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Trigger inducible tertiary lymphoid
structure formation using covalent organic
frameworks for cancer immunotherapy

Liang Zhang1,2,5, Boxin Zhang1,5, Meng-Jie Zhang1,5, Wenlang Li2, Hao Li 1,
Yantian Jiao2, Qi-Chao Yang1, Shuo Wang 1, Yuan-Tong Liu 1, An Song1,
Hai-Tao Feng 3, Jianwei Sun 2, Ryan T. K. Kwok 2, Jacky W. Y. Lam 2 ,
Ben Zhong Tang 2,4 & Zhi-Jun Sun 1

The discovery of tertiary lymphoid structures (TLS) within tumor tissues
provides a promising avenue to promote the efficacy of cancer immunother-
apy. Yet, the lack of effective strategies to induce TLS formation poses a
substantial obstacle. Thus, the exploration of potential inducers for TLS for-
mation is of great interest but remains challenging. Here, inspired by the
mechanism of artificially cultivated pearls, a covalent organic framework
(COF) is employed to induce TLS formation. Single-cell sequencing analysis
reveals that this is achieved by promotion of cytokine hypersecretion, which
facilitates the maturation, proliferation, andmigration of T and B cells, critical
for triggering TLS formation. Furthermore, the efficacy of COF-mediated
phototherapy in inducing TLS formation is validated in both the MC38 and
4MOSC1 female tumor models. Notably, a strong synergistic effect between
COF-mediated phototherapy and αCTLA-4 is observed, resulting in the effec-
tive eradication of both primary and distant tumors, while also inhibiting
tumor recurrence.

Immune checkpoint blockade (ICB) therapy has emerged as a pro-
mising and innovative therapeutic strategy for the treatment of cancer.
Despite its considerable potential, the clinical efficacy of ICB is often
impeded by a low response rate1–6. Recently, the identification of ter-
tiary lymphoid structures (TLS) within the tumor immune micro-
environment (TIME) has provided apowerful avenue for enhancing the
response rate of ICB therapy7–10. These ectopic lymphoidorgans,which
develop in non-lymphoid chronic inflammation tissues such as hot
tumors, have demonstrated the potential to augment the immune

response by facilitating lymphocyte infiltration and antigen
presentation11,12. Despite extensive research efforts dedicated to
exploring the role of chemokines, cytokines, antibodies, and antigen-
presenting cells in driving the formation of tumor-associated lym-
phoid structures, the number of effective nanomedicine-based TLS
formation inducers reported so far remains limited9,13–16. Nanomedi-
cines, such as metal-organic frameworks (MOFs) and covalent organic
frameworks (COFs), have garnered considerable attention in cancer
therapy owing to their excellent modifiability, targeting capability,
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functionality, and immune evasion properties17–23. Nonetheless, the
exploration of effective strategies harnessing MOFs or COFs to facil-
itate TLS formation remains largely unexplored. The formation of TLS
usually necessitates a sustained inflammatory environment, akin to the
prolonged period required for the formation of pearls following the
implantation of a bead nucleus in artificial cultivation. Inspired by the
mechanism of pearl cultivation, we hypothesize that COF-based
nanomedicine may function similarly to the bead nucleus, owing to
their outstanding performance in eliciting chronic inflammatory
microenvironment which may ensure the successful formation of TLS
and consequently promote the response rate of cancer immunother-
apy. Given that these TLS are not naturally occurring but necessitate
external intervention, we termed them as inducible TLS (iTLS).

TLS arises in the context of inflammatory conditions and is char-
acterized by the structured aggregation of leukocytes and consists of
an inner B cell zone interspersed with T cells7. Such structures bypass
the need for dendritic cells and other immune cells to transport anti-
gens to the lymph nodes to allow the direct binding between immune
cells and cognate antigens within the TIME11. Moreover, the over-
expression of inflammatory cytokines, including CXCL (10, 13, 19, 21),
IL22, and IL7, within TLS can serve as a stimulus for thematuration and
infiltration of immune cells, thereby potentiating the antitumor
immune response9,24. As crystalline organic porous materials, COFs
have demonstrated potential in cancer immunotherapy due to their
good light absorption andbiocompatibility25–37. However, the prospect
of TLS induction by COF materials remains unexplored, primarily due
to their constrained phototherapy performance, which inadequately
stimulates a vigorous and sustained inflammatory response to elicit
iTLS. In addition, traditional COF-basedphotosensitizers (PSs) are non-
emissive and suffer from limited therapeutic efficacy due to the
apoptosis resistance and aggregation-caused quenching (ACQ) effect
in aggregate state, which reduce their capacity of reactive oxygen
species (ROS) generation38–40. The utilization of aggregation-induced
emission luminogens (AIEgens) based phototheranostic agents pre-
sents a promising strategy to address the ACQ issue, which shows
enhanced ROS production upon aggregation41–43. Despite extensive
efforts to incorporate AIEgens into COF skeletons have been put, the
resulting COFs often show weak emission, due to the strong excited-
state energy dissipation of the imine linkage44–47.

In this study, a combination of electron-acceptor and π-bridge
engineering strategy was employed to construct a series of high
emissive AIE COF-based PSs, called TPDA-TDTA-COF, TPDA-BT-COF,
and TPDA-ViBT-COF, with excellent photodynamic and photothermal
therapy (PDT and PTT) performance. Among them, TPDA-ViBT-COF
exhibited superior light absorption, appropriate band energy, high
quantum yield, and long lifetime, making it a promising candidate for
phototherapy. In vivo, studies revealed that TPDA-ViBT-COF-mediated
phototherapy effectively ameliorated the immunosuppressive micro-
environment while simultaneously stimulating the host defense sys-
tem. This led to a vigorous and sustained inflammatory response,
whichwas favorable for facilitating the formation of iTLS and boosting
cancer immunotherapy (Fig. 1). Consequently, the high capability of
COF-mediated phototherapy in inducing TLS formation was success-
fully validated in both the MC38 and 4MOSC1 tumor models. Notably,
this therapeutic approach exhibited substantial efficacy in eliminating
both primary anddistant tumors,while alsodemonstrating an efficient
inhibition of tumor recurrence.

