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Automated guided vehicles play a crucial role in transportation and industrial environments. This paper 
presents a proposed Bio Particle Swarm Optimization (BPSO) algorithm for global path planning. 
The BPSO algorithm modifies the equation to update the particles’ velocity using the randomly 
generated angles, which enhances the algorithm’s searchability and avoids premature convergence. It 
is compared with Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Transit Search (TS) 
algorithms by benchmark functions. It has great performance in unimodal optimization problems, and 
it gains the best fitness value with fewer iterations and average runtime than other algorithms. The 
Q-learning method is implemented for local path planning to avoid moving obstacles and combines 
with the proposed BPSO for the safe operations of automated guided vehicles. The presented BPSO-
RL algorithm combines the advantages of the swarm intelligence algorithm and the Q-learning 
method, which can generate the globally optimal path with fast computational speed and support 
in dealing with dynamic scenarios. It is validated through computational experiments with moving 
obstacles and compared with the PSO algorithm for AGV path planning.

Automated Guided Vehicle (AGV) achieves high flexibility, efficient and economical unmanned production in the 
logistics system, material transportation, and port environment1,2. AGV solves the problems of task scheduling 
and path planning in the intelligent manufacturing workshop3. Navigation of autonomous robots includes three 
general problems: path planning, localization and motion control. Path planning involves following an optimal 
path without colliding with obstacles4.

Path planning is referred to as an NP-hard problem in optimization and considers substantial optimality 
criteria, such as safety, smoothness, operation time, and path length5. Regarding implementation, path planning 
algorithms can be divided into real-time and offline implementation5. According to the information on the work 
area, AGV path planning is divided into global and local path planning. Global path planning refers to complete 
regional information, while local path planning requires real-time performance based on local environmental 
information1.

This paper proposes an improved path-planning algorithm based on the swarm intelligence algorithm 
and implements reinforcement learning for local path planning to avoid moving obstacles. It provides faster 
computational speed to gain the best fitness value when compared with other swarm intelligence algorithms, and 
it is suitable for AGV path planning to generate the optimal path. The paper’s main contributions are as follows:

• An improved swarm intelligence algorithm based on Particle Swarm Optimizaiton (PSO) is proposed as the 
Bio PSO (BPSO) algorithm, which modifies the updating equation for particles’ velocity.

• The proposed BPSO algorithm is used for global path planning to generate the optimal path in the industrial 
environments.

• It integrates the proposed algorithm with the Q-learning method for local path planning for AGVs’ autono-
mous operations.This paper is organized as follows. Section Related work presents the related work of AGV 
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path planning, and Section  Problem statement formulates the path planning problem. Section  Bio parti-
cleswarm optimization-reinforcement learning (BPSO-RL) describes the proposed BPSO-RL algorithm for 
global and local path planning, and the experiment results are shown in Section Experiments. It is concluded 
in Section Conclusion.

Related work
Geometric search algorithms are classical path planning algorithms, such as Dijkstra algorithm6,7, A* 
algorithm2,8,9, D* Lite algorithm10. Also, other classical path planning algorithms include rapidly exploring 
random trees (RRT)8,11, Probabilistic road map (PRM)12, and Artificial Potential Field (APF)13. An improved 
A* algorithm is introduced for AGV by setting the filter function to reduce the turning angles and combining 
it with the cubic B-spline interpolation function for continuous speed and acceleration2. Reference14 considers 
collision risk and path length for the optimal path as an improved A* algorithm with a multi-scale raster map 
and combines the Line-of-sight algorithm.

Reference8 combined A* and RRT algorithms to improve search efficiency and reduce path conflicts for 
multi-AGV routing. Kinematical constraint A* is integrated with the Dynamic window algorithm (DWA) 
for dynamic AGV path planning to reduce the number of turns and the length and time of the path9. APF is 
combined with a deep deterministic policy gradient framework for the port environment to guarantee the safety 
and smoothness of the path15.

