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The salient object detection task based on deep learning has made significant advances. However, 
the existing methods struggle to capture long-range dependencies and edge information in complex 
images, which hinders precise prediction of salient objects. To this end, we propose a salient object 
detection method with non-local feature enhancement and edge reconstruction. Firstly, we adopt 
self-attention mechanisms to capture long-range dependencies. The non-local feature enhancement 
module uses non-local operation and graph convolution to model and reason the region-wise 
relations, which enables to capture high-order semantic information. Secondly, we design an edge 
reconstruction module to capture essential edge information. It aggregates various image details from 
different branches to better capture and enhance edge information, thereby generating saliency maps 
with more exact edges. Extensive experiments on six widely used benchmarks show that the proposed 
method achieves competitive results, with an average of Structure-Measure and Enhanced-alignment 
Measure values of 0.890 and 0.931, respectively.

Salient object detection1 aims to detect the most visually noticeable areas of an image. It serves as a crucial 
preprocessing step with applications in computer vision, such as image enhancement2, object recognition3, 
event detection4, video object segmentation5, and semantic segmentation6. Moreover, research in salient object 
detection has the potential to promote agricultural applications, such as livestock bone localization7 and jujube 
crack detection8. Traditional salient object detection methods exhibit fast detection speeds, primarily relying 
on low-level features such as contrast9 and background priors10. Recently, a variety of deep learning-based 
architectures have made remarkable progress in computer vision tasks11–15. Specifically, convolutional neural 
networks (CNNs) and Transformers have advanced capabilities in extracting semantic features, enabling more 
accurate detection in complex scenarios. The accuracy and robustness of salient object detection have been 
greatly improved16–18. However, due to complex object shapes or cluttered backgrounds in images, effectively 
capturing long-range dependencies and leveraging edge information is challenging, which can result in 
suboptimal performance.

To address this challenge, some methods use contextual modeling to improve performance. Liu et al.16 use 
attention mechanisms to learn relevance among pixels, selectively aggregating context for each pixel. It enhances 
the saliency reasoning by integrating global and local context. Siris et al.17 use scene contexts to detect salient 
objects. It learns detailed semantic information from a scene by segmenting things and stuff. Qin et al.19 propose 
a cascade model utilizing ReSidual U-blocks to capture contextual information across various scales. Xie et al.20 
design a two-branch structure for different image resolutions to learn continuous semantics and rich details. 
Some methods combine multi-scale features to explore more details. The strategy leverages multi-level features 
to predict saliency maps, with high-level features effectively locating salient objects and low-level features 
accurately detecting details. Pang et al.21 design two branches of different resolutions for flexible multi-scale 
feature fusion via interactive learning. Wu et al.22 learn features through an extreme downsampling strategy, 
designing a scale-correlated pyramid convolution to recover details by extracting features by fusing multi-level 
features. Yao et al.23 capture saliency cues from each feature layer, extracting and integrating key features to 
precisely localize salient objects. Zhou et al.24 utilize multiple U-shaped branches at various scales to extract 
comprehensive multi-scale feature extraction. Despite these advancements, existing methods often struggle 
to effectively capture long-range dependencies and adequate edge information, particularly in complex scenes 
where salient objects may be occluded or obscured by clutter.

To this end, we propose a method with non-local feature enhancement and edge reconstruction strategies 
for salient object detection. On the one hand, to capture long-range dependencies, we adopt a non-local feature 
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enhancement module. First, it applies channel enhancement operation on tokens to suppress noises. Then, 
non-local operation25 is performed on these adjacent tokens to capture long-range dependencies. Finally, a 
graph convolutional network is imported to capture high-order semantic relations between regions, improving 
comprehension of complex relationships. On the other hand, we introduce an edge reconstruction module to 
generate more exact edges. The module combines various local features from different branches to reconstruct 
boundaries of salient objects and finally restore more complete boundaries. This helps the model learn salient 
object contour information via edge supervision26. This task leverages complementarity between salient edge 
and object information to generate saliency maps with precise object boundaries.

