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Precise estimation of rock petrophysical parameters are seriously important for the reliable 
computation of hydrocarbon in place in the underground formations. Therefore, accurately estimation 
rock saturation exponent is necessary in this regard. In this communication, we aim to develop 
intelligent data-driven models of decision tree, random forest, ensemble learning, adaptive boosting, 
support vector machine and multilayer perceptron artificial neural network to predict rock saturation 
exponent parameter in terms of rock absolute permeability, porosity, resistivity index, true resistivity, 
and water saturation based on acquired 1041 field data. A well-known outlier detection algorithm is 
applied on the gathered data to assess the data reliability before model development. Additionally, 
relevancy factor is estimated for each input parameter to assess the relative effects of input 
parameters on the saturation exponent. The sensitivity analysis indicates that resistivity index and true 
resistivity have direct correlation with the saturation exponent while porosity, absolute permeability 
and water saturation is inversely related with saturation exponent. In addition, the graphical-based 
and statistical-based evaluations illustrate that AdaBoost and ensemble learning models outperforms 
all other developed data-driven intelligent models as these two models are associated with lowest 
values of mean square error (adaptive boosting: 0.017 and ensemble learning: 0.021 based on unseen 
test data) and largest values of coefficient of determination (adaptive boosting: 0.986 and ensemble 
learning: 0.983 based on unseen test data).
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X  Design matrix
H  Hat matrix
H*  Warning leverage
n  Number of input variables
m  Number of datapoints
N  Number of total datapoints
R2  Coefficient of determination
MSE  Mean square error
RE%  Relative error percent
AARE%  Average absolute relative error percent

The primary goal of an engineered petrophysical program within the realm of petroleum industry is to 
evaluate the quantity of hydrocarbons1. Although Archie’s parameters of m, a and n are generally assumed 
constant in standard formations, the saturation exponent (n) can vary significantly, ranging often from 20 to 
2 in formations that are strongly oil-wet to water-wet under specific conditions. Numerous study outcomes 
contend that the parameter of saturation exponent is highly influenced by wettability, displacement history, and 
pore size distribution, with values potentially ranging from 2 to 102,3. Traditionally, the cementation exponent 
(m) in Archie’s equation has been the focus of extensive studies and research. With the advent of the Pickett 
Plot method for estimating m using wireline measurements method of porosity and resistivity, it can now be 
computed through crossplotting. In contrast, the saturation exponent (n) and tortuosity factor (a) are generally 
left unaltered, except in cases where core measurements suggest a deviation from the typical value, such as 
n = 24,5. In the world of petrophysics, it is essential to acquire accurate Archie’s parameters’ values to specify 
the exact water saturation of underground reservoir formations3,6–8. Assuming a constant saturation exponent, 
particularly in formations with diverse rock types, should be considered a last resort. The conventional approach 
to calculating the saturation exponent involves obtaining experimental data through special core analysis, which 
straightly yields Archie’s parameters. However, the primary drawback of such methods is the associated cost and 
time required for the pertinent experiments3,9,10.

The literature presents numerous studies over the specification of the saturation exponent. Al-Hilali4 
proposed a straightforward petrophysics-based workflow for rigorously estimating the water saturation 
exponent. Godarzi et al.11 introduced two innovative techniques of MGA (Modified Genetic Algorithm) and 
HDP (Homogeneous Distribution of Parameters) for simultaneously determining the parameters of Archie’s 
equation, and associated these methods with traditionally-existing approaches. Hamada12 developed a novel 
practice for calculating Archie’s equation factors, utilizing a 3D plot that incorporates formation porosity, water 
saturation, and formation water resistivity. A comparative analysis of the accuracy of each separate method was 
also illustrated. Mardi et al.13 proposed an artificial neural network based method to determine the cementation 
factor, saturation exponent, and water saturation.