Single cell RNA-sequence (scRNA-seq) has emerged as a powerful
technique for investigating genetic and functional heterogeneity at the
cellular level, enabling valuable insights into the tumor micro-
environment and potential therapeutic strategies48–51. In our study, we
employed a combination of scRNA-seq and enzyme-linked immuno-
sorbent assay (ELISA) to comprehensively elucidate the mechanism
underlying the formation of iTLS triggered by AIE COF-mediated
phototherapy. The scRNA-seq analysis revealed a remarkable

expansion of TLS-associated immune cells, including B cells and CD4+

T cells, within neoplasms treated with TPDA-ViBT-COF. Additionally,
multiplex immunohistochemistry (mIHC) results demonstrated
extensive aggregates of leukocytes, characterized by an inner B cell
zone surrounded by dispersed CD4+ T cells, confirming the successful
formation of iTLS upon TPDA-ViBT-COF treatment. Moreover, the
ELISA results unveiled an over-secretion of CCL19, CCL21, CXCL10,
IFNγ, TNFα, and IFNβ cytokines, known to promote T-cell congrega-
tion within the tumormicroenvironment, as well as an overproduction
of cytokines IL22, IL17, and IL13, recognized for enhancing B cell
maturation, proliferation, and migration. Notably, the presence of
TPDA-ViBT-COF within the iTLS along with extensive areas of CXCL13
positivity, indicated the ability of TPDA-ViBT-COF to promote the
recruitment of systemic immune cells to the tumor, such as T and B
cells. Collectively, these results suggest that TPDA-ViBT-COF-mediated
phototherapy effectively induces iTLS formation by promoting the
over-secretion of cytokines, thereby facilitating the recruitment,
maturation, and proliferation of T and B cells.

In this work, we show that cytotoxic T-lymphocyte-associated
protein 4 antibody (αCTLA-4)blockade is amore effectivepartner than
programmed cell death protein 1 antibody (αPD-1) when combined
with COF-mediated phototherapy. The synergistic effect of TPDA-
ViBT-COF +αCTLA-4 effectively inhibits tumor recurrence and
enhances survival, establishing COF-based iTLS inducers as a promis-
ing strategy for advancing cancer immunotherapy.

Results
Preparation and characterization of AIE COFs
AIE COFs were prepared by condensation of an tetra-amine, bis(4-
aminophenyl)-[1,1′:2′,1″-terphenyl]-4,4″-diamine (1), with an tetra-alde-
hyde, ([1,1′-biphenyl]-4,4’-diylbis(azanetriyl))tetrabenzaldehyde (2),
4,4′,4″,4″‘-((benzo[c][1,2,5]-thiadiazole-4,7-diylbis(4,1-phenylene))
bis(azanetriyl)) tetra-benzaldehyde (3), or ((((1E,1’E)-benzo[c][1,2,5]-
thiadiazole-4,7-diylbis(ethene-2,1-diyl))bis(4,1-phenylene))bis-(azane-
triyl))tetra-benzaldehyde (4) (Fig. 2a and Supplementary Figs. 1–6).
Thesemonomers (M-TPDA,M-TDTA,M-BT, andM-ViBT) exhibited the
AIE characteristics: their emission in solvent/H2O mixture was pro-
gressively increased with the increasing of H2O fraction (Supplemen-
tary Fig. 7). To better identify the AIE COF structures, comprehensive
spectroscopic studieswere conducted. The structural characterization
was accomplished through the Pawley refinement against their
experimental small-angle X-ray scattering and powder X-ray diffrac-
tion (PXRD) data. Notably, the PXRD data originated from the eclipsed
packing models exhibited a good concurrence with the experimental
PXRD patterns of AIE COFs, as evidenced by the suitable calculated
(Rwp,Rp) values, revealing their eclipsedpacking structures (Fig. 2b, d,
and Supplementary Tables. 1–4). The Brunauer-Emmett-Teller surface
areas for these AIE COFs were identified as 1040 m2 g−1 for TPDA-
TDTA-COF, 1230m2 g−1 for TPDA-BT-COF, and 1610m2 g−1 for TPDA-
ViBT-COF, respectively (Fig. 2f and Supplementary Fig. 8). These AIE
COFs was further identified by solid-state NMR, FT-IR, and X-ray pho-
toelectron spectroscopy spectrum, which supporting the presence of
imine linkages (Fig. 2e, g and Supplementary Fig. 9).

Photophysical properties of AIE COFs
TheAIE PSs areunderscored as a promising remedy for theACQeffect,
attributed to their resilience to high solution concentration, pro-
nounced Stokes shift, and enhanced photostability in the aggregate
state52. Moreover, the acceptor engineering strategy has validated its
efficacy in augmenting the ROS generation ability of AIEgens by inte-
grating a potent electron-accepting motif to conjugated chromo-
phores to enable aggregation-induced intersystem crossing53,54. In this
study, we utilized this acceptor engineering approach by integrating
an electron-accepting functional group, (benzo[c][1,2,5]thiadiazole
(BT)), into an AIE COF (TPDA-TDTA-COF) to construct TPDA-BT-COF,
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with a markedly improved ROS generation ability. π-bridge engineer-
ing strategy has been recognized as an effective method to heighten
the PTT efficacy of AIEgens by incorporating molecular rotator motifs
into conjugated chromophores to trigger molecular motion and
increase the nonradioactive decay processes55. To further optimize the
PTT effect of these AIE COFs, we utilized this strategy by incorporating
a freely rotating vinyl group into TPDA-BT-COF to form another AIE
COF, TPDA-ViBT-COF (Fig. 3a). Optical spectroscopy studies revealed
that the BT-based COFs (TPDA-BT-COF and TPDA-ViBT-COF) exhibited
distinctly redder absorption and emission than TPDA-TDTA-COF,
unveiling the potency of the electron acceptor and π-bridge engi-
neering strategy in augmenting the photophysical properties of AIE
COFs (Fig. 3b–g). Among these AIE COFs, TPDA-ViBT-COF demon-
strated stronger distinctly redder absorption and emission (Fig. 3b, d,
and Supplementary Fig. 10), high quantum yield (Fig. 3f), long lifetime
(Fig. 3g), and a narrowed bandgap (Fig. 3c, h and Supplementary
data 1–3), both of which are critical for boosting the phototherapy

performance. Thus, TPDA-ViBT-COF has the potential to serve as a
promising candidate for phototherapy applications.