The overall architecture of our method is shown in Fig. 1. Specifically, the input image is split into patches 
and fed to the T2T-ViT backbone for feature extraction and global context capture. Then, the non-local feature 
enhancement module is adopted to exchange information between adjacent tokens to learn region-wise relations. 
Finally, we employ the edge reconstruction module to fuse various local features from different branches to 
help the salient object detection task progressively recover accurate salient object boundaries. In summary, our 
contributions comprise:

•	 We propose a non-local feature enhancement module to further capture long-range dependencies. This mod-
ule employs a channel enhancement operation to suppress noise by interacting with adjacent tokens. Further-
more, we import graph convolution to capture high-order semantic relations between regions.

•	 We design an edge reconstruction module to capture adequate edge details, generating precise saliency maps 
with accurate object boundaries. This module aggregates diverse features from different branches to improve 
detail and global learning, thus recovering object details and edges.

•	 The proposed method integrates non-local feature enhancement and edge reconstruction modules, which 
work synergistically to further extract global and local features, enabling more accurate and integral salient 
object detection in complex scenes. Both quantitative and qualitative experiments demonstrate the effective-
ness of our proposed method.

Related work
Deep learning methods in salient object detection
Recent advancements in salient object detection methods have leveraged both CNNs and Transformers to 
enhance feature extraction and improve model performance. Qin et al.19 proposed a two-level nested U-structure 
with ReSidual U-blocks to capture contextual information across multiple scales. Liu et al.16 incorporated 
attention mechanisms to learn pixel relevance and fuse global and local context for better performance. Pang 
et al.21 aggregated multi-scale features via interactive learning, using a consistency-enhanced loss to address 
pixel imbalance between salient and background regions. Wu et al.22 used extreme downsampling techniques 
to explore high-level features for salient object localization, progressively recovering multi-level features in the 
decoder. Xie et al.20 designed a two-branch structure combining Transformer and convolutional neural network 
backbones to capture continuous semantics and rich details from different image resolutions, facilitating 
information transfer between the branches to mitigate common defects in both architectures. Zhao et al.27 
utilized the complementarity of the edge and object to improve accuracy. Tang et al.28 divided the salient object 
detection task into a pixel-wise classification task and a refinement task, assigning each task to different networks. 
The classification network utilizes contour information to distinguish between foreground, background, and 

Fig. 1.  Overall architecture of the proposed model.
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uncertain regions. The refinement network uses the above information as input to get saliency maps with exact 
boundaries. In our method, edge reconstruction plays a central role, where we integrate features extracted from 
both convolutional neural network and Transformer branches. The convolutional neural network backbone 
features are utilized as complementary information to improve the reconstruction of object boundaries. 
Simultaneously, edge supervision is employed to refine feature precision, further enhancing the accuracy of edge 
detection.

Attention mechanisms in salient object detection
Attention mechanisms simulates human cognitive processes by selectively focusing on important information 
and assigning different weights to input data. For example, Liu et al.16 employed attention mechanisms to learn 
pixel correlations, selectively aggregating contextual information for each pixel. This approach improves saliency 
inference by integrating both global and local context. Wang et al.29 introduced a pyramid attention structure, 
stacking multiple attention layers to handle multi-scale saliency features. Self-attention mechanisms enable 
models to focus on different positions within the same sequence, accounting for relationships between various 
parts. Xie et al.20 proposed a dual-branch structure for high-resolution detection, using both Transformer and 
convolutional network to process images at different resolutions, capturing continuous semantics and detailed 
information. Liu et al.26 utilized a Transformer architecture with the T2T-ViT backbone to propagate global 
context and applied the reverse tokens-to-token module to upsample patch tokens for gradual resolution 
recovery. Chen et al.18 integrated features from various layers and utilized global contextual information at 
different stages to prevent the dilution of high-level features. The attention mechanisms and the non-local 
operation both capture long-range dependencies across spatial locations. In particular, it can directly compute 
the relationship between any two positions in an image, regardless of their spatial distance. To further acquire 
contextual information and local details, a non-local feature enhancement module is adopted in our network. 
This module interacts between adjacent tokens to aggregate nearby features while exploring high-order semantic 
relations between regions, leading to more robust contextual understanding and improved saliency detection.

