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Abstract
Expansion of tandem repeats in genes often causes severe diseases, such as fragile X syndrome, Huntington’s disease, and spinocerebellar ataxia. 
However, information on genes associated with repeat expansion diseases is scattered throughout the literature, systematic prediction of potential genes 
that may cause diseases via repeat expansion is also lacking. Here, we develop DRED, a Database of genes related to Repeat Expansion Diseases, as a 
manually-curated database that covers all known 61 genes related to repeat expansion diseases reported in PubMed and OMIM, along with the detailed re
peat information for each gene. DRED also includes 516 genes with the potential to cause diseases via repeat expansion, which were predicted based on 
their repeat composition, genetic variations, genomic features, and disease associations. Various types of information on repeat expansion diseases and 
their corresponding genes/repeats are presented in DRED, together with links to external resources, such as NCBI and ClinVar. DRED provides user- 
friendly interfaces with comprehensive functions, and can serve as a central data resource for basic research and repeat expansion disease-related medical 
diagnosis. DRED is freely accessible at http://omicslab.genetics.ac.cn/dred, and will be frequently updated to include newly reported genes related to repeat 
expansion diseases.
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Introduction
Repeated sequences, also known as repetitive elements, com
prise more than 50% of the human genome, among which mil
lions are short tandem repeats (STRs) with typical repeat length 
of 2–6 bp [1–3]. Although the majority of STRs are located in 
intergenic noncoding regions, many human coding genes also 
harbor STRs in exons or introns [4,5]. Copy number variation 
of repeat units is commonly seen among STRs, which may be 
caused by polymerase slippage during the DNA replication, re
pair, and recombination processes [6–8]. Abnormal expansion 
of STRs can lead to gene dysfunction at the RNA or protein 
level, and result in more than 40 severe inherited diseases 
[2,3,9–12]. Notably, RNAs with expanded repeats can indepen
dently promote phase separation and gelation, forming RNA 
foci in the nuclei [13–15]. Most repeat expansion-related disor
ders are neurological, neuromuscular, or neurodegenerative dis
eases, such as the (CGG)n repeats in fragile X syndrome, 
(CAG)n repeats in Huntington’s disease, and (GAA)n repeats in 
Friedreich’s ataxia [16–20]. For these diseases, the expansion of 
STRs is usually non-toxic when the copy numbers of STRs are 
below certain threshold; however, along cell division, the expan
sion of STRs can accumulate and become pathogenic, and result 
in severe symptoms. The repeat expansion diseases usually have 
earlier onset time in descendent generations, such phenomenon 

is known as genetic anticipation and is a hallmark of repeat ex
pansion diseases [18,20,21].

The majority of known disease-causing repeats are trinucleo
tide tandem repeats, with CAG (encoding polyglutamine) and 
GCG (encoding polyalanine) being the most prevalent STRs 
within protein-coding regions [22,23]. Multiple factors at the cis- 
regulation level could promote the expansion of STRs, including 
repeats located within or adjacent to CpG islands [24], mutations 
in adjacent CCCTC-binding factor (CTCF) binding sites [25], 
and the presence of nearby Alu elements [26,27] or topological 
associating domain (TAD) boundaries [28].

Here, we present DRED as the first database of genes re
lated to repeat expansion diseases. DRED not only encom
passes comprehensive information on known causal genes for 
repeat expansion diseases, but also provides a list of predicted 
genes with the potential to cause diseases via repeat expan
sion, therefore may help researchers to identify unknown re
peat expansion diseases and novel disease-causing genes.

Database contents and construction
Database contents
DRED contains all reported 61 genes related to 62 known re
peat expansion diseases or disease subtypes collected in the 
PubMed or OMIM databases (Figure 1A and B). For each 
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disease or disease subtype, its phenotype and general informa
tion, pathogenic gene, pathogenic repeat, repeat conservation 
status, pathogeny, and related references are included. Links to 
external data resources, such as Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [29], Gene Ontology (GO) [30,31], 
and ClinVar [32], are also provided. The expandable STRs of 
these 61 genes can be classified into 22 types, with CAG, 
CGG, GCG, and TTTCA/TTTTA as the most commonly ob
served expandable STR types (Table 1). The distributions 
of known disease-causing STRs are comparable across 
50 untranslated regions (UTRs), introns, and coding sequences 
(CDSs), but are under-presented in exons or 30 UTRs of 
noncoding genes (Table 1). Among the known repeat expan
sion diseases, only spinocerebellar ataxia type 8 and oculo
pharyngeal myopathy with leukoencephalopathy (OPML) are 
caused by STRs within noncoding genes, namely ATXN8OS 
[33] and LOC642361/NUTM2B-AS1 [34], respectively. It is 
worth noting that a total of 12 subtypes of spinocerebellar 
ataxias are related to repeat expansion, among which 7 are 
caused by abnormal expansion of CAG repeats encoding poly
glutamine tracts in different genes [35,36].