Recently, innovative methods based on soft computing have been successfully introduced and extensively 
applied in the fields of chemical, earth sciences, mining engineering and petroleum engineering14–16. These 
methods are significantly more robust than classical regression and traditional statistical techniques in deriving 
input/output data relationships17. For example, a primary scheme is the application of artificial neural networks 
(ANNs) for classification and highly non-linear regression problems, which is well-regarded for its rapid 
estimation and strong generalization capabilities following effective network training15. Another soft computing 
approach involves the recent development of a robust technique known as Support Vector Machine (SVM), 
which incorporates its associated learning algorithm for data analysis and pattern recognition18. SVM has 
garnered significant consideration for its exceptional functioning in addressing complex regression problems 
and classification19. SVM has been extensively applied across engineering and scientific disciplines, including 
the prediction of permeability and porosity based on well log data and lithology, as well as in speech and text 
recognition, and pattern identification in medical science20–23.

In this study, an initial sensitivity analysis is conducted to identify the sensitive parameters using the relevancy 
factor, followed by outlier detection to learn about the reliability of the data required for the data-driven 
modeling process based upon 1041 gathered field data. Then, robust machine learning methods of Decision 
Tree (DT), AdaBoost (AB), Random Forest (RF), Ensemble Learning (EL), Convolutional Neural Network 
(CNN), Support Vector Machine (SVM) and Multilayer Perceptron Artificial Neural Network (MLP-ANN) 
are used to create highly robust, accurate and intelligent data-driven models to predict saturation exponent of 
underground petroleum reservoir formations in terms of absolute permeability, porosity, true resistivity, water 
saturation, and resistivity index in an easy and user-friendly way based on acquired field data. The constructed 
models are evaluated and assessed using several statistical indices and graphical approaches. The step-by-step 
workflow as a flowchart is given in Fig. 1. Notice that Each algorithm brings unique strengths to the workflow: 
for instance, Decision Trees and Random Forests are well-suited for interpretability and handle categorical 
variables effectively, while CNNs and MLP-ANNs are powerful in capturing complex, nonlinear patterns. By 
using an ensemble approach, we can enhance predictive accuracy and robustness, as it allows us to leverage the 
combined strengths of individual models. However, there are limitations to each method. For instance, Decision 
Trees can overfit without proper pruning and while neural networks such as CNNs and MLP-ANNs can uncover 
intricate relationships, they are computationally intensive and can be challenging to interpret. Additionally, 
some algorithms like SVM are sensitive to parameter tuning, which can affect their performance24.

Modeling background and methodology
Modeling background
In this part, the description of each machine learning algorithm utilized in the current study is put forward.
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Decision tree
Decision Trees represent a powerful suite of machine learning algorithms designed for classification and 
regression tasks25. Developed to categorize and make predictions on previously unseen data, the Decision Tree 
algorithm works by building a tree-like structure that recursively splits the dataset, driven by the feature that 
yields the highest information gain or reduction in impurity, until a pre-defined stopping criterion is met. This 
process culminates in a tree with leaf nodes representing the majority class or prediction for new samples. More 
technical descriptions along with the pertaining equations may be found in26.

AdaBoost
AdaBoost27 (Adaptive Boosting) is a widely-used ensemble technique that combines multiple weak learners, 
referred to as base estimators, to form a more powerful and accurate regressor for prediction tasks. The AdaBoost 
algorithm commences by fitting a base estimator to the raw data, after which it proceeds to fit additional copies 
of the same estimator to the data with adjusted instance weights that depend on the current prediction errors. 
This iterative process ultimately yields a weighted combination of the base estimators, which together constitute 
the boosted regressor, resulting in improved predictive accuracy28.