In vitro phototherapy efficacy of AIE COFs
Due to the good photophysical properties of TPDA-ViBT-COF, we
investigated its potential as an AIE PS for PDT and PTT in vitro (Fig. 4a).
2,7-Dichlorodihydrofluoresceindiacetate (DCFH)wasutilized to assess
the ROS production ability of TPDA-TDTA-COF, TPDA-BT-COF, and
TPDA-ViBT-COF56. An obvious change in the fluorescence intensity of
DCFHwas observed upon the additionof TPDA-BT-COF or TPDA-ViBT-
COF under 660nm laser irradiation. In contrast, TPDA-TDTA-COF,
without the BT unit, exhibited a moderate level of ROS generation
capability (Fig. 4b, c). These results highlight the remarkable efficacyof
the acceptor-engineering strategy employed by the BT unit in enhan-
cing the PDT performance of TPDA-BT-COF and TPDA-ViBT-COF. In
addition, these AIE COFs could generate heat upon laser irradiation.
Among them, TPDA-ViBT-COF with freely rotating vinyl groups
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Fig. 1 | Illustrationof the design of scRNA-seq aided immunotherapy facilitated
by AIE COF-induced TLS formation. The application of AIE COF-mediated pho-
totherapy leads to the induction of TLS formation by stimulating the excessive
secretion of key cytokines. This process subsequently promotes the maturation,
proliferation, and migration of T and B cells. To explore the underlying mechan-
isms, single-cell sequencing was utilized, and receptor-ligand interactions between

cells were analyzed using CellphoneDB, a tool for characterizing cell-cell commu-
nication networks from scRNA-seq data. Notably, the analysis indicated that PD−1
expression in T cells did not increase following AIE COF treatment. In contrast,
there of CD86 expression, a ligand for CTLA4 was markedly upregulated. Conse-
quently, combining αCTLA4 blockade with AIE COF treatment exhibits a higher
potential to effectively suppress the growth of both primary and distant tumors.
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showed better photothermal conversion ability due to its faster
molecular motion (Fig. 4d, e). The good PTT effect of TPDA-ViBT-COF
was further confirmed by the in vivo experimental results shown in
Fig. 4f. Subsequently, the cytotoxicity of the AIE COFs was assessed by
employing COF nanoparticles prepared through sonication treatment
(Fig. 4g). On the other side, mouse-derived colon cancer cell line

(MC38) was used to detect the phototherapy efficacy of TPDA-ViBT-
COF. As demonstrated in Supplementary Fig. 11, the MC38 cells
exhibited a clear red fluorescence signal after 12 h of co-culture, indi-
cating that these AIE COFs were readily internalized by the cells. Sub-
sequently, we further investigated the intracellular distribution of AIE
COFs. Through confocal microscopy, we found that AIE COFs co-
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localized with lysosomes and endoplasmic reticulum, rather than
mitochondria (Supplementary Figs. 12 and 32). The cell counting Kit-8
(CCK8) assay results displayed that in the absence of laser irradiation,
over 80% of MC38 cells remained viable after exposure to COF solu-
tions with varied concentrations, which indicated the good bio-
compatibility of these AIE COFs. (Fig. 4h). In contrast, less than 25% of
MC38 cells survived after being subjected to TPDA-ViBT-COF upon
laser irradiation. In comparison to MC38 cells, TPDA-ViBT-COF com-
bined with laser irradiation exhibited lower toxicity to L929 and HOK

cells (Fig. 4i and Supplementary Fig. 14). This reduced toxicity in non-
tumor cells can be attributed to their lower baseline levels of ROS and
more robust antioxidant defense systems,which enable them tobetter
manage oxidative stress induced by phototherapy. However, cancer
cells, like MC38, typically exhibit elevated ROS levels and compro-
mised antioxidant defenses, making them more susceptible to the
oxidative damage triggered by AIE-COF-mediated phototherapy. This
difference in cellular responses underpins the selective cytotoxicity
observed in cancer cells.
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The therapeutic effect of AIE COFs inMC38 tumor-bearingmice
After assessing the photo cytotoxicity of these AIE COFs in vitro, the
MC38-tumor-bearing mouse model widely employed in TLS-related
research was established to in vivo investigate their anti-tumor per-
formance (Fig. 5a)57. An effective inhibition ofMC38 tumor growthwas
achieved by treatment with AIE COFs upon laser irradiation, while
TPDA-ViBT-COF+laser treatment resulted in the near-complete eradi-
cation of tumors, demonstrating its outstanding therapeutic efficacy
(Fig. 5b, c). Similar results were observed in the immunohistochemical
staining images, where a substantial decrease in Ki-67 expression was
observed in TPDA-ViBT-COF+laser-treated tumor tissues (Supple-
mentary Fig. 15a, b). Also, an obvious increase in cleaved-caspase 3,
Calreticulin, high mobility group protein B1, adenosine triphosphate,
and expressionwasdetected (Supplementary Fig. 16a, c). These results
provide further support for the effective enhancement of immune
response mediated by TPDA-ViBT-COF. Furthermore, no noticeable
body weight loss or major organ damage was observed in mice after

being subjected to different treatments, demonstrating the good
biosafety of these AIE COFs (Fig. 5d and Supplementary Fig. 17).