Method
In this paper, we propose a salient object detection method with non-local feature enhancement module (NLFEM) 
and edge reconstruction module (ERM), aiming to predict finer details and more complete salient objects. In 
this section, we first describe the overall architecture of the network, followed by detailed explanations of the 
Non-Local Feature Enhancement Module, the Edge Reconstruction Module, the decoder, and the loss function.

Overall architecture
Like Liu et al.26, we use T2T-ViT30 as the backbone and adopt an encoder–decoder architecture, as shown in 
Fig. 1. First, the encoder generates multi-level tokens utilizing self-attention mechanisms, which help capture 
long-range dependencies. Subsequently, the non-local feature enhancement module is adopted to enhance 
region-wise relations. It explores high-order semantic relations via non-local operation and graph convolution. 
Finally, we use features extracted from different branches and supplementary features derived through the 
processing of I to learn useful edge information and conduct edge reconstruction. In the decoder, features are 
gradually upsampled to the full resolution.

Specifically, in the encoder, I ∈ RW ×H×C  is first divided into overlapping patches via a soft split step. The 
resulting token sequences from the backbone have different shapes: T1 ∈ R

H×W
4×4 ×c, T2 ∈ R

H×W
8×8 ×c, and 

T3 ∈ R
H×W
16×16 ×c. Besides, T D

c  is transformed from the encoder space to the decoder space to get T D
3  using 

transformer layers and the depth is set to 4. These multi-level token sequences are processed by the non-local 
feature enhancement module, where adjacent token sequences interact to produce enhanced feature tokens: 
TO1, TO2 and TO3. In the decoder, a multi-task framework is employed to perform both saliency and boundary 
prediction tasks. The token sequence length of T D

3  is progressively restored to its original resolution using the 
RT2T module. The final saliency and boundary maps are predicted from T D

1 . Additionally, the features extracted 
from the ResBlock are denoted as r1, r2, r3. The edge reconstruction module is incorporated to capture 
additional details from these supplementary features. By integrating this module at the end of each decoder, the 
edge prediction task is enhanced, leading to more accurate predictions.

Non-local feature enhancement module
Transformers have demonstrated impressive performance in capturing long-range dependencies, yet they are 
limited in learning high-order semantic information between regions. A cluttered background or complex 
salient object shape leads to similar visual features among salient objects, noise objects, and background, which 
increases the difficulty of distinguishing them due to subtle clues that cannot be identified.

Inspired by methods25,31,32, a non-local feature enhancement module is introduced to reason high-order 
semantic relations between regions, as shown in Fig. 2. A simple channel enhancement operation is first adopted 
for adjacent token sequences to uncover relations among different channels. Then, a non-local operation is 
adopted for adjacent tokens for the aggregation of adjacent salient clues. Finally, a graph convolution network 
is employed to learn high-order semantic relations between regions, exploring subtle discriminative features.

Unlike previous methods focused on spatial dependencies, we introduce a simple yet effective channel 
enhancement (CE) operation for adjacent token sequences to capture subtle inter-channel relationships often 
missed by traditional self-attention mechanisms. This strengthens cross-channel interactions, enhancing the 
model’s ability to differentiate between salient objects and background noise. Specifically, the adjacent tokens 
Ti and Ti+1 are first integrated into a single token Tc using CE33. Ti+1 is adjusted to the same resolution as 
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Ti using an upsampling operation. Then, the fusion map Tfuse is generated by concatenating these tokens 
Tfuse = Concat [Ti, Ti+1, Ti]. Next, Tfuse was applied with l2 normalization to filter out background noise:

	 Tc = Tfuse ⊙ FBottle(ReLU(LN(FBottle(Tfuse)))),� (1)

where layer normalization is introduced to mitigate the increase in optimization difficulty correlated with 
channel transformation, FBottle represents a parameter-efficient bottleneck function, which is employed to 
reduce the number of parameters while maintaining feature transformation efficiency.