To search for additional genes with the potential to induce 
diseases by repeat expansion, we collected sequence features 
known to contribute to the expansion of repeat sequences, 
and used an unsupervised machine learning algorithm to pre
dict genes with the potential to induce diseases via repeat ex
pansion. The features used for gene selection include: the 
presence of known disease-causing STRs, co-localization 
with Alu elements, CpG islands, CTCF binding sites, TAD 

boundaries, and sequence variations among populations and 
reported disease associations. A total of 516 candidate genes 
that may cause diseases via STR expansion were identified. 
These genes were classified by repeat types and included in 
the prediction section of DRED. For the predicted disease- 
causing STRs, DRED provides the information on putative 
expandable STRs, cis-elements adjacent to STRs, phyloge
netic conservation of STRs, variations of STRs among popu
lations, and STR-associated diseases. Links to the 
corresponding NCBI gene webpage, expression information 
[37], GO annotation [38], and the UCSC Genome Browser 
[39] are also provided.

Web interface and usage
DRED provides user-friendly web interfaces with comprehen
sive functions as described below.

Browse
The browse function allows users to explore the comprehen
sive information of all known repeat expansion diseases 
(Figure 1C). The 62 known repeat expansion diseases are 
grouped by the features of their causal STRs, namely 
“Polyalanine (GCC) track”, “Polyalanine (GCG) track”, 
“Polyaspartic-acid (GAC) track”, “Polyglutamine (CAG) 
track”, “Other amino acid track”, and “Noncoding repeats” 
(Figure 1D). For each disease listed in the Browse page, de
tailed description on disease phenotype, disease-causing 
genes, pathogenic repeat unit, repeat length, related 

Figure 1 Scheme and functional illustration of DRED 
A. Design scheme of DRED. B. Function overview of DRED. C. List of known repeat expansion diseases under the Browse function. D. Interactive 
Sankey diagram showing the categories of known repeat expansion diseases. E. Overview of the predicted disease-causing genes. F. Availability of 
external information for the predicted disease-causing genes. DRED, Database of genes related to Repeat Expansion Diseases; CDS, coding sequence; 
UTR, untranslated region.
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references, and other information can be obtained by corre
sponding links.

Search
The search function features a user-friendly interface that 
allows users to find specific information related to a repeat 
expansion disease. The search engine supports free-text 
queries, including disease names, gene symbols, repeat units, 
OMIM identifiers (IDs), chromosome numbers, or any key
word related to a disease. For example, entering the word 
“ataxia” will retrieve 18 entries with “ataxia” in the disease 
names or alternative disease names. An interactive 3D word 
cloud is provided in the search page to inform users the 
known repeat expansion diseases and their related genes in 
the database. Users can also pull up the detailed descriptions 
for each disease or gene by clicking on any term within the 
word cloud.

Prediction
The prediction function provides a comprehensive list of genes 
with the potential to cause diseases via repeat expansion. A total 
of 516 genes (477 protein-coding genes and 39 noncoding 
genes) containing repeats belonging to 14 repeat units are 
included (Figure 1E). Users can retrieve all predicted genes with 
any repeat unit by clicking on either the repeat unit link or 
the corresponding gene count. For each gene, the detailed 
description, known repeat variations, and links to several 
external databases, are available via the link under DRED ID 
(Figure 1F). The prediction score and co-localization informa
tion of each gene with various cis-elements are also included. 
The genomic distribution features and predicted disease-causing 

scores of the predicted genes are similar to those of the known 
causal genes for repeat expansion diseases (Figure 2A). GO 
analysis using clusterProfiler [40] and GOSemSim [41] reveals 
an enrichment of terms related to neural system and limb devel
opment among the 516 potential disease-causing genes 
(Figure 2B), which is in concert with the neurological or 
neuromuscular related functions of most known repeat 
expansion diseases.

Download
All data collected in DRED are available for local manipula
tion through the download function. Information on known 
repeat expansion diseases and predicted disease-causing genes 
is provided in separate downloadable files.

