grid-connected converters to generate profits.
During 17:00−21:00, electricity prices reach the highest level,
coinciding with a peak in energy demand. As the generation
from the PV plant drops to zero, the energy storage system
discharges a significant amount of previously stored energy,
reducing the cost of electricity purchases during this peak pricing
period. The combination of energy storage and grid-supplied
electricity, delivered through grid-connected converters, meets
the high electricity demand during this period. During 21:00−
24:00, electricity prices become low again, and demands began
to decrease. The energy storage and grid-connected converters
continue to supply power alternately to meet the demands.

5.3. Comparison of Optimization Effect under Differ-
ent Scenarios. For the different typical scenarios in 2.2, the
optimization model established in this paper is used for solution.
The optimized operation results under different scenarios are
shown in Table 5, and the charging and discharging curves of
energy storage batteries is shown in Figure 14.
It can be seen from Table 5, compared with the normal

weather scenario, in severe weather, due to the significant
reduction of photovoltaic output, the energy obtained by the
energy storage battery from renewable energy sources is
reduced, the load is primarily purchased from the grid via
grid-connected converters, resulting in a reduction in the net
income and carbon emissions to 757.36USD and 810.52 kg,
which is 30.1% and 5.5% lower than that in normal weather. It
can be seen from Figure 14, the energy storage charging amount
in the severe weather scenario from 4:00 to 12:00 is significantly
lower than that in the normal weather scenario, resulting in
insufficient power for discharge after the electricity price rises
after 18:00, and thus leading to a decrease in revenue. Despite a
reduction in net income, there’s a notable decrease (19.1%) in
the battery’s equivalent charging and discharging capacity,
enhancing its operational lifespan.

Table 4. Comparison Results of MOPSO, NSGA-II and
NSAPOA Considering Three Goals

f1 & f 2 & f 3

net
income/
USD

carbon
emissions/

kg

equivalent charging and
discharging capacity/

kW·h scores

MOPSO 680.72 842.17 2635.74 0.1233
NSGA-II 882.13 880.57 2189.57 0.14476
NSAPOA 1082.11 857.30 2432.69 0.17476

Figure 12. Output curves of energy storage batteries obtained by different algorithm.
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6. CONCLUSIONS
From the perspectives of economy, low-carbon, and safety in the
operation of low-voltage DC microgrids, this paper proposes a
multiscenario optimization control method of low-voltage DC
microgrids based on the NSAPOA. The operation model of low-
voltage DC microgrids considering the service life of energy
storage is established with the objective functions of maximizing
net income, minimizing equivalent charging/discharging
capacity of the energy storage system, and minimizing carbon
emissions. The main conclusions are as follows:
1) By comparing and analyzing the energy exchange

strategies and economy of time of use electricity prices
and different operating modes of the system in multiple
scenarios, the optimal economic efficiency of the low-

voltage DC microgrid system in bidirectional grid-
connected operation mode is obtained;

2) The NSAPOA introduced in this study demonstrates
robust search capabilities and effective optimization by
evaluating various optimization algorithms across distinct
objective functions, achieving the highest score obtained
by the MABAC algorithm than those obtained by the
MOPSO and NSGA-II;

3) Taking into full consideration the daily net income,
service life and carbon dioxide emissions, compared with
the operating results under only one goal, the equivalent
charging and discharging capacity of the battery is
reduced by 17.7%, improving the service life of energy
storage systems. And the carbon dioxide emissions is
reduced by 450.06 kg, which leads to the balance between
cost-effective and carbon-efficient functioning of energy
storage in the low-voltage DC microgrid system.

■ ASSOCIATED CONTENT
Data Availability Statement
The data underlying this study are not publicly available due to
data owned by a third party. The data underlying this study were
provided by Guoneng Qinghai Yellow River MaerDang

Figure 13. Optimized operational curve for DC microgrid obtained by the NSAPOA considering three objectives.

Table 5. Comparison of the Optimal Solution Search Results
of Different Weather Conditions

weather
condition

net
income/
USD

carbon
emissions/kg

equivalent charging and
discharging capacity/kW·h

fair weather 1082.11 857.30 2432.69
adverse
weather

757.36 810.52 1967.87

Figure 14. Output curves of energy storage batteries under different weather.
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