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Soil classification and analysis are essential for understanding soil properties and serve as a foundation 
for various engineering projects. Traditional methods of soil classification rely heavily on costly and 
time-consuming laboratory and in-situ tests. In this study, Support Vector Machine (SVM) models 
were trained for soil classification using 649 Cone Penetration Test (CPT) datasets, specifically utilizing 
cone tip resistance (qc) and sleeve friction (fs) as input variables. Pearson correlation and sensitivity 
analysis confirmed that these variables are highly correlated with the classification results. To enhance 
classification performance, 25 optimization algorithms were applied, and the models were validated 
against an independent dataset of 208 CPT records. The results revealed that 23 of the algorithms 
successfully improved the SVM classification accuracy. Among these, 18 algorithms achieved higher 
accuracy than the current engineering standard, the “Code for in-situ Measurement of Railway 
Engineering Geology.” Notably, the Thermal Exchange Optimization (TEO) algorithm resulted in 
the most significant improvement, increasing the accuracy of the original SVM model by 10% and 
exceeding the standard by 4.3%. Moreover, the models were thoroughly evaluated using Monte 
Carlo simulations, confusion matrices, ROC curves, and 10 key performance metrics. In conclusion, 
integrating evolutionary algorithms with SVM for soil classification offers a promising approach to 
enhancing the efficiency and accuracy of soil analysis in engineering applications.

Soil classification involves organizing soils into groups based on similar engineering properties, it has great 
influence on foundational engineering decisions. The diversity in soil components, structures, and properties 
necessitates this classification to assess engineering characteristics and suitability for construction purposes 
effectively. Techniques such as the Cone Penetration Test (CPT) and cone piezocone penetration test (CPTU) 
are favored in geotechnical surveys for their efficiency and minimal disturbance1,2.

Kaifeng, located in the central North China Plain, in the mid-eastern part of Henan Province, lies southeast of 
the Taihang Mountains and south of the middle and lower reaches of the Yellow River. The region is characterized 
by thick silt layers, where sampling silt presents significant challenges due to the high disturbance caused by 
conventional field sampling methods, leading to substantial discrepancies between laboratory test results and 
the actual in-situ condition. Furthermore, Kaifeng, known as the “Ancient Capital of Seven Dynasties,” is a 
city of great historical and cultural significance in China, with a history spanning over 2700 years3. The area is 
rich in archaeological relics, necessitating minimal disturbance to the soil layers during exploratory activities. 
Consequently, the in-situ CPT technology, which minimizes soil disturbance, finds extensive application in 
geological survey activities in the Kaifeng region.

Conventional in-situ CPT techniques determine soil types based on the positioning of cone tip resistance 
(qc) and sleeve friction (fs)values within classification charts. However, these charts are developed from long-
standing experience without standardized norms and often lack a solid scientific foundation. Machine learning 
(ML), with its capability to process vast amounts of data. In civil engineering, ML It has been increasingly 
applied in geotechnical engineering for predicting soil properties4,5, estimating rock strength6–9, forecasting 
pile foundation bearing capacity10, assessing liquefaction potential11, and evaluating construction costs12–14. 
Therefore, this paper aims to leverage ML to develop new reference criteria for soil layer classification using 
in-situ CPT technology.

1School of Civil Engineering and Architecture, Henan University, Kaifeng 475004, China. 2Xiang Yang HangTai 
Power Machinery Plant, Xiangyang 441002, China. 3Jiuzhou Engineering Design Co., Ltd, Zhengzhou 451162, 
China. email: xxc_geo@foxmail.com

OPEN

Scientific Reports |          (2025) 15:438 1| https://doi.org/10.1038/s41598-024-84632-5

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-84632-5&domain=pdf&date_stamp=2024-12-31