To delve deeper into the influence of TPDA-ViBT-COF on the anti-
tumor immune response, we analyzed the changes in immune cells in
the tumor, tumor-draining lymph nodes (TDLN), and spleen (SP) on
the 15 days after treatment (Supplementary Figs. 18–20). Results dis-
played that the TPDA-ViBT-COF+laser treatment was effective in acti-
vating the dendritic cells (DCs) in TDLN, which was essential for
initiating the host immunity (Fig. 5l), and populating T cells in tumor,
TDLN, and SP (Supplementary Fig. 21), possibly due to the effect of
antigen presentation by the activated DC. Moreover, in the tumor, we
also observed an increase in CD3+ T and CD4+ effector memory T cells,
as well as a decrease in MDSCs within TPDA-ViBT-COF+laser treated
tumor tissues (Fig. 5e–g). Additionally, an obvious increase in CD4+

and CD8+ antitumor centralmemory T cells was observed in TDLN and
spleen (Fig. 5h, k), whereas the immunosuppressive myeloid-derived
suppressor cells (MDSCs) were markedly decreased (Supplementary
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Fig. 21). These results altogether suggested that the TPDA-ViBT-COF-
mediated phototherapy not only alleviated the immunosuppressive
microenvironment but also activated the host defense system for
effective immunotherapy, which may facilitate the development of
iTLS in tumors (Fig. 6a).

TPDA-ViBT-COF-meditated phototherapy for inducing iTLS
formation
To explore the potential of TPDA-ViBT-COF-mediated phototherapy in
inducing the iTLS formation, we conducted multiplex immunohis-
tochemistry to monitor the majority of iTLS-associated immune cells
in tumor tissues treated orwithout treatedwith TPDA-ViBT-COF+laser.
Intriguingly, we observed extensive leukocyte aggregates including an
inner B cell zone surrounded by dispersed CD4+T cells in TPDA-ViBT-
COF treated tumors, indicating the potential formation of iTLS in
tumor tissues (Fig. 6b, Supplementary Figs. 21 to 23 and Supplemen-
tary Fig. 34). To further confirmed the occurrence of iTLS formation in

TPDA-ViBT-COF+laser treated tumors, scRNA-seq analysis was
employed58,59. After quality control, a total of 17182 cells were segre-
gated into 9 distinct cell populations, including epithelial cells, stromal
cells, macrophages, plasma cells, NK cells, CD4+ T cells, B cells, Treg
cells, and CD8+ T cells, based on the graph-based clustering using
canonical marker genes’ average expression (Fig. 6c, d and Supple-
mentary Fig. 23 to 25).

Non-immune cell subsets such as epithelial and stromal cells are
primarily composed of tumor cells and tumor-related fibroblasts. In
this work, a sharp reduction in the proportion of epithelial (tumor) and
stromal cells and a notable increase in B cells and CD4+ T cells was
observed after treatmentwith TPDA-ViBT-COF (Fig. 6d, e). Thismaybe
attributed to the cytotoxic effect of TPDA-ViBT-COF-mediated pho-
totherapy reducing the proportion of tumor cells. Additionally, the
release of tumor antigens and inflammatory cytokines increases the
infiltration of immune effector cells. The reduction in the tumor and
stromal cell ratio, combined with the increase in immune cell
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Fig. 5 | Antitumor effects of TPDA-TDTA-COF, TPDA-BT-COF, and TPDA-ViBT-
COF in an MC38 tumor-bearing mice model. a The treatment protocol of AIE
COF-mediated antitumor effects. b The images and the weight of MC38 tumors on
day 15 and presented as box plots showing median with whiskers at minimum and
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PG(3 vs 6) = 0.0004. c Tumor volume of MC38 tumor-bearing mice, n = 6 indepen-
dent samples. PG(1 vs 6) = 0.0003, PG(2 vs 6) = 0.0004, PG(3 vs 6) = 0.0007. d Body
weights of MC38 tumor-bearing mice, n = 6 independent samples. e Quantification
of T cell (CD3+) gating on CD45+ cells in tumor, n = 6 independent samples.
PG(1 vs 6) = 0.0002, PG(2 vs 6) = 0.0004, PG(3 vs 6) = 0.0012. fQuantification of CD4+ TEM
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PG(1 vs 6) = 0.0002, PG(2 vs 6) = 0.0004. i Quantification the gating of CD8+ TCM
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the gating of CD4+ TCM (CD44+CD62L+) on CD3+ CD4+ in spleen, n = 5 independent
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independent samples. PG(1 vs 6) = 9.19E-05. Data are presented as mean ± SEM and
statistical significance was assessed using one-way ANOVA with post hoc Tukey test
was used when comparing more than two groups. Source data are provided as a
Source Data file.
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proportion, collectively led to a decrease in the proportion of non-
immune cells.

iTLS formation is driven by the excessive accumulation of pro-
inflammatory cytokines in tumor tissues, which regulate the
maturation, proliferation, and migration of B cells and T cells in the
DLN60,61. To elucidate the potential mechanism underlying TPDA-
ViBT-COF-mediated phototherapy in inducing the formation of iTLS,

we employed an ELISA kit to assess the secretion of pro-inflammatory
cytokines. By co-culturing primary DCs with TPDA-ViBT-COF-treated
MC38 tumor cells, we observed an obvious elevation in the levels of
Cd80 and Cd86 signals in the AIE COF treatment group, indicative of
DC maturation. Additionally, the concentration of CCL19 and CCL21
in the supernatants of DCs displayed a notable increase, suggesting
that TPDA-ViBT-COF can initiate iTLS formation by promoting the
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secretion of CCL19 and CCL21 (Supplementary Fig. 26). We also
investigated the effects of AIE COF-treated MC38 cells on macro-
phages. The results showed an increase in CD86 expression and a
decrease in CD206 expression in RAW264.7 cells, indicating that AIE
COF-treated MC38 cells can promote M1 macrophage polarization
(Supplementary Fig. 27). Moreover, TPDA-ViBT-COF-mediated pho-
totherapy effectively augmented the secretion of specific cytokines,
including CXCL10, TNFα, IFNγ, and IFNβ, within the tumor tissue.
This enhanced cytokine secretion favored the localization and
maturation of T lymphocytes within the tumor microenvironment
(Fig. 6f, g). Furthermore, another set of cytokines (IL22, IL7, and IL13)
that boost the maturation and proliferation of B cells was also
overexpressed upon post-treatment with TPDA-ViBT-COF+laser
(Fig. 6f, g). Taken together, these findings collectively unveil the
capacity of TPDA-ViBT-COF mediated phototherapy to effectively
induce the formation of iTLS through promoting cytokine

hypersecretion to facilitate the T and B cellmaturation, proliferation,
and migration.