Intelligent bioinspired algorithms are widely used in AGV path planning, such as PSO3, Genetic Algorithm 
(GA)16, and Ant Colony Optimization (ACO)17 algorithms, etc.3 proposed an improved PSO (IPSO) algorithm 
with a new coding method and a crossover operation in for AGV in material transportation, adopting a mutation 
mechanism to prevent falling into the local optimum.

Reference18 designed a hybrid evolutionary algorithm based on PSO to avoid trapping in the local optima 
by updating the inertia weight based on a probabilistic approach in real-time implementation with a dual-layer 
framework, achieving collision avoidance, fault tolerance, and task allocation for multi-AGV path planning. 
The improved GA has three-exchange crossover operators and double-path constraints to minimize the path 
distance for multi-AGV path planning16. An improved Global Dynamic Evolution Snow Ablation Optimizer is 
designed to solve global optimization and path planning problems, which uses a dynamic snowmelt ratio and a 
neighbourhood dimensional search scheme19.

To overcome the shortcomings of ACO in weak optimization ability and slow convergence for global path 
planning, an improved ACO uses fruit fly optimization (FOA) for pre-searching to obtain the pheromone 
distribution, then using ACO for global path planning17. A parallel ACO is presented with a multi-objective 
function that includes the number of turns and the shortest path through the interaction of pheromones, and it 
improves the working and processing efficiency in the warehouse20.

A binary PSO with velocity control is introduced in Ref.21, which is a modified version of the PSO algorithm 
with two velocity vectors for each particle. A variable velocity strategy PSO is presented with adding a new term 
in the velocity updating process that is controlled by a reduction linear function as a novel movement strategy22. 
PSO is integrated with social group optimization to propose a velocity adaptation algorithm for localization 
problems, which considers average velocity and partial derivative of personal and global best values23.

Reference24 presents a modified heat transfer search algorithm based on the heat transfer search algorithm and 
sub-population-based simultaneous heat transfer mode to improve the population diversity and effectiveness. 
Reference25 designed a modified teaching-learning-based optimization by introducing self-motivated 
learning, multiple teachers, adaptive teaching factor and learning through tutorials. Reference26 formulates the 
aerodynamic model of a small fixed-wing Unmanned Aerial Vehicle (UAV) into sub-systems, and it compares 
13 metaheuristics approaches for the proposed system identification optimization problem.

Additionally, reinforcement learning has attracted attention to solving the problem of AGV path planning. An 
improved Q-learning path optimization is proposed for dynamic working stations based on Kohonen networks 
and an enhanced GA for local and global path planning, respectively27. Asynchronous Advantage Actor-critic 
(A3C) is combined with attention mechanism in the storage multi-pick station, resulting in increased reward 
and faster convergence28.

Reference29 used the Dueling Double Deep Q Network to learn the AGVs’ control with prioritized experience 
reply for intelligent logistics systems and using multi-modal sensors to avoid obstacles and reach the target. 
Reference30 designed a remote path planning approach based on ACO and reinforcement learning to reduce 
the blindness of ACO searching, and the path generated by ACO is used for training, then selecting the optimal 
action based on the Q table.

An integrated framework implements a bootstrapped deep Q-Network for adaptive decision-making of 
autonomous vehicles and achieves path planning by an inverse RL approach31. Reference32 presents a twisted 
Gaussian risk model for host vehicle trajectory planning, and33 uses a lane crossing and final points generation 
model-based trajectory prediction approach based on long short-term memory and deep conditional generative 
model. Reference34 introduces a type-3 fuzzy controller for path-tracking, and it is under the assumption of 
unknown and non-linear system dynamics.

Reference35 designs a vehicle-to-vehicle (V2V) communication by an intersection-based distributed routing 
strategy and uses ACO for optimal path; another autoregressive integrated moving average model for the V2V 
routing is presented in Ref.36. Reference37 proposes a bus-trajectory-based street-centric routing algorithm for 
message delivery and uses ACO for a bus-based forward strategy. Reference38 uses an inertial-aided Unmodulated 
Visible Light Positioning system for pedestrian navigation, and it implements smartphones for precise ranging 
and tightly coupled integration in an optimization-based framework.