ML significantly reduces costs and time in geotechnical engineering on-site investigations. Researchers 
have utilized various ML models, including neural networks, Bayesian learning, and random forests, for 
soil classification. Kurup and Griffin15 distinguished between coarse-grained and fine-grained soils using a 
general regression neural network (GRNN), achieving an 86% success rate. Cai et al.16 extended GRNN with 
a momentum method for soil layer identification using CPTU data. Reale et al.17 predicted fine-grained soil 
content, along with liquid and plastic limits, using two neural networks based on CPT data. Das and Basudhar18 
demonstrated the superiority of Self-Organizing Maps (SOMs) and fuzzy clustering over traditional stratified 
clustering for soil classification. Georg et al.19 introduced a supervised ML method for setting soil type 
classification boundaries, showing significant improvements. Stefan and Franz20 found Random Forests to 
outperform SVM and Artificial Neural Networks in soil classification accuracy with data from Austria and the 
Netherlands. Cao et al.21 developed a Bayesian framework for probabilistic soil classification, offering precise 
predictions for soil layer number and thickness while addressing recognition uncertainty. Wang et al.22 proposed 
a hidden Markov random field (HMRF) model for soil classification with lower computational costs and faster 
convergence. Despite ML’s contributions to cost and time efficiency20, the regional specificity of training data 
presents significant challenges, emphasizing the necessity for localized training to achieve global applicability. 
After preliminary assessments using the classification learner of Matlab2023a, it has been observed that among 
common ML classification methods, SVM perform well with soil layer data from the Kaifeng area. However, there 
is substantial room for improvement. Consequently, it is proposed to enhance the classification performance by 
integrating optimization algorithms

Based on a comparison conducted using the training dataset through the ’Classification Learner’ app in 
Matlab R2023a, it was found that SVM demonstrated higher accuracy than other models. Therefore, this study 
employs SVM as the core model for soil classification in the Kaifeng region. To enhance classification accuracy, 
the performance improvements of 25 optimization algorithms were compared based on 12 key indicators. Data 
were collected from five test sites, with four sites used for model training and one for validation. Using these 
data, an SVM-based soil classification model was developed. The model aims to improve the objectivity of soil 
layer classification and deepen the understanding of subsurface structures, thereby supporting urban planning 
and conservation efforts. Furthermore, the insights gained from this study may be applicable to similar research 
in other regions.

Experimental setup and sampling sites
Experimental setup
The procedure was executed using an LT-20A static probing engineering vehicle, which employed a helical 
ground anchor for counterforce and featured an automatic balance adjustment device. The investigation 
utilized double-bridge static probing equipment, developed domestically in China. The equipment’s probe had 
a tip cross-sectional area of 15 cm2, while the side friction sleeve covered an area of 600 cm2. Data collection 
was conducted through an LMC-310 automatic data acquisition system, complemented by a data processing 
microcomputer system. The probe advanced at a rate of 2 cm/s, recording data at every 10 cm of penetration, 
thereby ensuring continuous measurements of qc and fs. The specifications of the probe is shown in Table 1.

Sampling sites
CPT experiments at five sites in the Kaifeng area were executed in this study, incorporating geological and 
geotechnical investigation reports along with laboratory soil test data. The CPT field tests are shown in Fig. 1. 
These sites are part of the Yellow River alluvial plain, characterized by a relatively flat topography. Data from the 
first four sites were utilized for training and testing the model, while data from site 5 were used to validate the 
model.

Dataset
Physical indicators of site soils
Frequent historical floods of the Yellow River have led to the formation of sediment layers along its banks. 
The investigation methods employed included drilling for samples, conducting geotechnical laboratory tests, 
CPT, and standard penetration tests. The groundwater level at the test site ranged from 0.8 to 10.1 meters, with 
the depth of the cone penetration tests extending from 10 to 35 meters. Drilling for samples and geotechnical 
laboratory tests were conducted near each CPT borehole to ascertain the groundwater level. By comparing and 
validating the data from CPT tests, drilling, and laboratory experiments, the relationship between CPT test data 
and soil types was explored. Based on the data from CPT tests, drilling, and laboratory experiments, the survey 
area, approximately 80 meters thick, predominantly contains four types of soils: silty clay, silt, fine sand, and 
medium sand, each exhibiting distinct physical and mechanical properties as outlined in Table 2. The study in 
this paper is based on the range of variation in physical indicators of this soil type. For soils exhibiting physical 
property indicators significantly beyond this range, validation against actual test data is recommended.