TPDA-ViBT-COF-meditated phototherapy for inducing iTLS
formation in 4MOSC1-tumor-bearing mice
In order to further validate the capacity of TPDA-ViBT-COF in inducing
iTLS formation, we performed additional in vivo experiments utilizing
the 4NQO-induced murine oral squamous cells (4MOSC1) tumor-
bearingmousemodel. This specificmousemodel is widely recognized
for its notable immune cell infiltration, rendering it an optimal selec-
tion to explore the efficacy of TPDA-ViBT-COF in fostering iTLS
formation62–64. Following the establishment of tumor models, mice
bearing 4MOSC1 tumors were randomly assigned to six treatment
groups: PBS, Laser, TPTA-TDTA-COF, TPTA-TDTA-COF+laser, TPDA-
BT-COF+laser, and TPDA-ViBT-COF+laser (Fig. 7a). On day 24 post-
treatment, the mice were euthanized, and tumor samples were
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collected and weighed. Notably, the treatment with TPDA-ViBT-COF
resulted in a grave inhibition of tumor growth, leading to the elim-
ination of approximately 80% of tumors (Fig. 7b–c). Moreover, no
apparent weight loss was observed among the different treatment
groups, indicating the favorable biocompatibility of TPDA-ViBT-COF
(Fig. 7d). Subsequently, we performedmIHC to detect iTLS-associated
cells in 4MOSC1 tumor tissues treated with or without TPDA-ViBT-COF
+laser. Similar to the previous results in MC38 tumor tissue, we
observed areas of T cell and B cell aggregation, where scattered den-
dritic cells were also visible, further proving the formation of iTLS
(Fig. 7d). Additionally, we detected the expression of PNAD-positive
high endothelial venules cells and CXCL13 within the iTLS, suggesting
that TPDA-ViBT-COF facilitates the recruitment of immune cells to the
tumor site by promoting angiogenesis and secreting CXCL13, thus
contributing to iTLS formation (Fig. 7e and Supplementary Figs. 28 to
33). Furthermore, intense red fluorescence originating from TPDA-
ViBT-COF was observed specifically within regions corresponding to
iTLS, confirming the role of TPDA-ViBT-COF in eliciting iTLS formation
(Fig. 7f). Additionally, we used immunohistochemistry to calculate the
area of B cell aggregation in the tumor tissue and preliminarily esti-
mated the volume percentage of AIE COF-induced iTLS based on
tumor volume data. We found that in the MC38 tumor tissues treated
withAIECOF, thenumber of TLSwas approximately 1-2, accounting for
an average of 0.195% of the total tumor volume. In the 4MOSC1 tumor
tissues, the number of TLS was ~1–3, accounting for 0.574% of the total
tumor volume (Supplementary Fig. 33). Taken together, these results
provide robust evidence supporting the remarkable ability of TPDA-
ViBT-COF to induce iTLS. Given that iTLS formation has been shown to
enhance leukocyte recruitment to the tumor microenvironment and
improve the efficacy of immunotherapy, we propose that TPDA-ViBT-
COF-mediated iTLS formation may synergistically enhance the
immunotherapy effects9.

TPDA-ViBT-COF-mediated ICB
Immune checkpoint blockade therapy, which blocks PD-1 or CTLA-4,
has generated significant interest due to its ability to induce specific
anti-tumor immune responses. Although PD-1 is generally considered
the most effective ICB inhibitor for achieving desirable therapeutic
efficacy, the relative efficacy of different ICB inhibitors has not been
extensively studied. Herein, we try to utilize scRNA-seq to investigate
an appropriate immune checkpoint when combined with TPDA-ViBT-
COF-mediated phototherapy. The results indicated that CTLA-4
blockade may be a better partner than PD-1 blockade when com-
binedwith TPDA-ViBT-COF-mediated phototherapy. Specifically, the T
cells were re-clustered and 7 sub-clusters were identified, including
naive CD4+ and CD8+ T cells (TN), CD4

+ central memory T cells (TCM),
CD8+ effector exhausted and effector memory T cells (TEX and TEM),
regulatory T cells (TREG), and follicular T regulatory cells (TFR) (Fig. 8a).
The functional signatures of these T cell subsets were then annotated
using the expression of known signature genes (Fig. 8c). The CD8+ TEX

are recognized to exhibit elevated expression of Pdcd1, Lag3, and
Havcr2, which serve as markers for the efficacy of conventional αPD-1
immunotherapy. However, the fraction of CD8+ TEX sharply decreased
from 34.18% to 6.39% after TPDA-ViBT-COF+laser treatment. In con-
trast, the abundance of T cell subsets (CD4+ and CD8+ TN, CD8

+ TEM,
and CD4+ TCM) that exhibited lower expression of Pdcd1, Lag3, and
Havcr2 were drastically increased in tumors treated with TPDA-ViBT-
COF+laser. On the other hand, the M1 macrophages are known to
possess robust neoplastic cell phagocytic and antigen-presenting
capability, thus, they show effective activation of the immune system
and improved immunotherapy outcomes thanM2macrophages65,66. In
this study, the impact of TPDA-ViBT-COF on macrophage polarization
towards the M1 or M2 state was examined by categorizing the mac-
rophages into four subtypes (Atf2+Mφ, C1qc+Mφ, Isg15−Mφ, and
Ly6c2+Mφ) and evaluating their polarization scores across these