Random Forest
The Random Forest regressor is a robust ensemble learning methodology that leverages multiple decision trees 
to enhance the accuracy and generalizability of the resulting model. By combining the predictions of numerous 
individual trees, each trained on a random subset of the data and features, the Random Forest algorithm effectively 
reduces overfitting and captures the underlying patterns within the data. This powerful approach to regression 

Fig. 1. Step-by-step workflow followed in this paper for the intelligent modeling of rock saturation exponent.
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tasks not only yields accurate predictions but also enables the assessment of feature importance, providing 
valuable insights into the factors that contribute most significantly to the observed outcomes29. The Random 
Forest algorithm has garnered substantial popularity within the machine learning domain due to its ability to 
deliver strong performance without requiring extensive hyperparameter tuning. Furthermore, its capacity to 
handle large-scale datasets makes it an attractive choice for real-world applications where data abundance can 
be overwhelming for other algorithms. This combination of robustness, ease of use, and scalability contributes 
to the widespread adoption of Random Forests as a go-to method for various classification and regression tasks 
across diverse domains30.

Ensemble learning
Ensemble learning techniques generate a collective decision-making process by amalgamating the powers of 
individual learning models to achieve improved reliability. These methodologies can be characterized into 
non-generative and generative approaches, depending on their prediction generation strategy. Non-generative 
ensemble learning techniques focus on producing new predictions by integrating the outputs of independently 
trained models, without intervening in their learning stages. Conversely, generative ensemble learning 
techniques have the capability to construct the underlying learners, while also optimizing learning algorithms 
and datasets within the ensemble. Among non-generative ensemble learning methods, the voting ensemble and 
stacking ensemble techniques are the most prominent. The voting ensemble regression method calculates a final 
prediction by averaging the predictive outcomes of combined independent learning algorithms, thus leveraging 
the strengths of multiple models for enhanced predictive performance31.

Support vector machine
The kernel function within the support vector machine (SVM) is responsible for mapping sample data into high-
dimensional space enabling the solution of nonlinear regression problems32. To ensure SVM predictive model 
is associated with generalization capability and prediction accuracy, parameter optimization selection, kernel 
function and sample data processing are the key components that needs to be delicately taken into account. In 
this regard, the mapping relationship between the output variable and input variables is expressed as:

 y = (x1, x2, x3, ..., xn) (1)

In which y is the output variable and x being the input variable and n represents the number of input variables. 
Kernel function determines the predictive performance of SVM model. The most commonly used kernel 
function is called radial basis function (RBF), the details of which can be found in33.

Multilayer perceptron artificial neural network
Artificial Neural Networks (ANNs) are powerful mathematical tools that draw inspiration from the structure 
and function of the human nervous system. As noted previously, the foundation of ANNs lies in mimicking 
the human brain’s parallel processing capabilities for uncovering intricate nonlinear relationships between 
independent and dependent variables. By employing interconnected layers of artificial neurons, ANNs can 
learn from data, adapt to new inputs, and generate accurate predictions in complex problem domains34. ANNs 
represent sophisticated statistical tools that emulate the human nervous system’s interconnected neurons within 
a computational network. ANNs encompass various types and architectures, each tailored to specific tasks and 
problem domains. These models excel at pattern recognition and decision-making, with applications spanning 
numerous scientific fields. The extensive adoption of ANNs across diverse disciplines highlights their versatility 
and efficacy in addressing complex challenges, positioning them as a prominent tool in contemporary scientific 
research35,36. The remarkable precision of ANNs positions them as highly effective nonlinear analysis tools, 
capable of replacing time-consuming and costly experimental procedures. ANNs have demonstrated their ability 
to address intricate modeling tasks, including prediction, pattern recognition, and classification, establishing 
their prominence in scientific research37.

Methodology
Gathered data statistics
The dataset employed in this research comprises field data with 1041 datapoints of routine and special core 
analysis (RCAL and SCAL) as functions of absolute permeability, porosity, true resistivity, water saturation and 
resistivity index. The statistical properties of these data are outlined in Table 1. It is well-established within 
the field of petrophysics which involves geological formation properties, the rock saturation exponent is 

Parameter Minimum Maximum Mean

Porosity, % 1.26 32.13 14.73

Absolute permeability, mD 0.03 4479.56 190.72

Water saturation, dimensionless 0.06 1.01 0.63

True resistivity, ohm.m 0.37 2495.05 53.25

Resistivity index, ohm.m 0.39 360 8.28

Saturation exponent, dimensionless 0.00 7.80 1.60

Table 1. Statistical values of the gathered field dataset for the data-driven model development in this study.
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linked to above-mentioned specifications, albeit with varying degrees of correlation and directionality. Given 
these relationships, the input parameters used for the data-driven model development encompass absolute 
permeability, porosity, true resistivity, water saturation, and resistivity index as the required input factors. The 
output label is the saturation exponent.

