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Predicting thermodynamic stability of
inorganic compounds using ensemble
machine learning based on electron
configuration

Hao Zou1,2, Haochen Zhao1,2, Mingming Lu1, Jiong Wang3, Zeyu Deng 4 &
Jianxin Wang 1,2,5

Machine learning offers a promising avenue for expediting the discovery of
new compounds by accurately predicting their thermodynamic stability. This
approach provides significant advantages in terms of time and resource effi-
ciency compared to traditional experimental and modeling methods. How-
ever, most existing models are constructed based on specific domain
knowledge, potentially introducing biases that impact their performance.
Here, we propose a machine learning framework rooted in electron config-
uration, further enhanced through stack generalization with two additional
models grounded in diverse domain knowledge. Experimental results validate
the efficacy of our model in accurately predicting the stability of compounds,
achieving an Area Under the Curve score of 0.988. Notably, our model
demonstrates exceptional efficiency in sample utilization, requiring only one-
seventh of the data used by existingmodels to achieve the same performance.
To underscore the versatility of our approach, we present three illustrative
examples showcasing its effectiveness in navigating unexplored composition
space. We present two case studies to demonstrate that our method can
facilitate the exploration of new two-dimensional wide bandgap semi-
conductors and double perovskite oxides. Validation results from first-
principles calculations indicate that our method demonstrates remarkable
accuracy in correctly identifying stable compounds.

Designing materials with specific properties has long posed a sig-
nificant challenge in the field of materials science1–3. A major hurdle
stems from the extensive compositional space of materials, wherein
the actual number of compounds that can be feasibly synthesized in a
laboratory setting only represents a minute fraction of the total space.
This predicament, often likened to finding a needle in a haystack,

necessitates effective strategies to constrict the exploration space4,5.
By meticulously evaluating the thermodynamic stability, it becomes
plausible to winnow out a substantial proportion of materials that are
arduous to synthesize or endure under certain conditions, thereby
notably amplifying the efficiency of materials development. The
thermodynamic stability of materials is typically represented by the
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decomposition energy (ΔHd)
6, which is defined as the total energy

differencebetween a given compound and competing compounds in a
specific chemical space. For detailed definitions of ΔHd , see Supple-
mentary Note 1. This metric is ascertained by constructing a convex
hull utilizing the formation energies of compounds and all pertinent
materials within the same phase diagram7.

However, the conventional approaches for determining com-
pound stability are characterized by inefficiency. Establishing a convex
hull typically requires experimental investigation or density functional
theory (DFT) calculations to determine the energy of compounds
within a given phase diagram. The computation of energy via these
methods consumes substantial computation resources, thereby
yielding low efficiency and limited efficacy in exploring new com-
pounds. Despite the high costs associated with DFT for predicting
compound stability, its widespread use has paved the way for the
development of extensive materials databases, such as Materials Pro-
ject (MP) and Open Quantum Materials Database (OQMD)8. These
databases enable researchers to leverage cutting-edge statistical
methodologies under thepurviewof artificial intelligenceandmachine
learning.

A growing number of researchers have utilized machine learning
to predict compound stability9–16. This trend has been primarily driven
by the emergence of extensive databases6,17–22, which provide a large
pool of samples for training machine learning models23–27, ensuring
their predictive ability. By leveraging these databases as training data,
machine learning approaches enable rapid and cost-effective predic-
tions of compound stability7,20,28–37. For example, Dipendra et al.
developed a deep learning model called ElemNet, which uses the ele-
mental composition of compounds to predict their formation
energy29. Despite these advancements, current machine learning
methods for predicting compound stability suffer from poor accuracy
and limited practical application. Onemajor issue is the significant bias
introduced by machine learning models that rely on a single hypoth-
esis. Training a model can be likened to a search for the ground truth
within the model’s parameter space, gradually approaching it through
optimization algorithms38. However, the lack of well-understood che-
mical mechanisms in materials39 often leads to models built on idea-
lized scenarios. Consequently, the ground truth may lie outside the
parameter space or even far from its boundaries, diminishing the
accuracy of predictions. For instance, ElemNet’s assumption that
material performance is solely determined by elemental composition
may introduce a large inductive bias29, reducing the model’s effec-
tiveness in predicting stability.