For Ti, two linear projection functions are applied to reduce dimension, which can be denoted as Tq = ωq (Ti) , 
Tk = ωk (Ti). The interaction token T ′

c , obtained by connecting Tc and Tk , is utilized to interact with the 
features of Ti for feature enhancement. This can be obtained by the following formula:

	 T ′
c = M1(Tk, Tc) = P (Tk ⊙ softmax(ωc(Tc))),� (2)

where ωc is a linear projection function. P means the adaptive pooling operation, which enhances efficiency. 
To simplify, we use M1 to represent the overall process. M1 facilitates efficient pooling of spatial clues, using 
the adaptive pooling function P to aggregate information, thus enabling the model to better capture fine-
grained, salient details. Then, we explore correlations via matrix product between T ′

c  and Tk , generating an 
attention map Ta by softmax. After that, Tq  is projected into the graph domain by Ta via matrix multiplication 
Tg . A single-layer graph convolutional network is adopted for high-order semantic relationship learning. 
Specifically, the vertex features Tg  are passed through the first-order approximation of spectral graph 
convolution (GCN) to propagate information across vertices and capture global token representations, i.e., 
T̂g = GCN(Tg) = ReLU((I − A)Tgwg), where A represents the adjacency matrix defining the graph’s 
structure, and wg ∈ R16×16 is the learnable weight matrix of the GCN. This operation helps in learning 
high-level semantic relationships among regions. To restore token sequences to original feature dimensions, a 
deserialization operation is adopted.

	 TOi = M2(T̂g, Ta, Ti) = N(T̂g ⊗ T ⊤
a + Ti),� (3)

where ⊗ denotes matrix product, N represents the deserialization operation that restores the token’s 
dimensionality. To simplify, we use M2 to represent the overall process above. It plays a critical role in combining 
the enhanced global features (from the GCN) with the original token information. By doing so, it ensures that 
the restored token representations carry both local and global context, enabling more robust feature refinement 
and enhancing the model’s overall understanding of complex scenes.

Decoder
To improve salient object detection, an auxiliary boundary detection task is designed. A multi-task decoder with 
task-related tokens is adopted to perform both tasks. The patch-task-attention is used to predict saliency maps 
and boundary maps.

The length of T3 is challenging to predict a high-quality saliency map from the relatively small length. 
Therefore, in the decoder, we gradually upscale patch tokens using reverse T2T (RT2T) operations for upsampling. 
salient object detection methods improve the performance through multi-level feature fusion. Inspired by this, 
we fuse multi-level tokens in the decoder. It can be represented as:

	 T D
i = MLP (MSA(Concat(RT 2T (T D

i+1), TOi))),� (4)

Fig. 2.  Non-local feature enhancement module.
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where MLP denotes multi-layer perceptron, MSA denotes multi-head self-attention, and Concat represents 
concatenation operation.

Inspired by transformer-based methods, we predict the saliency map by adding task-related tokens to the token 
patch sequences. Many existing salient object detection methods widely adopt boundary detection to improve 
performance, which inspired us to introduce a boundary detection task. Accordingly, we introduce saliency 
tokens ts and boundary tokens tb, which are introduced as learnable parameters. They have the same length as 
the feature dimensions of the patch tokens they interact with, ensuring that they can effectively integrate with 
the feature representations. Specifically, both tokens have a length corresponding to the embedding dimension 
defined in the model, enabling seamless interaction during the transformer processing. We append saliency 
tokens ts and boundary tokens tb to the patch token sequence T D

i , and then adopt transformer operation 
to learn task-related embeddings via interacting with patch tokens. Then we update saliency tokens ts and 
boundary tokens tb to obtain T D

i−1.
The final decoder patch tokens T D

1  and task-related tokens are adopted patch-task-attention for saliency 
and boundary prediction. For saliency prediction, the T D

1  is embedded into queries QD
s , saliency tokens ts is 

embedded into a key Ks and a value Vs. The same approach can be applied to the boundary detection task. Then, 
Task-related patch tokens can be obtained by patch-task-attention:

	

T D
s = sigmoid

(
QD

s K⊤
s /

√
d
)

Vs + T D
1 ,

T D
b = sigmoid

(
QD

b K⊤
b /

√
d
)

Vb + T D
1 ,

� (5)

where d is the length of Vs and Ks, they have similar lengths. Here, the sigmoid activation is used to calculate 
attention.