Sensitivity analysis
In this part, we seek to find out the relative effect of each input variable including absolute permeability, porosity, 
true resistivity, water saturation and resistivity index on the output factor which is saturation exponent. This 
is carried out here with the consideration of relevancy factor in which it is calculated for each separate input 
variable. The equation of relevancy factor is defined as38:

 

rj =

n∑
i=1

(xj,i − xj) (yi − y)
√

n∑
i=1

(xj,i − xj)2
n∑

i=1
(yi − y)2

(j = 1, 2, 3, 4, 5) (2)

In which j denotes the specific input variable. Note that the probable range of relevancy factor lies within -1 
and + 1. Also, the higher the magnitude of the calculated relevancy factor, the stronger the relationship of the 
specific input variable with the output variable. In addition, a negative and positive relevancy index indicate 
indirect and direct relationship of the so-called input variable with pertinent output variable. In this way, the 
estimated relevancy factor for all the considered input factors is given in Fig. 2. As can be seen, resistivity index 
and true resistivity are directly correlated with saturation exponent while porosity, absolute permeability and 
water saturation is inversely related with saturation exponent. Additionally, water saturation has the strongest 
relationship with output variable.

Outlier detection
The reliability of any data-driven intelligent model is significantly influenced by the quality of the dataset 
employed during the development process. To ensure the credibility of the data in this study, we apply the 
widely recognized Leverage technique, which involves the utilization of the Hat matrix. This matrix is defined 
as follows38:

 H = X
(
XT X

)−1
XT  (3)

In the aforementioned equation, the design matrix X is denoted as an m*n matrix, where n signifies the number 
of input variables and m represents the total number of data points. To identify potential outliers using the 
Leverage technique, we employ the Williams’ plot, which visualizes the relationship between the Hat values 
and their normalized counterparts. Within this graphical representation, the warning leverage is determined 
through the following calculation38:

 H∗ = 3 (n + 1) /mm (4)

It is important to note that standardized residuals typically fall within the range of -3 to + 3. The Williams’ 
plot, presented in Fig. 3, facilitates the identification of outlier and suspect data points. The plot features two 
horizontal lines representing standardized residual values, and a vertical line indicating the warning leverage 
value. Data points located within these boundaries are deemed reliable and validated. As illustrated in Fig. 3, 

Fig. 2. Exploring the relative impact of each variable on the saturation exponent using relevancy factor.
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only 26 out of 1401 datapoints are classified as outliers. Despite this, all datapoints are taken into account during 
model development to ensure the construction of generalized models.

Model evaluation indices
In order to comprehend the robustness, reliability and accuracy of the developed models, the following statistical 
indices are estimated for each model39–41:

 
RE% =

(
opred − oexp

oexp

)
× 100 : relative error percent (RE%) (5)

 
AARE% = 100

N

N∑
i=1

(∣∣∣∣
opred

i − oexp
i

oexp
i

∣∣∣∣
)

: average absolute relative error (AARE%) (6)

 
MSE =

N∑
i=1

(
opred

i − oexp
i

)2

N
: mean square error (MSE)

 (7)

 

R2 = 1 −

N∑
i=1

(
opred

i − oexp
i

)2

N∑
i=1

(oexp
i − o)2

: determination coefficient
(
R2)

 (8)

Wherein exp and pre are known as field and estimated values, i denotes index number and the number of 
datapoints are depicted via N.