Reference39 develops a human-like trajectory planning model using the driver preview mechanism with a 
data-driven method. A cascade attention mechanism is presented to enhance the performance of road traffic 
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sign recognition, and it designs a mutual attention enhancement module, modal fusion mechanism, and a deep 
learning model40. Reference41 designs an intersection energy consumption and emissions model framework to 
evaluate different signal priority strategies.

However, classical algorithms may waste their available space. The intelligent bioinspired and reinforcement 
learning algorithms have gained attention in AGV path planning. The intelligent bioinspired algorithms effectively 
generate global paths, but they suffer from limited adaptability for moving obstacles or being trapped in the 
local optima. The reinforcement learning would result in slow convergence in large spaces, but it is suitable for 
dealing with dynamic scenarios. The paper combines the advantages of bioinspired and reinforcement learning 
algorithms to perform global and local path planning to avoid moving obstacles with enhanced computational 
speed and the ability of exploration and exploitation. The presented BPSO-RL algorithm proposes a new velocity 
update strategy, and it introduces a random variable to enhance the searchability in the solution space to avoid 
premature convergence, and it is implemented in path planning for AGVs.

Problem statement
AGV path planning aims to find the optimal path from the start to the target location without collisions. The 
industrial environment is modelled as the grid map, and the map is represented by binary numbers: 0 for the 
free space and 1 for the obstacles or the walls. The start location is represented by S(xstart, ystart) ∈ R2

, and the target location is represented by T (xtarget, ytarget) ∈ R2. The path P consists of path points 
{p1, p2, · · · , pn}, and the coordinate of the path point pn,t ∈ P  is (xn, yn) at timestamp t. The obstacles are 
set as Oi(xo,i, yo,i, infoo,i), and infoo,i records additional information about the current obstacle Oi. The 
objective function of AGV path planning for BPSO is formulated as Eq. (1).

 

minimize
(xk+1,yk+1)∈R2

fpath(xk+1, yk+1) = w1 · flength + w2 · fcollision

subject to (xk+1, yk+1) ̸= (xk, yk)
 (1)

where (xk, yk) is the coordinate of the AGV in the iteration k. w1 and w2 are the weight factors for each objective 
function, and their sum is 1. Eqs.(2)–(5) is to minimize the path length and avoid collisions.
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k) is the distance between path points pt
k+1 and pt

k  in the current timeslot t. ct
k  is the value of 

collied obstacles, dt
c is the current distance from the particle to the centre of the obstacle, and rc is the radius of 

the obstacle.

The reward function for the QL method is defined as Eq. (6).

 
R(s, a) =

{
−Rcollision if sk+1 ∈ Oi,
Rgoal if sk+1 = T (xtarget, ytarget),
−Rmoving

 (6)

where Rcollision is the penalty if the next state sk+1 is collided with the obstacle, Rgoal is the reward for reaching 
the goal, and Rmoving  is the moving reward.

The assumptions are as follows:

• AGVs are assumed to be moved at a constant speed within the environment
• AGVs can be communicated immediately
• AGVs support multi-angle steering
• The proposed BPSO-RL algorithm is implemented in the AGVs’ board
• AGVs are aware of the environment, and they carry sensors to detect moving obstacles and support indoor 

localization
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Bio particle swarm optimization-reinforcement learning (BPSO-RL)
Preliminary knowledge
Particle swarm optimization
The optimization algorithm of continuous nonlinear functions inspired by the simplified social model is 
proposed in Ref.42. The main methodologies are related to artificial life and evolutionary computation, and 
they require little computational memory and speed42. The swarm artificial life system includes five principles: 
proximity, diverse response, quality, stability and adaptability43. The modified PSO algorithm is presented in 
Ref.44 to introduce inertia weight, and the ith particles are updated as Eqs. (7)–(8).

 vt+1
i =ωvt

i + c1r1(pbestt
i − xt

i) + c2r2(gbestt − xt
i)  (7)

 xt+1
i =xt

i + vt+1
i  (8)

where xt
i  represents the position of the ith particle in iteration t, and vt+1

i  is the velocity of the particle in the 
next iteration t + 1. ω denotes the inertia weight introduced in Ref.44, c1, c2 are personal and global parameter, 
and r1, r2 are the random number within [0, 1]. pbestt

i  indicates the personal best value for the ith particle, and 
gbestt is the global best value in the swarm.