Furthermore, ERM is introduced at the end of each decoder to extract richer edge information. It processes 
task-related tokens T s

D  and T b
D  to generate the final saliency map and boundary map, ensuring precise edge 

delineation through saliency supervision and edge supervision. This approach significantly enhances the quality 
of the output maps.

Edge reconstruction module
Some methods guide the network to excavate edge clues, such as He et al.34, the paper uses an edge reconstruction 
module to decode features to generate more exact edges. Some methods introduce edge priors to improve 
performance. This paper uses supplementary features to complement features from T2T-ViT, thereby addressing 
the shortcomings in edge feature extraction. This ensures that the edge reconstruction module can adequately 
learn and leverage edge features. The edge reconstruction module is shown in Fig. 3.

Given features ti from the decoder and supplementary features ri extracted from ResBlock or the input 
image I, the ERM is adopted to capture edge information by aggregating these features. The ti features provide 
high-level context, while ri contributes detailed edge information, enhancing edge reconstruction accuracy. For 
ri, it is first resized to match ti for more efficient aggregation. Then, they are added together to further enhance 
features extracted by Conv-ReLU-Conv to obtain F1. We use F to denote the Conv-ReLU-Conv framework. 
For the sum of ti and ri, a similar operation F is applied to obtain F2. To ensure the flexibility of the edge 
reconstruction module, a weighted gate mechanism gw  is introduced, and a learnable coefficient is obtained 
by gw = S (σg + µg), where σg  and µg  are learnable parameters in gw . Then specific gw  is used to connect 
different features:

	

et = gw1F1 + (1 − gw1) F2,

F4 = gw2F1 + (1 − gw2) F3,
� (6)

Fig. 3.  Edge reconstruction module.
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for the sum of et and ri, F is adopted to obtain F3. Then, similarly, another learnable coefficient is used to learn 
features flexibly. Here, we nested an ordinary differential equation solver, i.e., a second-order Runge–Kutta35, to 
provide more accurate numerical solutions, which can better accommodate the fine-grained property of edges. 
Next, F4 and ti are added to obtain the reconstructed features: eout = F4 + ti.

Finally, a linear layer is used on eout to generate predictions at different resolutions. Furthermore, we adopt 
supplementary features through a direct methodology for edge reconstruction. The input image is passed 
through an ordinary differential equation solver and then aligned with the features obtained by the final decoder. 
This strategy provides more detail in the final prediction, generating more exact edges.

Loss function
A multi-level hybrid loss Ls is adopted as supervision to learn more details from multi-level features, which 
combines pixel-level loss Lsbce , regional-level loss Lsreg  and object-level loss Lsobj :

	 Ls = β1Lsbce + β2Lsreg + β3Lsobj ,� (7)

where we set β1 = β2 = 0.4, β3 = 0.2, following MENet42. β1, β2 and β3 represent the weights for the Lsbce , 
Lsreg , and Lsobj , respectively. By adjusting weight allocation, the model can focus on either local details or 
global performance, influencing the balance between detail recovery and overall object detection, and affecting 
final performance. Lsbce  is a BCE loss which can denoted as:

	
Lsbce = −

∑
(GlogS + (1 − G)log(1 − S)),� (8)

where G denote the ground truth (GT), S denotes the predicted saliency map. We divide G and S into four equal 
sub-regions. Subsequently, we calculate the regional-level loss for each sub-region LsReg  by combining SSIM 
and IoU:

	
LsReg = 1 −

4∑
i=1

ωi(θ1SSIM i + θ2IoU i),� (9)

where θ1 = θ2 = 0.5, following MENet42. θ1 and θ2 represent the weights for SSIM and IoU, respectively. 
By assigning equal weights, the model effectively captures both structural relationships and area overlap 
between predicted and ground truth maps. ωi is the ratio of predicted foreground to corresponding ground 
truth foreground in each region Si and Gi(i ∈ [1, 4]). The SSIMi calculates the luminance, contrast, and 
structure comparison. IoUi measures overlap of regions between Si and Gi. The object-level loss calculates the 
foreground distribution, mainly considering the foregrounds of S (i.e., So) and G. Lsobj  is defined as:

	
Lsobj = 1 − 2µSo

µ2
So

+ 1 + 2λσSo

,� (10)

where µSo  and σSo  denote the mean and the standard deviation of So, λ represents the weight.