The input variables for the data-driven modeling include absolute permeability, porosity, true resistivity, 
water saturation and resistivity index for the modeling process of saturation exponent. Moreover, 80%, 10% and 
10% of all datapoints are randomly selected for training, validation and testing phases, respectively. As widely 
known, the validation is used to avoid overfitting while testing is implemented using the unseen data during the 
model training (development) phase. To minimize the impact of data fluctuations during the modeling process, 
both input and output variables are normalized using the following relationship:

 
nnorm = n − nmin

nmax − nmin
 (9)

Where the real value is denoted by n, subscripts max and min signify maximum and minimum value of the 
dataset and subscript norm is known as the normalized value.

Fig. 3. Identification of suspected data before intelligent data-driven modeling via Leverage methodology.
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Results and discussion
Determination of optimum parameters
In this part, the process of obtaining the hyperparameters are discussed. Figure  4 displays coefficient of 
determination and mean square error versus maximum depth hyperparameter within the decision tree 
approach. As can be seen, the optimum value is calculated to be 17. The same value (that is, 17) is estimated 
as the optimum value of number of estimators as the hyperparameter within the AdaBoost machine learning 
method as demonstrated in Fig. 5. Figure 6 represents two 3D plots of mean square error and determination 
coefficient of the validation phase in random forest approach. As seen, the optimum values of maximum depth 
and number estimators are 14 and 16 respectively. Additionally, the optimized value of SVM hyperparameter 
(c) is estimated to be 461 as can be observed in Fig. 7. The process of MLP-ANN in terms of mean square error 
versus iteration for training and validation phases is indicated in Fig. 8. Notice that the tuned specifications of all 
the trained machine learning algorithms in this study are tabulated in Table 2.

Models’ evaluation
Table 2 tabulates the evaluation indices of coefficient determination, mean square error and average absolute 
relative error (AARE%) for the developed data-driven intelligent models of decision tree, AdaBoost, random 
forest, ensemble learning, support vector machine and multilayer perceptron artificial neural network. In 
addition, for better doing the evaluation task, these parameters for the testing phase are depicted in Fig.  9. 
Moreover, Table 3 tabulates predicted values for 20 random data via the trained algorithms.

As can be seen, the AdaBoost and ensemble learning methods have the lowest mean square error and AARE%, 
which means they have the best performance in predicting saturation exponent. In addition, these methods have 
accordingly the highest values of determination coefficient. For the prediction of saturation exponent in this 
paper, it appears that MLP-ANN and SVR are less accurate as they have the highest values of MSE and AARE% 
while they have the lowest values of determination coefficient.

To assess the performance of the trained algorithms and analyze their estimation accuracy, several visual 
plots are employed in this study. First, cross plots are generated for all proposed models, as shown in Fig. 10. 
For both AdaBoost and ensemble learning models, the clustering of points around the unit slope line indicates a 

Fig. 5. Determination of number of estimators’ hyperparameter optimum value in AdaBoost method.

 

Fig. 4. Determination of max depth hyperparameter optimum value in Decision Tree method.
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Fig. 8. MSE versus iteration in the process of implementation of MLP-ANN approach.

 

Fig. 7. Determination of optimum hyperparameter (c) in the SVM approach.

 

Fig. 6. Determination of optimum parameters (number of estimators and max depth) in Random Forest 
approach.
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Model

R2 MSE AARE%

Training Validation Test Total Training Validation Test Total Training Validation Test Total

DT 0.999999 0.9503637 0.957304 0.990473 9.81E-07 0.069887 0.056359 0.013272 0.005422 8.6386931 6.9581152 2.003791

AB 0.999591 0.9747454 0.986566 0.995646 0.000567 0.0355581 0.017733 0.006097 0.552514 6.698052 4.9120449 2.022674

RF 0.984169 0.9641713 0.958918 0.980752 0.021959 0.0504462 0.054228 0.028306 4.95995 17.991411 5.3604011 7.815577

EL 0.99821 0.974859 0.983977 0.99454 0.002483 0.035398 0.021151 0.007939 1.882193 10.162351 4.07001 3.65743

SVR 0.749724 0.8293293 0.838151 0.771682 0.347161 0.2403014 0.213641 0.322094 15.58514 14.346958 10.395688 15.18521

MLP-ANN 0.820927 0.8829975 0.854825 0.843533 0.248395 0.1647375 0.191631 0.233589 18.28915 25.900553 12.227834 19.5458

Table 3. Obtained evaluation statistical indices for all the developed data-driven methods for training, 
validation and test phases as well as total data.