The PSO algorithm has strong distributed ability and excellent robustness in wide applications with a little 
modification, and it can easily be hybridized with other algorithms to improve performance43. However, the 
basic PSO algorithm has the drawback that it has a high possibility of falling into the local optimum when 
solving the combinatorial optimization problem. It may result in many invalid searches, and the balance between 
local exploitation and global exploration should be paid attention to Refs.3,43.

Vicsek model
Vicsek et al. presented a dynamics model of self-ordered motion in the system of particles to investigate 
transport, clustering and migration transition45. The Vicsek model is the basic model of the multi-agent systems, 
including some key features, such as changing neighbourhood, local interaction and dynamic behaviour46. The 
particles were moving continuously on the surface with biologically motivated interaction and moving with a 
constant absolute velocity. The particles spin in the same direction as their neighbourhood in a square region 
with biologically motivated interactions47. The position and angles of the particles are updated according to Eqs. 
(9)–(10).

 xt+1
i =xt

i + vt
i∆t  (9)

 θt+1
i =

⟨
θt

⟩
r

+ ∆θ  (10)

where xt+1
i  is the position of the ith particle in the timeslot t + 1, and the vt

i  is the velocity. θt+1
i  denotes the 

angle of the ith particle, which is gained through Eq.(10). 
⟨
θt

⟩
r

 denotes the average direction of the particles 
within the circle of the radius r, and ∆θ is the noise from the interval [− η

2 , η
2 ].

Q-learning
The Q-learning (QL) method can adapt the mobile robots’ behaviour in the workspace for path optimization, 
such as Refs.48–50. It enhances the robot for action based on the policy, and the environment returns the states 
and rewards. The Q-value is updated as Eq. (11), and Q(st, at) denotes the current Q-value for the action at at 
state st at timeslot t.

 

Q(st, at) = Q(st, at) + α [r(st, at)

+γ · max
a∈A

Q(st+1, a) − Q(st, at)
] (11)

where α represents the learning rate, and r(st, at) is the reward after taking action at. γ is the discount factor 
between (0, 1), and maxa∈A Q(st+1, a) represents the maximum Q-value for the next state st+1.

BPSO-RL
AGVs operating in the industrial environment usually aim to obtain the optimal path and achieve obstacle 
avoidance for safe operation. The proposed BPSO-RL approach combines the advantage of the swarm intelligence 
algorithm and the reinforcement learning approach. The Q-learning method is effective for decision-making, 
while it would slowly converge in a large state-action space, while the swarm intelligence algorithm is not. The 
BPSO algorithm minimises the fitness value of the defined objective function, which can quickly explore and 
exploit the search space to gain the optimal global path.

The proposed BPSO-RL approach first supports the global path planning by the proposed BPSO algorithm 
and then achieves local path planning by the QL method. For the AGV path planning, the flowchart of the BPRO-
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RL algorithm is illustrated in Fig. 1, where the blue area represents the global path planning, and the green area 
represents the local path planning. The approach generates the storage map in the industrial environments and 
defines the objective function as Sect. Problem statement.

The proposed BPSO algorithm for global path planning is inspired by the PSO algorithm and the biological 
interaction of the system consisting of the particles, and it modifies the updating equation of the velocity of 
particles in Algorithm 1. The equation of updating the velocity is Eq. (12), it added the angle as θ, and the time 
interval is represented by ∆t. The angle θ is randomly generated at the initialization by 2π(rand − 0.5) for each 
particle. It enhances the searchability of the swarm and improves the convergence speed to generate optimal 
solutions. Introducing randomly generated angles enhances the particles’ movements to avoid premature 
convergence to local optima, which accelerates the exploration of the search space and improves the diversity 
of particles.