macrophage subpopulations (Fig. 8d, f). As displayed in Fig. 8f, a
notable tendency towards an M1-like transcriptional program was
observedwithin the Ly6c2+Mφ subtype,whereas theC1qc+Mφ subtype
exhibited a transcriptome indicative of a more M2-related phenotype.
Notably, the tumors subjected to TPDA-ViBT-COF treatment demon-
strated a 1.69-fold rise in theM1 phenotype of Ly6c2+Mφ cells (Fig. 8e),
suggesting that the TPDA-ViBT-COF-mediated phototherapy could
confer benefits in immune system activation and augment the effec-
tiveness of immunotherapy. To further investigate the cell chat that
specifically occurs in TPDA-ViBT-COF treated tumors, we performed
the CellphoneDB algorithm to calculate the ligand-receptor interac-
tions among themajor cell population (Fig. 8g). Among these immune
cell,macrophage and plasma cells exhibited increased ligand-receptor
paired with tumor cells in the condition of TPDA-ViBT-COF treatment,
implying these cell lineages may reprogram by TPDA-ViBT-COF trea-
ded tumor cells (Fig. 8i). As demonstrated in Fig. 8h, the Ctla4-Cd86
interaction pair was more prevalent in TPDA-ViBT-COF+laser treated
tumors than in the control group, suggesting that the Ctla4-Cd86 axis
may contribute to the immune evasion. Although the increased
expression of Ctla4 was not detected in Treg cells, obvious enhanced
expression of its associated ligand Cd86 was noted in both B cells and
Mφ cells (Fig. 8j). Furthermore, the mIHC analysis also confirmed the
increased expression of Cd86 in B cells and macrophages and sug-
gested that the overstimulation of the Ctla4-Cd86 axis was primarily
attributed to the upregulation of Cd86 (Fig. 8k and Supplementary
Fig. 35). As PD-1 blockade is also relevant in setting of myeloid cell PD-
L1 expression, we also assessed PD-L1 expression on the surface of
tumor cells following TPDA-ViBT-COF combined with laser treatment.
Flow cytometry analysis showed no obvious increase in PD-L1
expression on CD45− cells in tumor tissues treated with TPDA-ViBT-
COF+Laser compared to the control group. The PD-L1 immuno-
fluorescence staining experiment of tumor tissues also verified the
above conclusion (Supplementary Fig. 35). Collectively, these results
indicated that the inhibition of the interactionbetweenCtla4 andCd86
might confer better therapeutic benefits when used in combination
with TPDA-ViBT-COF.

Synergistic effect of TPDA-ViBT-COF+αCTLA4
Based on the impressive in vivo results and scRNA-seq analysis, we
hypothesized that the TPDA-ViBT-COF-mediated phototherapy in
combination with CTLA-4 blockade may maximize the treatment effi-
cacy. To validate this hypothesis, we established a dual-flank mice
model bearing MC38 tumors and investigated the synergistic effect of
TPDA-ViBT-COFwith αCTLA-4 (Fig. 9a). As a positive control group, we
also evaluated the synergistic effect of TPDA-ViBT-COF with αPD-1. As
shown in Fig. 9b, c, the combination of TPDA-ViBT-COF+laser with
αCTLA-4 exhibited the lowest tumor volume in both primary and dis-
tant tumors. This was further confirmed by the bioluminescence
imaging at different time points (Fig. 9e). Furthermore, the survival
time of mice in the TPDA-ViBT-COF+laser+αCTLA-4 group was effec-
tively prolonged, and allmice survived at day 60, in contrast almost all
mice in other groups reached the endpoints (Fig. 9d). To investigate
the immune memory effect of TPDA-ViBT-COF+laser combined with
αCTLA-4, we also established an MC38 rechallenged mice model
(Fig. 9f), where the mice treated with TPDA-ViBT-COF+laser+αCTLA-
4 showed no detectable tumor recurrence (Fig. 9g, h), whereas the
untreated mice suffered from grave tumor recurrence. These results
indicate that the TPDA-ViBT-COF+laser+αCTLA-4 represents a pro-
mising approach for establishing a durable and robust immune
memory protection system, effectively suppressing tumor growth and
preventing recurrence.

Discussion
Promoting the iTLS formationwithin tumor tissues has been identified
as a promising avenue for enhancing the efficacy of cancer
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treatment, statistical significancewas calculatedusing apermutation test, assessing
the significance of cell-cell communication by comparing observed mean expres-
sion with a null distribution generated by random permutations. i The variation of
ligand-receptor pair between immune cell subtypes and epithelial cells with or
without TPDA-ViBT-COF treatment. j A violin plot was utilized to depict the
expression levels of specific genes in B cells, Mφ cells, and Treg cells. The p-values
were computed using a two-tailed Student’s t-test. k Representative multiplexed
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either control or AIE COF, scale bar: 50 µm. Data were repeated 4 times indepen-
dently with similar results. scRNAseq data are available through the Gene Expres-
sion Omnibus with accession number GSE268619.
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immunotherapy7–9. These ectopic lymphoid organs present a unique
opportunity to augment immune responses by facilitating lymphocyte
infiltration and optimizing antigen presentation. Despite their poten-
tial, the current lack of effective methodologies to elicit the iTLS for-
mation represents a substantial hurdle, underscoring the pressing
need to develop innovative strategies in this field. Herein, a series of
AIE COFs were designed and investigated for promoting the formation
of iTLS and enhancing antitumor immunity. Detailed mechanistic

inquiry unveiled that the phototherapeutic efficacy of these AIE COFs
could be drastically amplified through a synergistic approach
employing electron-acceptor and π-bridge engineering strategies.
Previous studies have demonstrated that tumor cells release inflam-
matory cytokines such as TNFα, IFNγ, and CXCL10 under stress
conditions67–69. In this study, we found that AIE COF-mediated photo-
therapy effectively promotes the release of these inflammatory factors
by inducing thermal and chemical damage directly to the tumor cells.
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Fig. 9 | TPDA-ViBT-COF-mediated ICB. a Schematic illustration of the combina-
tion therapy of TPDA-ViBT-COF +αCTLA4. The tumor growth curves of primary (b)
and distant (c) and the percentage of survival (d) among MC38 mice following
various treatments, n = 5 independent samples. e Bioimages of MC38 mice fol-
lowing various treatments. f The treatment protocol of rechallenge experiments.
gThe growth curve of tumors in the control, TPDA-TDTA-COF+αCTLA4, TPDA-BT-
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Data in this study are presented as mean ± SEM and statistical significance was
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comparing more than two groups. Survival analysis was conducted using the log-
rank Mantel-Cox test. Source data are provided as a Source Dat a file.