Probe types

Cone base Cone tip Friction sleeve

Cross-sectional area (cm2) Diameter (mm) Angle (°) Length (cm) Surface area (cm2 ) Effective area ratio

CPT probe 10 35.7 60 13.37 150 –

Table 1. The specifications of the probe.
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Test result
Figure  2 illustrates the typical CPT test hole profiles and soil layer distributions at the experimental sites. 
Sequentially, the diagrams depict drilling soil layers, qc, fs and Rf , The formula for Rf  is as follows:

 
Rf =

(
fs

qc

)
× 100% (1)

In Kaifeng area, the predominant soil layers consist of silty clay, silt, fine sand, and medium sand. The analysis 
of graphical data demonstrates significant fluctuations in qc, fs and Rf  with depth. Notably, fs is significantly 
greater than qc, yet their trends of variation are nearly identical. Silty clay layers are characterized by lower qc 
and higher Rf  values, in contrast to medium sand layers, which exhibit an inverse relationship with higher qc 
and lower Rf . Furthermore, the graphs highlight considerable variability in these parameters across mixed silty 
clay and medium sand layers.

Data analysis
Analysis of soil sampling data from four locations within the CPT detection depth range reveals four soil 
types: silty clay, silt, fine sand, and medium sand. The surface layers at these sites, predominantly composed 
of disturbed soil, exhibiting complex physical and mechanical properties that do not accurately represent the 
intrinsic characteristics of the underlying soil strata. Consequently, mixed layers containing various soil types fail 
to provide a precise representation of individual soil properties. To objectively evaluate the efficacy of different 
soil classification methods, CPT test data from surface and mixed layers were omitted from analysis.

In this research, eight representative CPT test holes from the sites were selected for analysis, examining 
the correlation between qc and fs with depth across various soil strata. Figure 3 illustrates distinct correlations 
between CPT test parameters and depth. At Site 1, qc exhibits a negative correlation with depth in the silt layer 
and a positive correlation in the medium sand layer, whereas fs correlates positively with depth in the silty clay 
layer. At Site 2, both qc and fs display a negative correlation with depth in the fine sand layer and a positive 
correlation in the silty clay layer. Site 3’s qc shows a positive correlation with depth in the medium sand layer, 
with fs negatively correlated in the silty clay layer. For Site 4, qc correlates positively with depth in the medium 
sand layers and negatively in the silt layer, while fs correlates positively with depth in the silty clay layer and 
negatively in the fine sand and medium sand layers.

Validation set data
To further validate the trained model’s applicability in the local area, data were gathered from Site 5. The physical 
and mechanical property indicators of various soil types at Site 5 correspond to those of the four previously 
mentioned experimental sites. Figure 4 illustrates the typical CPT test profile and soil layer distribution in the 
boreholes.

No. Soil type Water content (%) Density (g/cm3) Porosity Liquid limit (%) Plastic limit (%) Internal friction angle (°)

1 Silty clay 23.6–32.9 1.78–1.95 0.760–0.977 28.9–38.2 16.7–24.8 17–20

2 Silt 22.6–29.6 1.68–2.00 0.656–0.972 25.6–38.2 16.7–22.4 23–25

3 Fine sand 23.1–25.6 1.82–1.98 0.730–0.983 – – 24–28

4 Medium sand 21.3–24.2 1.81–2.00 0.721–0.984 – – 30–34

Table 2. The physical and mechanical property indicators of each soil type.

 

Figure 1. CPT field test image.
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Data pre-processing
The CPT generates a substantial volume of data, which may include anomalies not pertinent to the overall study’s 
scope.Thus, prior to analysis, it is imperative to filter out these anomalies to ensure data reliability3. Current 
methodologies for outlier detection encompass the Dixon, Chauvenet’s, t-test, Monte Carlo, Grubbs’, scatter plot, 
and the three standard deviations (3σ) methods.In this study, 133 test holes were drilled across five experimental 
sites, yielding extensive data. The 3σ method, applied in both positive and negative directions, was prioritized 
for preliminary data screening to expedite the process.