 

Fig. 9. Mean square error, coefficient of determination and average absolute relative error percent for the test 
phase for all the approaches.

 

Utilized machine learning algorithm Key tuned specifications

Decision Tree • Max depth: 17

Random Forest • Max depth: 14
• Number of estimators: 16

Adaptive Boosting • Number of estimators: 17
• Learning Rate = 1.0

Ensemble Learning • Base estimators: Decision Tree, Random Forest, and Adaptive Boosting (all with their tuned specifications)

Support Vector Machine
• Kernel function: Radial Basis Function (RBF)
• Gamma type: Scaled
• C hyperparameter: 461

Multilayer Perceptron Artificial Neural Network
• Activation function: ReLU (Rectified Linear Unit)
• Learning rate = 0.001
• Number of hidden layers: 8
• Number of neurons within in hidden layer: 13

Table 2. Key tuned specifications for all the trained machine learning algorithms in this study.
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high degree of accuracy. Furthermore, the equations obtained from fitting lines on these points are remarkably 
close to the bisector line. Also, the distribution of relative deviation for each estimator is illustrated in Fig. 11. 
A closer proximity of the data to the y = 0 line corresponds to higher estimator accuracy. According to this plot, 
the AdaBoost and ensemble learning models emerge as the most effective predictive tools. Figure 12 also depicts 
the crossplots of estimated versus actual datapoints tabulated in Table 4 which includes 20 random datapoints 
taken from all the dataset.

Fig. 10. Crossplots of estimated versus real values for all the developed intelligent models per training, 
validation and test phases in this study.
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Field implications
The predicted saturation exponent has significant practical implications for reservoir management and 
field operations, particularly in refining estimates of hydrocarbon volumes and improving water saturation 
calculations. Accurate saturation exponent predictions directly enhance the application of Archie’s equation, 
a fundamental tool for determining water saturation in reservoir rocks from resistivity data. By providing 
reliable estimates of the saturation exponent, the models allow reservoir engineers to more accurately quantify 

Fig. 11. Distribution of relative error based on training, validation and test phases for all the developed data-
driven models in this study.
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hydrocarbon reserves and develop precise water saturation profiles. This information is crucial for optimizing 
reservoir management strategies, especially in complex reservoirs where rock properties vary significantly. For 
instance, these predictions can help segment the reservoir into zones with similar rock properties, enabling 
tailored production strategies to maximize recovery and minimize water production. As a result, operators can 
make informed decisions regarding well placements, production rates, and operational adjustments based on 
data-driven insights.

In addition to optimizing production strategies, saturation exponent predictions play a pivotal role in field 
development planning and enhanced recovery operations. The models can support the placement of new wells 

Fig. 12. Crossplots of estimated versus actual points for the 20 random datapoints tabulated in Table 4.
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by providing predictions in areas with limited core data, which reduces the need for extensive coring programs 
and lowers operational costs. During secondary recovery processes, such as waterflooding, accurate saturation 
exponent values improve the fidelity of reservoir simulation models. By predicting fluid distributions and 
understanding how these vary with rock properties, engineers can design and monitor water injection strategies 
that maximize sweep efficiency and overall recovery. Ultimately, the enhanced understanding provided by these 
models empowers reservoir engineers and field personnel to make data-informed decisions, improving field 
productivity and efficiency, while optimizing resource management.