Article https://doi.org/10.1038/s41467-024-55430-4

Nature Communications |           (2025) 16:44 12

www.nature.com/naturecommunications


These dying tumor cells can then act as an in situ vaccine, activating
DCs. Subsequently, mature DCs secrete cytokines such as CCL19 and
CCL21, to facilitate the recruitment of T cells andB cells into the tumor,
allowing the formation of T cell zones and B cell zones within the
TLS70,71. Furthermore, the inflammatory cytokines secreted by tumor
cells, including CXCL10, TNFα, IFNγ, and IFNβ, promote the localiza-
tion and maturation of T lymphocytes within the TME67. We also con-
firmed increased intratumoral T-cell infiltration using scRNA-seq and
flow cytometry analysis. Our scRNA-seq data validated that this
increase in T cell content was accompanied by elevated levels of T cell-
associated cytokines, such as IL22, IL7, and IL13, which are essential for
B cell maturation and proliferation72–74. In addition, the mIHC results
also unveiled that mature dendritic cells and dying tumor cells, along
with inflammatory cytokines, facilitate the recruitment and prolifera-
tion of B cells and T cells, ultimately forming B cell and T cell clusters
within the TLS.

Although various nanomedicines have been developed to sensi-
tize tumors to ICB therapy, few studies have identified the optimal
immune combination targets for specific nanomedicines. In this study,
we observed that the proportion of CD8 TEX cells expressing high
levels of PD-1, LAG3, andHAVCR2decreased in tumor tissues following
AIE COF treatment. Additionally, flow cytometry and immuno-
fluorescence analyses indicated that PD-L1 expression in tumor tissues
did not increase post-treatment with AIE COF. Our scRNA-seq results,
corroborated bymIHC findings, identifiedCTLA4-CD86 as the primary
immune inhibitory pathway in tumors treated with AIE COF. Notably,
in vivo, experiments demonstrated that combining AIE COF with
CTLA4 blockade yielded stronger antitumor effects and drastically
extended the survival of mice with bilateral tumors, compared to PD-1
blockade. This suggests that CTLA4 blockade may be more effective
than PD-1 blockade when used in conjunction with AIE COF.

However, this study has limitations. While scRNA-seq provides
valuable insights into the transcriptomic state at the single-cell level,
its limited reading depth might omit genes that reflect tumor cell
vulnerability, which could inform the improved design of AIE COF.
Moreover, although we confirmed that AIE COF-mediated photo-
therapy induces the formation of iTLS, it is crucial to elucidate the
dynamic changes in cellular composition within iTLS at different
maturation stages to fully understand their development and func-
tionality. Besides, the 660nm laser used in this study has limited
penetration depth. For superficial tumors, intratumoral injection is an
effective administration strategy, ensuring that the treatment is loca-
lized directly within the tumor, thereby maximizing efficacy while
minimizing systemic exposure and potential side effects. For deeper
tumors, we propose that intravenous injection of COF nanomedicines
with near-infrared-II window absorption, coupled with the sub-
cutaneous implantation of wearable laser devices, could enhance the
feasibility of translating this technology into clinical applications.
Additionally, our method showed limited efficacy in cold tumors,
where immune cells are not naturally present within the tumor
microenvironment, making TLS induction more challenging. This
limitation suggests that combining AIE COF therapy with other
immune-modulating strategies, such as Chimeric Antigen Receptor
T-cell immunotherapy, may be necessary to trigger TLS formation in
such contexts. This research represents a COF-based iTLS inducer to
potentiate cancer immunotherapy, highlighting the promising poten-
tial of COF materials in biomedical applications.

Methods
Ethical Statements
Ethical approval for this study was obtained from the Animal Ethics
Committee of the School and Hospital of Stomatology, Wuhan Uni-
versity (approval number: S07920080I). All animal procedures com-
pliedwith theRegulations for theAdministration of Affairs Concerning

Experimental Animals by the State Council of the People’s Republic of
China. Mice were maintained under specific pathogen-free (SPF) con-
ditions, with a 12-h light/dark cycle, at ~22 °C and 50% humidity.

Cell culture and animal model
The MC38 (CBP60825) cells, MC38-luc (CBP30169L) cells, human oral
keratinocyte (HOK) cells, mouse fibroblast cell line of L929 (CCL-1),
mousemononuclearmacrophage RAW264.7 (TIB-71) cells andprimary
DCs were cultured in high glucose DMEM medium (1% penicillin/
streptomycin and 10% FBS) under standard cell culture conditions at
5% CO2 and 37 °C. The MC38, MC38-Luc, L929, and RAW264.7 cells
were obtained from the American Type CultureCollection. The human
oral keratinocyte (HOK) cell line was gifted by Shanghai Ninth People’s
Hospital, Shanghai Jiao Tong University. The MC38-luc cells were
maintained similarly, with the addition of puromycin (1 µgmL−1) to the
medium. The murine squamous carcinoma cell line 4MOSC1 is gifted
from Prof. J. Silvio Gutkind of the University of California SanDiego via
a material transfer agreement (SD2017-202). The 4MOSC1 cells were
cultured in Keratinocyte serum-free medium (K-SFM, Gibco) culture
conditions at 5% CO2 and 37 °C. Female C57BL/6, aged 6–8 weeks and
weighing 18–20 g, were obtained from the Hubei Provincial Academy
of PreventiveMedicine. After the treatment, themicewere euthanized,
and the tumors were dissected for further analysis. All mice in this
study were euthanized under CO2 anesthesia if the volume of the
primary tumor reached amaximum allowable volume of 2000mm3 or
if the tumor burden compromised the animal welfare. The maximal
tumor size in this study was not exceeded.

Cell viability
After treating theMC38,HOK, L929, andRAW264.7 cells with AIE COFs
for 24 h, we replaced the medium and exposed the cells to 660nm
laser irradiation. The CCK8 was used to assess the cell viability post a
4-h incubation period.

Construction of TPDA-TDTA-COF, TPDA-BT-COF and TPDA-
ViBT-COF
We synthesized the AIECOFsby placingM-TPDA (26.5mg, 0.06mmol)
and an equal amount of either M-TDTA, M-BT, or M-ViBT, into a Pyrex
tube, and then mesitylene (1.5mL), dimethylacetamide (1.5mL)
and aqueous acetic acid (0.3mL, 6M) were added. After sealing
and heating the tube at 120 °C for 72 h, the COF sample was cen-
trifuged and washed with chloroform/acetone mixture solvent and
then dried at 100 °C for 12 h.