Fig. 1. The flowchart of BPSO-RL.
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Algorithm 1. BPSO algorithm

The initialization of the population includes randomly distributed positions and angles θ, and the velocities 
are set as 0. If the velocities or positions are out of the search space, the particles’ velocities or positions would 
be limited to the nearest boundary value. Then, the BPSO algorithm updates the particle’s velocity and position 
and then evaluates the solution based on the objective function. If the new solution’s fitness value is less than the 
personal best pbest, then updating pbest. If pbest is less than the global best gbest of the population, then gbest is 
updated. If the global best value is not updated in 10 iterations, then the generated path is treated as the optimal 
global path. Otherwise, the global path is generated after the iteration terminates.

 vt+1
i = ωvt

i + c1r1(pbestt
i − xt

i) + c2r2(gbestt − xt
i) + θ∆t (12)

The BPSO algorithm is used for global path planning in the scenario, and the QL method is used to avoid moving 
obstacles. The BPSO-RL approach checks for potential collision with moving obstacles. If a moving obstacle 
appears, the QL method performs the local path planning. The path is re-planned 1 second before the potential 
collision, and it uses a 10x10 map centred around the original BPSO path for the QL method. The timestamps 
considered begin at the previous timestamp before the collision occurs and continue for the next ten timestamps. 

Fig. 2. The framework of BPSO-RL.
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The original BPSO path points within the ten timestamps are scaled into the 10x10 grid map. The method is 
indicated in Fig. 2. The possible actions include up, down, left and right. If the agent faces an impasse, it will 
remain stationary. After initialising the environment and the Q-table, the QL method chooses the action as 
exploration or exploitation. Then, perform the action, update the new state, calculate the reward, and update the 
Q-value. The local path is obtained if the iteration reaches the termination condition.

Experiments
Comparative analysis
The comparative analysis and path planning simulations were conducted on a computer with an Intel Core i5-
13600KF processor, the NVIDIA GeForce RTX 4070 GPU, and 32 GB RAM. The proposed BPSO algorithm is 
compared with other evolutionary algorithms, including the Canonical PSO44, Real-coded GA51, and Transit 
Search (TS) algorithms52. GA is a popular swarm intelligence algorithm in path planning, and TS is a new swarm 
intelligence algorithm.

The benchmark functions are listed in Table 1, and each algorithm runs 20 times, with 500 iterations per 
execution. For each execution, the parameter settings for each algorithm are shown in Table 2. The metrics of 
comparisons include the number of iterations, the average runtime when generating the optimal solution, and 
the accuracy of the solution that is the best fitness value, and the comparison of the best fitness values, iteration 
and runtime are recorded in Table 3. The convergence curves of the benchmark functions are shown in Figs. 3, 
4 and 5.

From the comparative analysis, the proposed BPSO algorithm can get the optimal solution with less iteration 
and runtime in functions F1(x), F2(x), and F3(x). The iteration is recorded when the algorithm reaches 
the best fitness value. The runtime is calculated as the product of the average time of each iteration and the 
average iterations to obtain the optimal solution. The BPSO algorithm saves 15.96%, 41.97%, and 41.03% for 

Algorithm F1(x) F2(x) F3(x) Mean

BPSO

Fitness value 0.0000 0.0000 0.0000 0.0000

Iteration 300.2 279.7 288.25 289.38

Runtime 0.2254 0.2099 0.2083 0.2145

PSO

Fitness value 0.0000 0.0000 0.0000 0.0000

Iteration 342.9 343.45 346.6 344.32

Runtime 0.2820 0.2817 0.3064 0.2900

GA

Fitness value 0.0000 0.0000 0.0000 0.0000

Iteration 499.2 498.7 498.2 498.7

Runtime 0.2411 0.2423 0.2680 0.2471

TS

Fitness value 0.0000 0.0000 0.0000 0.0000

Iteration 491.05 491.15 490 490.73

Runtime 0.3636 0.3626 0.3989 0.3750

Table 3. Mean fitness values, iterations and runtime.