In this study, we propose an ensemble framework based on
stacked generalization (SG)40,41, which amalgamates models rooted in
distinct domains of knowledge. Our approach involves the integration
of three models into this ensemble framework to construct a super
learner42. The first twomodels are drawn fromexisting literature, while
the third, named Electron Configuration Convolutional Neural Net-
work (ECCNN), is a newly developed model designed to address the
limited understanding of electronic internal structure in current
models. The resulting super learner, designated Electron Configura-
tion models with Stacked Generalization (ECSG), effectively mitigates
the limitations of the individual models and harnesses a synergy that
diminishes inductive biases, ultimately enhancing the performance of
the integrated model. In our experiments, the proposed model yields
an AUC of 0.988 in predicting compound stability within the Joint
Automated Repository for Various Integrated Simulations (JARVIS)
database. Furthermore, we observed a considerable enhancement in
sample efficiency, as our model attained the equivalent accuracy with
only one-seventh of the data required by the existing model. Addi-
tionally, we applied our model to explore new two-dimensional wide
bandgap semiconductors and double perovskite oxides and unveiled
numerous novel perovskite structures. Subsequent validation using
DFT further underscored the high reliability of our model.

Results
Model development
The machine learning models discussed in this study are primarily
composition-based. Currently, two types of models are available for
predicting the properties of inorganic compounds: structure-based
models and composition-based models43,44. Structure-based models
containmore extensive information, including the proportions of each
element and the geometric arrangements of atoms. However, deter-
mining the precise structures of compounds can be challenging7,45. In
contrast, composition-based models do not encounter this issue, but
they are often perceived as inferior due to their lack of structure
information. Nonetheless, recent research has demonstrated that
composition-based models can accurately predict the properties of
materials, such as energy and bandgap45. More importantly, in the
discovery of novel materials, composition-based models can sig-
nificantly advance the efficiency of developing new materials, given
that the composition information can be known as a priori. While
databases like the Materials Project (MP) contain extensive structural
information, this data is often unavailable or difficult to obtain when
exploring new, uncharacterized materials. Structural information
typically requires complex experimental techniques such as X-ray
diffraction or electron microscopy, or computationally expensive
methods like Density Functional Theory (DFT). These approaches are
time-consuming, costly, and require significant expertise and specia-
lized equipment. In contrast, compositional information canbe readily
obtained by sampling the compositional space, making it more
accessible for high-throughput screening and the exploration of new
materials. Therefore, this study mainly considers models that utilize
chemical formula-based representations as input.

Composition-based models usually require specialized proces-
sing of composition information before it can be used as input for the
model. The data directly extracted from the chemical formula only
consists of the proportion of each element, providingminimal insight.
As a result, it is challenging to develop a high-performance model
based solely on this information. In addition, models that solely
incorporate element proportions, known as element-fraction models,
cannot be extended to account for new elements. If an element is not
included in the training database, themodel will not be able to predict
the effects of that element46. Consequently, before incorporating
composition information as input for the model, it is necessary to
create hand-crafted features based on specific domain knowledge.

Due to the limited understanding of the relationship between
material properties and composition, introducing theories or
assumptions about the property-composition relationship into
composition-based models can lead to significant biases. At the algo-
rithmic level, it is common to make assumptions that favor one solu-
tion over others. For example, convolutional neural networks (CNN)
assume that information exhibits spatial locality, enabling weight
sharing through sliding filters to reduce the parameter space47. Except
for biases in the model itself, prior knowledge is also introduced when
transforming the element proportions into model inputs. These
assumptions, however, have limited applicability and can result in
poor generalization performance.

For instance, Roost assumed that the unit cell within a crystal can
be viewed as a dense graph, with atoms represented as nodes con-
nected by edges. However, it is essential to acknowledge that not all
nodes in the unit cell have strong interactions with eachother48.
Therefore, incorporating such assumptions can lead to limitations in
model performance. By recognizing these constraints, we can better
understand the trade-offs involved in model design and strive to
develop more robust and generalizable models.