Conclusion
Abnormal expansion of STRs, mainly within protein-coding 
genes, is the causal factor for many neurological, neuromus
cular, and neurodegenerative diseases. As these diseases are 
inheritable and have the genetic anticipation feature across 
generations, early diagnosis of risky repeat carriers may help 
to prevent or delay the onset of the diseases, especially during 
the era of precision medicine. In addition, the pathogenic 
mechanisms of most repeat expansion diseases remain elu
sive, effective prevention and treatment methods are in urgent 
demands. Although all known disease-causing repeat expansion 
elements are STRs, most STRs do not have expansions or give 
rise to repeat expansion diseases. The current available repeat- 
related databases only focus on general repeat sequences in 
genomes, which lack comprehensive information for human 

Table 1 Summary of the known repeat expansion disease-causing genes collected in DRED

Repeat unit Location Gene

AAGGG 
ATTCT

Intron 
Intron

RFC1 
ATXN10

CAG 50 UTR, CDS AR[1], ATN1[1], ATXN1[1], ATXN2[1], 
ATXN3[1], ATXN7[1], ATXN8[1], 
CACNA1A[1], HTT[1], PPP2R2B[2], 
SPAST[1], TBP[1]

CCCCGCCCCGCG 50 UTR CSTB
CCCTCT Intron TAF1
CCG 50 UTR, exon (noncoding gene) AFF2[2], CBL[2], NUTM2B-AS1[3]

CCTCATGGTGGTGGCTGGGGGCAG CDS PRNP
CCTG Intron CNBP
CGG Promoter, 50 UTR, exon (noncoding gene) DIP2B[2], FMR1[2], GIPC1[2], 

LOC642361[3], LRP12[2], 
NOTCH2NLC[2], XYLT1[4]

CTG Exon (noncoding gene), intron, 30 UTR ATXN8OS[3], DMPK[5], JPH3[5], TCF4[6]

GAA Intron DMD, FXN
GAC CDS COMP
GCA 50 UTR GLS
GCC CDS PRDM12, ZIC3
GCG CDS ARX, FOXL2, HOXA13, HOXD13, NIPA1, 

PABPN1, PHOX2B, ZIC2
GCN CDS RUNX2, SOX3, TBX1
GGCCTG Intron NOP56
GGCGCGGAGC CDS VWA1
GGGGCC Intron C9orf72
TCGGCAGCGG(CA/G)CAGCGAGG 50 UTR EIF4A3
TGGAA 50 UTR BEAN1
TTTCA/TTTTA Intron DAB1, MARCHF6, RAPGEF2, SAMD12, 

STARD7, TNRC6A, YEATS2

Note: [1], [2], [3], [4], [5], and [6] indicate that the repeat units are located in the CDS, 50 UTR, exon (noncoding gene), promoter, 30 UTR, and intron 
regions of genes, respectively. CDS, coding sequence; UTR, untranslated region.
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repeat expansion diseases [42–45]. To meet the needs from basic 
research and clinical diagnosis, we developed DRED, an integra
tive and user-friendly database for genes related to repeat expan
sion diseases. DRED not only contains comprehensive 
information on all known causal genes for repeat expansion dis
eases, but also provides a list of genes with the potential to cause 
diseases via abnormal repeat expansion. The candidate gene list 
may serve as a valuable resource for researchers and clinicians to 
identify new repeat expansion diseases or disease-causing genes, 
as well as to decipher their underlying molecular mechanisms. 

Continuously updated with new data every six months, DRED 
aims to be the premier resource for study, diagnosis, and treat
ment of repeat expansion diseases.

Materials and methods
Data collection and preprocessing
Repeat expansion disease collection from the literature
All known repeat expansion diseases were collected from the 
PubMed literature [46] and OMIM [47] databases using 
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Figure 2 Characterization of predicted disease-causing genes 
A. Genomic distributions and prediction scores of the predicted disease-causing genes and the known ones. Known disease-causing genes are displayed 
in red boxes. B. GO enrichment analysis for the 516 predicted disease-causing genes. Shown are the top 20 enriched Biological Process terms. GO, 
Gene Ontology.
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“repeat expansion”, “trinucleotide repeat expansion”, 
“triplet repeat expansion”, “repeat expansion disease”, and 
“repeat expansion disorder” as the query words (Figure 1A). 
In total, 6460 publications and 14,888 disease entries (re
trieved on May 26, 2023) were manually curated to remove 
irrelevant information. A total of 62 repeat expansion dis
eases with supports from PubMed publications and/or 
OMIM records were retained in DRED.