Experiments
Datasets
We use DUTS-TR38 dataset for training, while six commonly used benchmarks: SOD39, DUT-OMRON40, 
PASCAL-S41, HKU-IS36, ECSSD37, and DUTS-TE38 serve as test datasets to evaluate models. All datasets 
have pixel-level annotations. SOD39 (300 images) contains salient objects in natural scenes. Some images have 
multiple salient objects. DUT-OMRON40 (5168 images) has multiple salient objects or complex backgrounds in 
some images. PASCAL-S41 (850 images) has multiple salient objects and multiple salient values. HKU-IS36 (4447 
images) contains multiple salient objects, with at least one touching the image boundary. They have low contrast. 
ECSSD37 (1000 images) has complex structures, multiple categories objects, complex diverse backgrounds and 
one or more salient objects, possibly transparent. DUTS38 comprise DUTS-TR38 (10,553 training images) and 
DUTS-TE38 (5019 testing images). The dataset boasts a diverse array of images showcasing various scenes, 
objects, and backgrounds, posing a challenge to computer vision models.

Evaluation metrics
We select 6 evaluation metrics: Precision-Recall (PR) curve, F-measure43, MAE44, weighted F-measure45, 
S-measure46, E-measure47. F-measure43 comprehensively considers Precision and Recall. It can be denoted as:

	
Fβ = (1 + β2)Precision × Recall

β2Precision + Recall
,� (11)

in the salient object detection task, precision and recall should be considered comprehensively, β2 value is set to 
0.3. MAE can evaluate closeness between S and G. It can be denoted as:
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MAE = 1

W × H

W∑
i=1

H∑
j=1

|G(i, j) − S(i, j)|,� (12)

where G(i, j) and S(i, j) are the value at position (i, j) in G and S, respectively. The weighted F-measure45 can reflect 
saliency continuity, differences across locations and relative importance of pixels or regions. It is calculated from 
precision and recall values:

	
F ω

β = (1 + β2)Precisionω × Recallω

β2Precisionω + Recallω
,� (13)

The weighted F-measure45 is an extension of the F-measure43. It assigns different weights ω to errors according to 
location and neighborhood. S-measure46 evaluates structural similarity between G and S, emphasizing the global 
structure of objects, and can be computed as:

	 S = α × So + (1 − α) × Sr,� (14)

where α is set to 0.5, So and Sr  denote object-aware and region-aware structural similarity, respectively. 
E-measure47 considers both local and global information, considering pixel position and image-level information. 
It is denoted as:

	
Eξ = 1

W × H

W∑
i=1

H∑
j=1

θ (ξ)� (15)

where ξ and θ (ξ) represent the alignment matrix and the enhanced alignment matrix, respectively.

Experimental details
In this paper, the boundary ground truth is generated by sober operator to assist edge supervision. Random 
flipping is used for data enhancement. The image is randomly cropped to 224×224 after resized to 256×256 as 
input. The pre-trained T2T-ViT-24 model was adopted as our backbone. We set the training steps as 60,000. The 
Adam is used as optimizer. The learning rate starts at 0.0001 and decreases by a factor of 10 at 1/2 and 3/4 of 
the total steps, respectively, like VST26. We use PyTorch to implement the model with CUDA 11 environment, 
trained on an NVIDIA A100 80GB PCIe GPU.

Comparison with state-of-the-art methods
We conduct both quantitative and qualitative comparisons of our method with 17 existing methods, highlighting 
the differences and advantages. These compared methods adopt different backbones. U2Net19 uses the RSU19 as 
its backbone. EDN22 and ICON33 use the VGG-1648 as backbones. BASNet49 uses the ResNet-3450 as backbone. 
PiCANet16, SCRN51, LDF52, ITSD53, CTDNet54, RCSB55, OLER23, MENet42, ELSANet56, EMSNet24, DC-Net57 
and CANet58 use the ResNet-5050 as backbones. The backbone of VST26 is T2T-ViT-1430. For fair comparisons, 
we ensured that all methods were evaluated using publicly available datasets, with saliency maps obtained either 
by running the released codes or from those provided by the authors. Notably, our method performs well in 
terms of two key metrics, with average Sm and Emax

m  values of 0.890 and 0.931, respectively, highlighting its 
ability to accurately capture both global and structural information. In particular, our method demonstrates 
exceptional performance on challenging datasets such as HKU-IS, ECSSD, and DUT-OMRON, as evidenced by 
the qualitative comparisons. However, it has limitations with insufficient accuracy in detecting salient objects 
and inadequate separation from the background in certain rows, primarily due to inadequate learning of local 
features.