This study proposes a conceptual framework rooted in the SG
technique, which amalgamates models grounded in diverse knowl-
edge sources to complement each other and mitigate bias, conse-
quently ameliorating predictive performance. As depicted in Fig. 1a,
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the framework integrates three foundational models: Magpie30,
Roost48, and ECCNN. To ensure complementarity we have selected
domain knowledge from different scales: interatomic interactions,
atomic properties, and electron configurations (EC). Magpie empha-
sizes the importance of including statistical features derived from
various elemental properties, such as atomic number, atomic mass,
and atomic radius. The statistical features encompass mean, mean
absolute deviation, range,minimum,maximum, andmode. This broad
range of properties captures the diversity among materials, providing
sufficient information for accurately predicting their thermodynamic
properties. After obtaining the statistics of these atomic features,
Magpie was trained by using gradient-boosted regression trees
(XGBoost). Roost conceptualizes the chemical formula as a complete
graph of elements, employing graph neural networks to learn the
relationships and message-passing processes among atoms. By

incorporating an attention mechanism, Roost effectively captures the
interatomic interactions that play a critical role in determining the
thermodynamic stability ofmaterials. Moreover, existing models were
found to lack consideration of EC, which may be strongly correlated
with stability. The EC delineates the distribution of electrons within an
atom, encompassing energy levels and the electron count at each level.
This information is crucial for comprehending the chemical properties
and reaction dynamics of atoms. A further illustration of the com-
plementarity among the three models is described in Supplementary
Note 2. EC is conventionally utilized as an input for first-principles
calculations to construct the Schrödinger equation, facilitating the
determination of crucial properties such as the ground-state energy
and band structure of materials or molecular systems. Compared to
manually crafted features, EC stands as an intrinsic characteristic that
may introduce less inductive biases. To address this gap, we have
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Fig. 1 | The frameworks of Electron Configuration models with Stacked Gen-
eralization (ECSG) and Electron Configuration Convolutional Neural Network
(ECCNN). a ECSG yields predictions of thermodynamic stability by integrating
predictions from three complementary base-level models into a meta-level model.
The base-level models include: (i) ECCNN uses convolutional neural networks to
extract complex features related to the electron configuration; (ii) Magpie
emphasizes the importance of including statistical features derived from various
atom properties, such as atomic number, atomic mass, and atomic radius30; (iii)

Roost conceptualizes the chemical formula as a complete graph of elements,
employing graph neural networks to learn the relationships and message-passing
processes among atoms48. b The architecture of ECCNN. It begins with input fea-
tures arranged in a 3Dmatrix, followed by two convolutional layers. Then, a flatten
layer converts features extracted fromconvolutional layers into a 1D vector. Finally,
a multilayer perceptron (MLP) processes the flattened features through fully con-
nected layers to output the final predictions.
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developed and integratedour ownmodel, ECCNN, into the framework.
The architectureof ECCNN is depicted in Fig. 1b. The input of ECCNN is
a matrix with shape of 118 × 168 × 8, which is encoded by the EC of
materials. The details of how EC is encoded as input are described in
subsection Base-level models. The input then undergoes two con-
volutional operations, each with 64 filters of size 5 × 5. The second
convolution is followed by a batch normalization (BN) operation and
2 × 2 max pooling. The extracted features are flattened into a one-
dimensional vector, which is then fed into fully connected layers for
prediction. After training these foundational models, their outputs are
used to construct a meta-level model, which produces the final pre-
diction. We refer to this framework as ECSG.

Within a given dataset, X represents the composition of com-
pounds, while Xj denotes the features of the j-th base-level model
derived from various domain knowledge, Y means the label associated
with X . The objective is to estimate the stability of compounds EðY jX Þ.
The primary procedure of ECSG, as illustrated in Fig. 1 (a), can be
delineated as follows:

bθj = argminθj
Lj Y , Ψ j θj, Xj

� �� �
ð1Þ

bθM = argminθM
LM

[n
j = 1

Yj, M θM ,
[n
j = 1

Ψ j
bθj ,Xj

� � ! !
ð2Þ

ΨSL Xð Þ=M θ̂M ,
[n
j = 1

Ψ j θ̂j,Xj

� � !
ð3Þ

In Eqs. (1–3), Ψj represents the j th base-level model, while θj and Lj
denote the parameters and loss function associated with Ψj ,
respectively. M signifies the meta-level model, with θM and LM
corresponding to its parameters and loss function, respectively. The
variablen indicates thenumber of base-levelmodels. First, through the
dataset ðXj,Y Þ, we obtain the optimal parameters θ̂j for each base-level
modelΨj, as shown in Eq. (1). Once all the base-level models have been
trained, we can obtain θ̂M , the optimal parameters of the meta-level
modelM, using the data X 1, X2,X3, . . . ,Xn;Y 1, Y 2,Y 3, . . . ,Yn