The 3σ method dictates the exclusion of data points when the absolute difference between a sample and the 
mean exceeds three times the standard deviation.

 |d| ≥ 3σf  (2)

where d = x − x̄, σf  is the standard deviation.

Following the 3σ method, the processed CPT test data were reassessed. Table  3 details the distribution of 
processed test holes and soil sample counts by type. Figure 5 illustrates the distribution of these data.

Pearson’s correlation coefficient
The correlation coefficient (CC) measures the strength of the linear relationship between independent and 
dependent variables. Several methods can be used to determine correlation, including linear or curvilinear 
correlation, the scatter diagram method, Pearson’s product-moment correlation coefficient, and Spearman’s 
rank correlation coefficient. The classification of relationships based on the range of correlation coefficients is 
presented in Table 423.

The Pearson correlation coefficients between the variables qc and fs in the two datasets are shown in Fig. 6. 
In both datasets, the correlation between qc and fs is notably high (close to 1), indicating a strong linear 
relationship between these two variables. Figure  7 presents the Pearson correlation coefficients between the 
input variables (qc and fs) and the model’s predicted classes. The correlation remains strong (approximately 
0.7137), suggesting that not only is there a strong relationship between the input variables themselves, but also a 
significant correlation between these inputs and the model’s outputs.

Sensitivity analysis
The cosine amplitude method is used to determine the sensitivity of the input parameters qc and fs. The 
following equation illustrates the cosine amplitude method24–27:

Figure 2. Typical CPT test borehole profile at test sites.
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Si =
∑N

k=1(xik · yk)√∑N

k=1(xik)2 ·
√∑N

k=1(yk)2
 (3)

where, Si represents sensitivity of the input variable xi;xik  represents value of the input variable xi at the k-th 
experiment;ykrepresents output value at the k-th experiment;N represents total number of experiments.

Figure 4. Typical CPT test borehole profile at validation site.

 

Figure 3. The curves depicting the variations of CPT test parameters with depth(The solid line and dashed line 
represent one CPT test hole each).
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Figure 8 illustrates the time steps on the x-axis, which are 100 evenly spaced points ranging from 0 to 2π, used 
to simulate the temporal variation of the input variables (qc and fs). The y-axis represents the predicted classes 
output by the SVM classifier. It can be observed that the predicted class changes at certain time steps when either 
qc or fs varies, indicating the model’s sensitivity to these input variables. The two subplots show similar patterns, 
reflecting the comparable impact of both input variables (qc and fs) on the model’s predictions. Since qc and fs 
both vary with the same amplitude and frequency, the similarity in their effects on the model results in similar 
patterns across the two plots.

Model
Previous studies have shown that the SVM with a linear kernel function, based on Kaifeng CPT data, 
outperformed other classifiers in soil layer classification but did not meet the accuracy standards required by 
engineering specifications. To address this issue, we considered using optimization algorithms. A comparative 
analysis of 25 commonly used algorithms was conducted to evaluate their respective optimization effects.

SVM
SVM, from a classification perspective, is a linear classifier designed to maximize the margin within the 
feature space. Its core principle involves identifying a hyperplane that maximizes the margin between two 
classes of sample data, thereby enhancing the model’s generalization capacity. Originally developed for binary 
classification, SVM uses a kernel function to map linearly inseparable samples from a low-dimensional space to a 
higher-dimensional one, converting linear inseparability into linear separability28. The aim is to find the optimal 

Correlation coefficient Relationship level

±0.81 – ±1.00 Very strong

±0.61 – ±0.80 Strong

±0.41 – ±0.60 Moderate

±0.21 – ±0.40 Weak

±0.00 – ±0.20 No relationship

Table 4. Relationship level.

 

Figure 5. Data distribution.

 

Site Number of CPT holes Silty clay Silt Fine sand Medium sand

1 27 49 79 52 22

2 26 26 77 74 36

3 20 20 20 0 20

4 28 49 48 24 53

5 32 46 65 53 44

Total 133 190 289 203 175

Table 3. The distribution of CPT test holes and the number of soil samples for each soil type.
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Figure 8. Sensitivity analysis.

 

Figure 7. Pearson correlation coefficient: input and output.