Human genetic variations
Human genetic variants in different populations of the 1000 
Genomes Project [48], the Known VARiants database 
(Kaviar) [49], the NHLBI GO Exome Sequencing Project 
(ESP) [50], the sequence variation and human phenotype 
database (ClinVar), the Exome Aggregation Consortium 
(ExAC) [51,52], and the Genome Aggregation Database 
(gnomAD) [53] (Table S1) were collected to examine the 
alterations of candidate STRs among individuals, and used as 
a criterion for candidate disease-causing gene prediction. 
Picard’s LiftoverVcf (http://broadinstitute.github.io/picard/) 
was used to convert Variant Call Format (VCF) files from the 
reference human genome build GRCh37 to GRCh38.

Alu elements, CpG islands, CTCF sites, and TAD boundaries
The genomic coordinates of Alu elements and CpG islands 
were extracted according to the human GRCh38 genome as
sembly presented by the UCSC Table Browser (http://ge 
nome.ucsc.edu/cgi-bin/hgTables). CTCF binding peaks were 
obtained from 10 CTCF ChIP-seq experiments in the 
ENCODE project using different human tissues/cell types 
(Table S2) [54]. Preprocessed TAD coordinates in 40 differ
ent human tissues/cell types were downloaded from 3D 
Genome Browser [55]; TAD boundaries of 200 kb (±100 kb 
centered on the boundary sites) in size were extracted using 
an in-house built script.

Prediction of causal genes for repeat expansion  
diseases
To predict other genes with STRs that may be capable of 
causing diseases via repeat expansion, we firstly extracted the 
reported genomic and genetic features that could contribute 
to repeat expansion, including: (1) the presence of nearby cis- 
elements, such as Alu elements, CpG islands, CTCF binding 
sites, and TAD boundaries; (2) variation of STR copy num
bers among populations, as evaluated using the 1000 
Genomes, Kaviar, ESP, ClinVar, ExAC, and gnomAD data
bases; (3) the implication of genes in diseases according to in
formation in the OMIM or DisGeNET [56] databases. 
Details of these features are listed in Table S3. The repeat- 
containing genes were then selected from the GRCh38 hu
man genome with the following criteria: (1) the genomic 
sequences of a gene should contain STRs with copy numbers 
no less than the median value of the STR copy number range 
associated with normal phenotypes; (2) STRs within a gene 
should have at least two copies of expansion in one or more 
records in the 1000 Genomes, Kaviar, ESP, ClinVar, ExAC, 
and gnomAD databases. In total, 567 STR sites from 516 
genes were keep as the final prediction results in DRED.

In order to further prioritize the predicted disease-causing 
genes, we used principal component analysis (PCA) to iden
tify genomic features enriched among these disease- 
associated genes using the prcomp() function in R. In the in
put matrix for PCA, each row is a gene and each column is a 

feature, and the first principal component (PC1) captured the 
major variations of the input matrix (62.9%). Next, we per
formed a min-max normalization for genes’ coordinates on 
PC1 and assigned the normalized value as the disease-causing 
score for each gene. The corresponding weights of the 19 dif
ferent features on PC1 are listed in Table S3, and the top 3 
weighted features were with reported STR expansion in 
gnomAD, the presence of CpG islands in proximity region, 
and overlapping of CpG islands with the repeat tracks.

Database and web interface implementation
DRED runs on an apache web server and is implemented in 
PHP 5.6.31 (http://www.php.net). The server-side PHP 
scripts deal with SQL query for keywords submitted by users 
and then execute through MySQL 5.7.16 (https://www. 
mysql.com), and return query result via interactive web inter
faces written in bootstrap 4.1.1 (https://getbootstrap.com). 
Interactive data visualization is supported by echarts 4.0 
(http://echarts.baidu.com) and jQuery v3.3.1 (https://jquery. 
com). The web interface is compatible with all web browsers 
and may work best on Google Chrome, Firefox, or Safari.

GO enrichment analysis
The R package clusterProfiler v4.2.1 [40] was used to identify 
enriched ‘Biological Process’ GO terms for the potential disease- 
causing genes. The parameters were set as follows: 
pvalueCutoff ¼ 0.01, qvalueCutoff ¼ 0.01, and 
pAdjustMethod ¼ “BH”. Subsequently, the semantic similari
ties of the top 20 enriched terms were calculated by GOSemSim 
v2.20.0 [41] with the following parameter: measure ¼ ‘Wang’.

Data availability
DRED is freely accessible at http://omicslab.genetics.ac. 
cn/dred.
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