Conclusions
The predicted saturation exponent has significant practical implications for reservoir management and 
field operations, particularly in refining estimates of hydrocarbon volumes and improving water saturation 
calculations. Accurate saturation exponent predictions directly enhance the application of Archie’s equation, 
a fundamental tool for determining water saturation in reservoir rocks from resistivity data. In the current 
communication, we developed robust data-driven based intelligent models based upon decision tree, adaptive 
boosting, random forest, ensemble learning, support vector machine and multilayer perceptron artificial 
neural network to accurately model rock saturation exponent in terms of effective input parameters of absolute 
permeability, porosity, true resistivity, water saturation and resistivity index based upon 1041 field data. 
The results implied that almost all the data within the field dataset is reliable for the model development. In 
addition, the sensitivity analysis through relevancy factor indicated the input parameters of resistivity index 
and true resistivity are directly correlated with the output variable while porosity, absolute permeability and 
water saturation is inversely related with saturation exponent. The model evaluation illustrated that AdaBoost 
and ensemble learning are the most accurate and robust developed intelligent models for the task of saturation 
exponent prediction based on the in-depth analysis of the evaluation metrics obtained for each model. The 
aforementioned developed models can be implemented to predict rock saturation exponent of underground 
petroleum reservoirs without needing field data which are extremely costly, time consuming and often requiring 
heavy manpower both on-field and within laboratory schemes.

Data availability
The data that supports the finding of the current study will be made available upon reasonable request from the 
corresponding author.
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Input Parameter Target Parameter
Target Parameter Predicted by the 
Trained Algorithm

Porosity (%)

Absolute 
permeability 
(md)

Water 
saturation 
(fraction)

True 
resistivity 
(ohm.m)

Resistivity 
index 
(ohm.m)

Saturation exponent 
(dimensionless) DT AB RF EL SVR

MLP-
ANN

17.05 0.30 0.67 16.49 9.77 5.59 5.59 5.59 5.50 5.55 6.70 5.43

13.60 3.30 0.56 6.09 2.40 1.51 1.51 1.62 1.53 1.56 1.44 1.49

15.00 5.50 1.00 1.87 1.00 0.00 0.00 0.00 0.00 0.00 0.10 -0.06

11.29 0.72 0.81 2.36 1.37 1.49 1.49 1.49 1.49 1.49 1.93 0.93

15.90 1.56 0.85 2.91 1.38 1.94 1.94 1.94 2.12 2.01 2.18 1.78

15.02 1.32 0.94 3.02 1.05 0.89 0.89 0.89 0.92 0.90 1.23 0.93

14.90 5.70 0.38 12.65 6.53 1.91 1.91 1.91 1.95 1.93 1.94 1.83

16.50 7.00 0.78 3.70 1.57 1.85 1.85 1.85 1.85 1.85 2.13 1.68

7.52 12.65 0.55 127.14 10.37 3.91 3.91 3.91 4.50 4.14 4.01 3.82

20.10 8.50 0.61 3.54 2.62 1.93 1.93 1.95 1.93 1.93 1.86 1.88

32.13 3311.25 0.11 229.06 23.00 1.42 1.42 1.34 1.39 1.37 1.49 1.46

15.64 10.12 0.69 4.26 2.05 1.91 1.91 1.89 1.90 1.90 1.89 1.90

3.09 0.52 0.33 2495.05 4.97 1.46 1.46 1.46 1.46 1.46 1.36 1.00

10.01 2.78 1.00 22.98 1.00 0.00 0.00 0.00 0.00 0.00 0.10 -0.17

22.40 112.00 1.00 0.95 1.00 0.00 0.00 0.00 0.00 0.00 0.06 0.05

8.43 8.86 0.37 14.10 5.96 1.80 1.80 1.80 1.83 1.81 1.92 1.66

7.90 0.05 0.58 33.65 2.78 1.88 1.88 1.88 1.90 1.89 1.78 1.80

16.89 16.70 0.76 2.86 1.30 0.96 0.96 0.96 0.99 0.97 1.64 0.65

13.40 2.20 0.72 3.75 1.70 1.58 1.58 1.58 1.62 1.60 1.72 1.38

3.09 0.52 1.00 502.43 1.00 0.00 0.00 0.00 0.00 0.00 0.10 0.31

Table 4. Comparison of modeling results with the target values for 20 random data.
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