 

Figure 6. Pearson correlation coefficient:input.
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hyperplane that minimizes classification errors29,30. Samples within the maximized margin, known as “support 
vectors,” constitute the SVM model’s optimal solution.

Algorithm
The 25 selected algorithms are categorized into three main groups31. The first group consists of evolutionary 
algorithms, which are inspired by Darwin’s theory of natural selection, where the fittest individuals are selected 
and reproduced based on their fitness value. These algorithms include Genetic Algorithm (GA)32, Differential 
Evolution (DE)33, Genetic Programming (GP)34, and Biogeography-Based Optimizer (BBO)35. The second 
group involves physics-based algorithms, which leverage concepts such as gravity, electromagnetic force, and 
equilibrium to develop metaheuristic approaches. Examples from this category include Simulated Annealing 
(SA)36, Gravitational Search Algorithm (GSA)37, Optics-Inspired Optimization (OIO)38, Thermal Exchange 
Optimization (TEO)39, Atom Search Optimization (ASO)40, and Quantum-Based Avian Navigation Optimizer 
Algorithm (QANA)41. Lastly, the study explored swarm intelligence (SI) algorithms, which model the collective 
behavior of animals or insects working together and interacting with their environment. Algorithms in this 
group include Ant Colony Optimization (ACO)42, Particle Swarm Optimization (PSO)43, Artificial Bee 
Colony (ABC)44, Cuckoo Optimization Algorithm (COA)45, Krill Herd (KH)46, Bat Algorithm (BA)47, Firefly 
Optimization Algorithm (FFA)48, Grey Wolf Optimization (GWO)49, Crow Search Algorithm (CSA)50, Whale 
Optimization Algorithm (WOA)51, Sailfish Optimizer (SFO)52, Horse Herd Optimization Algorithm (HOA)53, 
Starling Murmuration Optimizer (SMO)54, Gorilla Troops Optimizer (GTO)55 and Mountain Gazelle Optimizer 
(MGO)56.Each of the aforementioned algorithms has its own advantages and is supported by well-established 
theoretical foundations. They have already been widely applied across various fields.

The optimization algorithm can be used to optimize the hyperparameters of the Support Vector Machine 
(SVM). SVM has several hyperparameters that need to be tuned, including the kernel function type (Kernel 
Function), kernel scale (Kernel Scale), penalty factor (Box Constraint), and the degree of the polynomial kernel 
(Polynomial Order).The initial parameters required by different algorithms vary, making manual tuning both 
time-consuming and difficult to standardize across algorithms. To address this, grid search-a hyperparameter 
optimization technique that systematically explores predefined parameter combinations using exhaustive 
search-was introduced before each algorithm57. By utilizing grid search to find the optimal parameter settings, 
the process across algorithms becomes more consistent, thereby improving the comparability of results.

Monte Carlo simulation
Monte Carlo simulation is a statistical method that employs random sampling to perform numerical computations, 
simulating system behavior to estimate its overall performance. It is particularly effective for solving high-
dimensional problems that cannot be addressed analytically. The advantages of Monte Carlo simulation include 
its broad applicability and flexibility, making it capable of handling complex, multidimensional problems. 
Additionally, the method easily accommodates various distributions and stochastic processes, offering high 
scalability58. Performing Monte Carlo simulations on the training dataset helps enhance the model’s robustness 
and generalization ability. When cross-validated with the validation set, it provides a more comprehensive and 
objective assessment of the model’s performance.

Evaluation indicators
The analysis of the ML model results includes the confusion matrix, receiver operating characteristic (ROC) 
curve, and ten key performance metrics: overall accuracy (OA), precision (P), recall (R), F1 score, Matthews 
correlation coefficient (MCC), average class accuracy (ACA), false omission rate (FOR), false discovery rate 
(FDR), false negative rate (FNR), and false positive rate (FPR).The six metrics—OA, P, R, F1 score, MCC, and 
ACA—are considered better when higher, while the four metrics—FOR, FDR, FNR, and FPR—are preferred to 
be lower11,59.