Quantitative comparison
The quantitative comparison presents results for five metrics and the comparison of PR curves, as shown in 
Tables 1, 2 and Fig. 4, respectively. It is evident that our method achieves or approaches the top-2 performance 
in five evaluation metrics for six datasets. More importantly, our method performs best on Sm and Emax

m  for 
HKU-IS, ECSSD, DUTS-TE, DUT-OMRON and PASCAL-S. Compared to the second-best method, MENet42, 
our method demonstrates an average improvement of 1.1% in Sm and Emax

m  across six datasets. Analysis of 
the PR curves further highlights that our method achieves a strong balance between precision and recall. The 
red dotted lines representing our method consistently demonstrate superior performance. Compared with the 
results of other methods that achieve an advantage in a certain metric on certain methods (e.g., ELSANet56 in 
terms of MAE), our method achieves better generalization, which ranks first in the majority of cases and second 
or third in rare cases. Compared to the recent DC-Net57, which aggregates feature maps with varying semantic 
information from multiple encoders, our method achieves an average improvement of 3.6% across five metrics 
on six datasets. Emax

m  considers both local and global information, Sm focuses on structural similarity, these two 
metrics comprehensively reflect the model’s ability to capture global structural information. The improvement 
on the above mentioned two metrics demonstrates the effectiveness of our method in handling complex shapes. 
Additionally, MAE reflects noise intensity, F max

β  responds to various deficiencies in saliency maps, and F ω
β  

reflects the continuity of saliency and the differences in saliency levels at different locations. Improvements 
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in these three metrics validate our model’s capability to address visually confusing scenes. The proposed 
method achieves good performance, especially on three relatively complex datasets: HKU-IS36, ECSSD37 and 
DUTS-TE38. However, the performance on the SOD39, DUT-OMRON40, and PASCAL-S41 datasets is slightly 
lower, particularly in terms of F ω

β , MAE, and F max
β , suggesting that the model may occasionally misidentify 

background regions as salient objects.

Qualitative comparison
Figure 5 shows the qualitative comparison with DC-Net57, CANet58, OLER23, ICON33, EDN22, VST26, CTDNet54, 
SCRN51, and BASNet49 on challenging images from DUTS-TE (rows 1–3), DUT-OMRON (rows 4–6), and 
HKU-IS (rows 7–9). Each row, from top to bottom, depicts scenes with occlusion, complex structures, low 
contrast, small objects, blurred boundaries, intricate shapes, cluttered backgrounds, lighting effects, and multiple 
salient objects, respectively. Our method effectively captures global structural information while preserving 
fine-grained details, even in the presence of complex structures and challenging backgrounds. For example, 
the bird obscured by branches (row 1), bees with transparent wings (row 2), fountains surrounded by splashing 
water (row 6), and transparent glasses near a soccer ball (row 7) illustrate challenging scenarios. These scenes 
contain details that are easily confusable and structural information that is challenging to perceive. Moreover, 
our method effectively distinguishes multiple salient objects from the background. Specifically, in rows 3, 8, and 
9, it accurately differentiates birds and cups from their backgrounds, successfully detecting all salient objects. 
Additionally, the method effectively minimizes background interference. This is demonstrated in rows 4 and 5, 
where the model suppresses irrelevant elements and enhances focus on the salient objects. However, limitations 
remain in detection accuracy and local feature learning. In scenes with complex backgrounds and intricate 
shapes, certain boundaries and fine structures sometimes appear blurred, as seen in rows 1 and 2. Furthermore, 
confusion between the foreground and background is evident in rows 3 and 9.