 

Algorithm Parameter

BPSO itermax = 500, npop = 100, w = 0.8, wdamp = 0.8, dt = 1, c1 = 1.5, c2 = 1.5

PSO itermax = 500, npop = 100, w = 0.8, wdamp = 0.8, c1 = 1.5, c2 = 1.5

GA itermax = 500, npop = 100, pc = 0.7, gamma = 0.4, pm = 0.3, mu = 0.1

TS itermax = 500, npop = 100, ns = 2, SN = 50

Table 2. Parameter settings.

 

Function Name Equation Search Range

F1(x) Sumsqu F1(x) =
d∑

i=1

ix2
i [-100,100]

F2(x) Sphere F2(x) =
d∑

i=1

x2
i [-100,100]

F3(x) Zakharov F3(x) =
d∑

i=1

x2
i + (

d∑
i=1

0.5ix2
i )

2

+ (
d∑

i=1

0.5ix2
i )

4

[-100,100]

Table 1. Test functions.
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iterations and saves 26.03%, 13.19%, and 42.8% computational time, with the comparison with PSO, GA, and 
TS algorithms, respectively.

The PSO algorithm generates the best solution with fewer iterations than GA and TS algorithms, while GA 
reaches the global solution with less runtime than PSO and TS algorithms. The TS algorithm performs well 
for small-scale problems. The presented BPSO algorithm and the PSO algorithm have high solution quality in 
unimodal problems but may suffer slow convergence in multimodal problems.

Path planning
The parameter settings for path planning by the BPSO algorithm are the number of population size is 150, the 
maximum number of iterations is 150, inertia weight w is 1, inertia weight damping ratio wdamp is 0.98, and the 
personal and global learning coefficients c1 and c2 is 1.5, and the time interval dt is 1. The parameter settings of 
the PSO algorithm about the population size, the maximum number of iterations, inertia weight, inertia weight 
damping ratio, and the personal and global learning coefficients are set in the same way as the BPSO algorithm.

The paths generated by the BPSO and PSO algorithms for global path planning are compared in Table 4, the 
start and target, path length and iterations, and fitness values are listed, and they are indicated as Path 1 and Path 
2. The paths and the convergence of the BPSO and PSO algorithms are shown in Figs. 6, 7, and the BPSO path is 
indicated by blue, while the PSO path is indicated by purple. The orange circle denotes the start location, and the 
blue circle denotes the target location. BPSO reduced 22.3981% iterations in two generated paths.

Fig. 4. The convergence curve of F2(x).

 

Fig. 3. The convergence curve of F1(x).
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The moving obstacles are allocated to the generated path, and the Q-learning method is used to avoid the 
moving obstacles. The parameters of the moving obstacles are indicated in the Table 5. The moving obstacles 
1 and 2 occurred in Path 1 and Path 2. When a moving obstacle appears, the Q-learning method modifies the 
global path to avoid the moving obstacle. The Q-learning method generates the new path one second before the 
collision occurs. The parameters of the Q-learning method are alpha = 0.1, gamma = 0.9, epsilon = 0.1, 
and the number of episodes is 5000, with a 10x10x4 Q-table. The simulation results are demonstrated in Figs. 8, 
9. The Q-learning is operated on a 10x10 map, and the figures also show the convergence curve of the total 
reward.

The moving obstacles 3 and 4 appeared in Path 3, which is a different scenario extracted from a real industrial 
warehouse. The BPSO algorithm generates the global path as Path 3, which is demonstrated in Fig. 10, and the 

Fig. 6. Path 1 generated by the BPSO and PSO algorithms.