Considering that the focus of this study is multi-class classification and varying sample sizes, the average 
metrics for each model are calculated using weighted coefficients based on the proportions of samples from 
silty clay, silt, fine sand, and medium sand. For example, the calculation formulas for average precision (AP) and 
average recall (AR) are as follows:

 AP = P1 × W1 + P2 × W2 + P3 × W3 + P4 × W4  (4)

 AR = R1 × W1 + R2 × W2 + R3 × W3 + R4 × W4  (5)

where, P1, P2, P3, and P4 correspond to the precision for silty clay, silt, fine sand, and medium sand samples, 
respectively; R1, R2, R3, and R4 to the recall for each soil type; W1, W2, W3, and W4 to the sample proportions 
of each soil type, respectively.

Result
This section focuses on the model’s stability and the evaluation of the trained model’s performance on the 
validation dataset. The assessment covers various aspects, including key performance metrics, the confusion 
matrix, and the ROC curve, providing detailed insights into the model’s effectiveness and optimization.
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Monte Carlo simulation
This section presents three significant results obtained through Monte Carlo simulation, including the SVM 
model without algorithm optimization, the model optimized with OIO, and the model optimized with TEO.This 
section presents three significant results obtained from the Monte Carlo simulation are shown in Fig. 9: the SVM 
model without algorithm optimization, the model optimized with OIO, and the model optimized with TEO. The 
results show that the optimized models exhibit a tighter data distribution, improved classification stability, and 
higher accuracy within the concentrated distribution range compared to the unoptimized SVM model. Notably, 
the upper bound of accuracy for the optimized models follows the order: TEO> OIO > SVM.

Key performance metrics
To evaluate the effectiveness of the model, we compared it with the traditional soil classification standard, the 
’Code for in-situ measurement of railway engineering geology,’60 which utilizes qc and Rf  for classification, 
using data from the validation set (Site 5). Figure 10 illustrates the distribution of CPT test data according to the 
’code’ classification standard,with Table 5 detailing the classification accuracy.

Based on Fig. 10 and Table 5, it can be observed that the ’Code for in-situ measurement of railway engineering 
geology’ achieved an overall classification accuracy of 0.817 for this experimental dataset.Overall accuracy refers 
to the proportion of correctly classified data points relative to the total number of data points.The classification 
of silt and medium sand was accurate, but there were significant misclassifications for silty clay and fine sand. 
Figure 11 shows four key performance metrics for the original SVM model and the models optimized by various 
algorithms. Among the 25 algorithms, 23 improved the classification accuracy of SVM, with 18 achieving an 
accuracy higher than that specified by the ’Code,’ indicating potential value for practical application. Notably, the 
SVM model optimized by TEO achieved a classification accuracy of 0.86, which represents a 10% improvement 
over the original SVM model (0.76) and a 4.3% improvement over the ’Code’ (0.817). Furthermore, the model 
optimized using TEO achieved the highest values across six performance metrics: OA, P, R,F1 score, MCC, and 

Figure 10. The soil classification results based on ’code’ soil classification chart.

 

Figure 9. Accuracy distribution of the Monte Carlo simulation.
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ACA. Among these, OA, P, and MCC are the only metrics with the maximum values. Similarly, FOR, FDR, FNR, 
and FPR reached their minimum values, with FDR being the only metric showing the lowest value.

Interestingly, it is also noteworthy that while the OIO-optimized model outperforms the initial SVM model 
in terms of accuracy during the Monte Carlo simulation, it performs the worst across all 10 evaluation metrics 
and shows poor performance on a completely new validation dataset. This suggests that the applicability of the 
OIO model is limited. In contrast, the TEO-optimized model demonstrates significantly better adaptability, 
maintaining stable performance on the validation set.

Confusion matrix
Figure 12 only presents the confusion matrices for the unoptimized SVM model and the TEO-optimized model 
on the validation set. The changes observed with other optimization algorithms follow a similar pattern to those 
of TEO.These matrices illustrate model performance, with rows representing predicted values and columns 
representing actual values. Correct classifications are displayed in the diagonal elements, while misclassifications 
appear in the off-diagonal elements. In the matrices, ‘1’ represents silty clay, ‘2’ represents silt, ‘3’ represents fine 
sand, and ‘4’ represents medium sand.