Ablation study
To validate the effectiveness of different modules, ablation experiments were conducted on NLFEM, ERM, 
and loss functions we used. The quantitative comparison results of these four methods on HKU-IS36, DUT-
OMRON40 and DUTS-TE38 datasets are shown in Table 3. In the table the first row represents the metrics 
without any module ablation; the second, third and fourth rows, respectively, represent metrics after ablating 
different modules and the loss functions. For comparison, we replaced the loss function used in this paper with 
a simple BCE loss to assess the impact of the loss function on model performance. Ablating the ERM results in 
a performance decline across all metrics. For instance, on the HKU-IS dataset, Sm and F max

ω  decrease by 0.007 
and 0.010, respectively, while the MAE on the DUTS-TE dataset increases by 0.005. This demonstrates that 
removing the ERM reduces the accuracy of salient object detection. The ERM plays a crucial role in capturing 
detailed information, thereby enhancing detection precision. Ablating the NLFEM also led to a slight decline 
across all metrics. This indicates that directly fusing features from different levels impedes the model’s ability to 
effectively capture long-range dependencies. Ablating the NLFEM also led to a slight decline across all metrics. 
This indicates that directly fusing features from different levels impedes the model’s ability to effectively capture 
long-range dependencies. Modifying the loss function also impacts performance. While some metrics remain 
unchanged, others decline. The BCE loss is less effective in balancing local and global feature learning, which 
is essential for accurate saliency detection, while the multi-level hybrid loss used in this paper is more effective 
in integrating the contributions of various feature scales and handling background interference. Overall, the 
combination of modules achieves the best performance. This synergy leverages the complementary strengths 
of each module, enabling the model to capture both local and global features effectively. The method enhances 
accuracy in detecting salient objects and effectively differentiating them from the background.

Qualitative comparison on these three datasets is shown in Fig. 6. These datasets feature challenging scenes, 
including occluded salient objects, separated object structures, complex backgrounds, and highly similar 
foreground and background, arranged from top to bottom. Ablating the ERM causes the model to struggle 
more with accurately delineating object edges and preserving fine details, leading to some blurriness (rows 1 
and 4) in certain regions. Moreover, the removal of the ERM can result in a loss of key details, causing confusion 
between the foreground and background (rows 2, 3, and 5). Ablating the NLFEM also hinders the model’s ability 
to capture the overall structure of salient objects and differentiate between the foreground and background. The 
absence of long-range dependency modeling and relations between regions provided by the NLFEM makes it 
difficult for the model to capture global information effectively. The qualitative comparison further reveals an 
increase in background interference after modifying the loss function, highlighting the critical role of the loss 
function in controlling the model’s ability to distinguish between foreground and background. An unbalanced 
loss function increases the model’s susceptibility to confusion and noise, especially in complex scenes with 
similar foreground and background elements. Qualitative comparison suggests a decline in the model’s ability 
to capture the overall structure of objects, making it more sensitive to noise, particularly in areas with complex 
boundaries and fine-grained details. From the table and figure, a consistent trend emerges, showing that each 
module positively contributes to overall performance. Ultimately, the combination of the two modules and the 
loss function achieves the best performance.

Conclusion
In this work, we propose a method that combines non-local feature enhancement and edge reconstruction 
strategies in the field of salient object detection. This method effectively captures long-range dependencies 
and exploits edge information and details of salient objects, thereby enhancing the performance of salient 
object detection. We investigate leveraging non-local operations to promote information interaction between 
neighboring tokens for further capturing long-range dependencies. Additionally, we explore learning diverse 
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edge information more effectively from different branches of features to more accurately reconstruct the edges 
of salient objects. Extensive experiments on six benchmarks demonstrate the outstanding performance of the 
proposed method on six evaluation metrics. Visually, the prediction maps generated by our method exhibit 
excellent performance in terms of object and edge integrity. In future work, we will focus on further improving 
the robustness and speed of salient object detection tasks in specific scenarios to facilitate its application across 
in industrial fields and real-time systems.

Fig. 5.  Qualitative comparison with 9 state-of-the-art methods. Images are sourced from the DUTS-TE38, 
DUT-OMRON40, and HKU-IS36 datasets.

 

Fig. 4.  Precision-recall curves on six benchmarks.
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