Cell viability
Inoculate 3 × 104 MC38, HOK, L929, and RAW264.7 cells into each well
of a 24-well plate. Once all cells have fully adhered to the plate, replace
the original medium with a complete culture medium containing
30 µgmL−1 TCN-PPDA-COF. Incubate for 24 h and then replace with
fresh culture medium. Subject cells to 660 nm laser (1.0Wcm−2, 5min)
irradiation. After a 4 h incubation period, assess the viability of cells
using the CCK8 kit.

Immunofluorescence
Inoculate 3 × 104 MC38 cells into each well of a 24-well plate. Once all
cells have fully adhered to the plate, replace theoriginalmediumwith a
complete culture medium containing AIE COFs (50 µgmL−1). Incubate
for 24 h and then replace with fresh culture medium. Subject MC38
cells to 660 nm laser (1.0W cm−2, 5min) irradiation, fixed, rinsed, and
permeabilized. Primary DCs co-cultured with MC38 cells likewise
underwent fixed, rinsed, and permeabilized. After overnight incuba-
tion with primary antibodies (anti-HMGB1, anti-CD80, anti-CD86 anti-
bodies, anti-LAMP1, anti-HSP60, and anti-GRP94 antibodies), the cells
were subjected to a 1-h incubation period with a secondary antibody
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conjugated toDyLight 488. The fluorescence intensitywas determined
via a confocal laser scanningmicroscopy after DAPI staining of the cell
nucleus.

In vivo antitumor effects and flow cytometry
The antitumor efficacy of AIE COFs was evaluated using the MC38-
tumor-bearing mouse animal model. To establish an MC38-tumor-
bearing mouse animal model, a total of 1 × 106 MC38 cells was inocu-
lated into the right blank ofC57BL/6mice. Following aneight-day post-
injection period, the mice were randomly distributed among six
groups with varying treatments (Control, 660 nm laser (1.0Wcm−2,
5min), TPDA-TDTA-COF, TPDA-TDTA-COF + 660 nm (1.0Wcm−2,
5min), TPDA-BT-COF + 660nm (1.0Wcm−2, 5min), and TPDA-ViBT-
COF + 660nm laser (1.0W cm−2, 5min)). AIECOFs in adoseof 5mg kg−1

were administered to each group (intratumoral injection), and body
weights and tumor volumes were monitored every three days. Upon
euthanasia, the tumorweights and tumor photographswere recorded.
Similarly, another group of MC38-tumor-bearing mouse animal mod-
els followed the above treatment strategy. After euthanasia, the lymph
nodes and spleen were transformed into single-cell suspensions,
stained with antibodies specific to the cells of interest, and analyzed
using FACS caliber flow cytometer (Beckman) and FlowJo software
(Tree Star).

Immunohistochemistry and multiplex immunohistochemistry
Immunohistochemistry was performed following standard protocols
(antigen was retrieved using microwave treatment in either EDTA or
citrate after a 100%, 95%, 90%, 80%, and 70% alcohol sequence. Goat
serum was employed to avoid any non-specific binding of antibodies).
All sections were scanned using the panoramic DESK digital pathology
scanner (3D HISTECH). The Opal kit (PerkinElmer) was used for mul-
tiplex immunohistochemistry following the manufacturer’s instruc-
tions. The relative expression of different immune biomarkers across
samples was analyzed using the Vectra Polaris system (PerkinElmer).

Cytokine detection
Fresh tumor tissue samples were collected frommice before and after
COF-mediated phototherapy treatment. The cytokine levels were
measured using Mouse TNFα and IFNγ ELISA Kit (Servicebio), Mouse
IL13, IL17, IL22, CXCL10, and IFN-β ELISA Kit (MULTI SCIENCES). For
cell supernatant, the cytokine levels were measured using mouse
CCL19 and CCL21 ELISA Kit (RUIXIN BIOTECH).

Abscopal effect
To evaluate the abscopal effect of TPDA-ViBT-COF, an MC38 tumor-
bearing dual-flank model was established using CTLA4 and PD-1 as
immune checkpoint inhibitors. The MC38 tumor-bearing dual-flank
model was established in C57BL/6 mice by injecting 5 × 105 and 1 × 106

MC38-Luc cells in the left and right flank, respectively. On day 8, the
mice were randomly distributed among six groups with varying
treatments (Control, αCTLA-4, αPD-1, TPDA-ViBT-COF+laser, TPDA-
ViBT-COF+laser+αPD-1, and TPDA-ViBT-COF+laser+αCTLA-4 groups).
On days 10, 13, and 16, αPD-1 or αCTLA-4was administered at a dose of
5mgkg−1 (intraperitoneally injected). Tumor size was evaluated every
2 days, and the mice were euthanized upon reaching the endpoints,
i.e., the tumor volume reached 2000mm3.

Statistical analysis
The data were presented as mean ± SEM. All statistical analyses were
conducted using GraphPad Prism software 7.0 (GraphPad Software)
and R software. Two-group comparisons were analyzed using a two-
tailed Student’s t-test, and one-way ANOVA with post hoc Tukey test
wasusedwhen comparingmore than twogroups.The log-rankMantel-
Cox test was used to evaluate the survival differences in different

groups. A significance level of P < 0.05 was considered statistically
significant for all types of analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The scRNA-seq data generated in this study have been deposited in the
NCBI Gene Expression Omnibus (GEO) database under accession
code GSE268619. The authors declare that all the data supporting the
findings of this manuscript are available within the manuscript and
Supplementary Information files. All data are available from the corre-
sponding author upon request. Processed feature barcodematrices for
all scRNAseq data are available through the Gene Expression Omnibus
with accession number GSE268619. Source data are provided with
this paper.

Code availability
No new software was developed during this study. The code used for
processing scRNA-seq data sets is available at https://github.com/
zbx2801/AIE-COF-induced-iTLS.
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