Analysis of the confusion matrices in Fig. 12 reveals that the optimized model significantly improved the 
accuracy in identifying silty clay, with a marked reduction in misclassifications of silty clay as silt or fine sand. The 
accuracy in identifying silt also increased. Furthermore, the optimized model achieved nearly 100% accuracy 
in recognizing medium sand, which can be attributed to the distinct differences in qc and fs values between 
medium sand and other soil types, resulting in minimal overlap with other categories. However, both before 
and after optimization, the models tended to misclassify nearly half of the fine sand samples as silt, regardless of 
the kernel function used. The overlapping data points among silty clay, silt, and fine sand present a challenge for 
SVM models in achieving accurate classification.

Figure 11. Key performance metrics of the SVM after algorithm optimization.

 

Engineering classification of soils The soil classification zones in the diagram Accuracy

Silty clay Zone 3 0.717

Silt Zone 4 1.0

Fine sand Zone 5 0.528

Medium sand Zone 5 1.0

Overall(mean value) from Zone 3 to 5 0.817

Table 5. The distribution of CPT test holes and the number of soil samples for each soil type.
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ROC curve
The ROC curve was a critical statistical method, which evaluates the quality of classification and detection by 
plotting the false positive rate (FPR) against the true positive rate (TPR). Model performance is assessed by the 
AUC,measuring classification quality. The two most important formulas for it are as follows:

 
T P R = T P

T P + F N
 (6)

 
F P R = F P

F P + T N
 (7)

AUC, ranging from 0 to 1, reflects classification accuracy: values closer to 1 indicate better performance. 
Specifically, AUC values>0.5 suggest acceptable accuracy, with values between 0.5 and 0.7 indicating low 
accuracy and those from 0.7 to 0.9 denoting moderate accuracy. The model under consideration has an AUC of 
0.89, indicating moderate accuracy.

Based on the analysis of Fig. 13a,b, it is evident that the AUC of silty clay significantly increased after algorithm 
optimization, while silt showed a moderate increase, and fine sand experienced a slight decrease. Medium sand 

Figure 13. The ROC curve.

 

Figure 12. The confusion matrix of the validation set.
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consistently achieved high AUC, indicating 100% classification accuracy for medium sand. These patterns and 
characteristics are consistent with the confusion matrix results.

In conclusion, most algorithms contributed to improving the classification accuracy of SVM for soil types, 
outperforming the traditional engineering standard, ’Code for in-situ measurement of railway engineering 
geology.’ These models not only help reduce the classification workload and enhance efficiency but also provide 
superior results, making them a practical alternative to traditional classification methods and demonstrating 
their suitability for engineering applications.

Conclusions
This study utilized a SVM model based on CPT data, which was optimized using 25 different algorithms. The 
model was validated through Monte Carlo simulations and independent site data, followed by a comprehensive 
evaluation using confusion matrices, ROC curves, and ten key performance indicators. The results indicate that 
23 of the algorithms improved the classification performance of the SVM model, with 18 algorithms achieving 
classification accuracies exceeding the standards outlined in the “Specification for In-situ Testing of Railway 
Engineering Geology.” This achievement not only highlights the low-interference advantage of CPT technology 
but also introduces a novel soil classification method through machine learning, independent of traditional 
empirical knowledge. The SVM model trained with CPT data has been experimentally validated for effective soil 
classification in specific regions, offering new perspectives for the field.

Due to the minimal particle size variation in fine-grained soils, the associated resistance values are very 
similar, resulting in blurred boundaries between soil types. This presents a challenge in accurately distinguishing 
between clay and silt.

The optimized model has now surpassed industry standards in classification accuracy and is capable of 
effectively minimizing subjective errors caused by varying levels of expertise among operators. This advancement 
provides valuable objective support for engineering decisions and soil management practices under complex site 
conditions.

Furthermore, to assess the model’s generalizability in different geological contexts, future work should focus 
on collecting a broader range of high-quality test data and developing more precise models to enhance the 
automation and accuracy of soil classification. Adapting algorithms to different soil conditions will be a crucial 
area of future research.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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