 

Paths Start Target Algorithm Path Length Iteration Fitness Value

Path1 (73,450) (460,494) BPSO 391.9610 52 195.9805

PSO 395.5416 77 197.7709

Path2 (200,540) (50,100) BPSO 467.8940 64 233.9505

PSO 467.9600 73 233.9800

Table 4. Path generation. Significant values are in bold.

 

Fig. 5. The convergence curve of F3(x).

 

Scientific Reports |          (2025) 15:463 9| https://doi.org/10.1038/s41598-024-84821-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


convergence of the BPSO algorithm is also shown in the figure. The paths of the moving obstacles 3 and 4 are 
shown in red, and Path 3 is indicated by the blue path. The Q-learning method performs local path planning 
and modifies the global path. The original BPSO path is highlighted in grey, and the new path generated by the 
Q-learning method is indicated in blue and connected to the original path. The Q-learning convergences of the 
moving obstacles 3 and 4 are shown in Fig. 11.

Conclusion
Path planning is treated as the NP-hard problem, as the exponential growth of the solution space makes it 
impossible to generate the optimal path in polynomial time. AGV path planning requires generating a safe path 
in the industrial environment that is modelled as the 2D grid map, with the specific source and target location. 
The objective function considers the path length and collision avoidance with the weight factors, and it is aimed 
at minimizing the objective function. This paper presents an improved swarm intelligence algorithm based on 

Fig. 8. Path 1 and the convergence curve.

 

Obstacle Start Velocity x Velocity y Collided time Path

1 (106,480) 3 0 t = 35 BPSO Path 1

2 (124,515) 3 -1 t = 16 BPSO Path 2

3 (127,402) 2 2 t = 12 BPSO Path 3

4 (210,260) 0 5 t = 28 BPSO Path 3

Table 5. Moving obstacles.

 

Fig. 7. Path 2 generated by the BPSO and PSO algorithms.
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Fig. 11. The Q-learning convergences of the moving obstacles 3 and 4.

 

Fig. 10. Path 3 generated by the BPSO algorithm.

 

Fig. 9. Path 2 and the convergence curve.
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the PSO algorithm and inspired by the Vicsek model to improve searchability and performance. The proposed 
BPSO algorithm modifies the updating equation of the particles’ velocity. It provides a near-optimal solution for 
AGV path planning and integrates the QL method as the BPSO-RL approach enhances the ability to deal with 
dynamic scenarios. The reward function considers the collision penalty and the reward of moving and reaching 
the goal. The BPSO-RL produces the optimal solution with fast computational speed to address the complex 
path planning optimization problem.

In the comparative analysis, the BPSO algorithm saved 33.99% iterations and 27.34% computational time on 
average than other algorithms. When generating the paths, the BPSO algorithm reduced 22.40% iterations than 
the PSO algorithm. The potential impact of the presented BPSO-RL algorithm includes its support for adaptive 
path planning to enable efficiency and adaptability, which could be used for autonomous navigation systems 
and smart manufacturing. It has the potential to utilize the decision-making strategy for multi-robot systems or 
to solve combinational optimization problems, such as network optimization or resource allocation. The real-
world applications of the proposed algorithm include AGV’s operation in warehouses that involve unpredictable 
obstacles, the delivery in logistics and transportation with suitably defined objective functions, or the service 
robots’ operation. Optimized paths can save operational costs and prevent people or other AGVs from being in 
a dynamic environment.

However, the limitation of the presented BPSO-RL algorithm is related to possible latency issues in a large-
scale environment, and the Q-learning method could not guarantee the completeness of the path generation. 
Future work is focused on implementing the proposed algorithm in practical application. When integrating the 
presented algorithm into the sensors and hardware, it would face noisy sensor data. Implementing the neural 
network or nonlinear filters can deal with the sensor data. Also, the multi-objective optimization algorithm 
could be used to consider more factors when performing global path planning. The extension of the algorithm 
from a single robot to a multi-robot system is possible. In a more complex environment, deep reinforcement 
learning provides the possibility to learn more generalized policies in a large state-action space, such as Proximal 
Policy Optimization or Deep Q-Netowrks.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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