� �
. Here,

Yj denotes the output of the trained Ψ j for j = 1, 2, . . . ,n. Finally, the
super learner’s predictions for compounds X , denoted as ΨSL Xð Þ, can
be derived from M. The description above outlines a general process,
which becomes more complicated in practical application. To avoid
overfitting, K-fold data splitting is performed. More details can be
found in the Methods section.

Performance benchmarking against existing models
In this section, we performed a comprehensive comparison between
our proposed method and several state-of-the-art baselines, including
element-fraction models and models with hand-crafted features, to
validate the effectiveness of our proposedECSG. Among thesemodels,
the non-deep learning models Magpie30 and Meredig31 were trained
using XGBoost49. The features used by Magpie, Random Forest (RF),
and AdaBoost came from the Materials Agnostic Platform for Infor-
matics and Exploration (MAGPIE)30. ElemNet29 is the element-fraction
model, while Meredig and Magpie are based on physical attributes.
ATCNN treats a compound as a 10 × 10 pixels image, called AtomTable
(AT). Each pixel within the AT corresponds to an element, with its
intensity representing the proportion of that particular element within
the compound. Roost treats compounds as complete graphs and
trains them using graph networks. This comparison allows for the
evaluation of the ECSG framework’s effectiveness relative to existing
models, providing a comprehensive understanding of its performance
in predictive tasks.

All models were trained using data sourced from the MP dataset,
as detailed in the Methods section. We include several metrics, Area

Under the receiver operating characteristic Curve (AUC), accuracy
(ACC), Precision, Recall, F1-score (F1), negative predictive values (NPV),
and Area Under the Precision-Recall curve (AUPR), to provide a more
comprehensive evaluation. As shown in Fig. 2a, in all metrics, ECSG
outperformsothermodels in ACC, precision, F1-score, AUC, andAUPR.
ECSG performs second best in NPV and Recall, achieving an AUC value
of 0.886, while CrabNet performs best in NPV and Recall. The exact
values of these metrics are provided in Supplementary Table 1.
Although CrabNet improves Recall and NPV by increasing positive
predictions, this strategy largely sacrifices precision, resulting in too
many false positives. In most cases, the goal is to identify thermo-
dynamically stable materials, and more attention should be paid to
samples that are predicted to be positive. Excessive false positive
samples can lead to wasted time and resources. Moreover, from the
AUC curve in Fig. 2b and the zoomed curve in Fig. 2c, we can see that
even when the false positive rate (FPR) approaches 1, ECSG’s perfor-
mance remains robust, which highlights its consistent reliability across
different thresholds. The confusionmatrix (Supplementary Fig. 2) also
shows the advantage of our model in predicting stable materials. The
number of false positive samples of RF (787) is 15.6%more than that of
ECSG (681).

Notably, many materials can exist in a thermodynamically meta-
stable state for a prolonged period. Considering this, along with the
potential uncertainties/errors associated with DFT6, we slightly relax
the threshold restriction when classifying materials stability. Conse-
quently, we utilize thresholds of 25meV/atom and 40meV/atom to
assign stability labels in the data set. Subsequently, we retrain the ECSG
model and other models. The performances of these models are
shown in Supplementary Tables 2 and 3. It is worth noting that even
with the relaxation of the threshold, ECSG continues to outperform
other models. Moreover, as the threshold increases, the performance
of almost all models improves, as it becomes more challenging to
distinguish material stability near the threshold of 0.

To further demonstrate the robustness of ECSG, we explored its
performance on a regression task for predictingΔHd . ECSG can also be
adapted for regression tasks with minor modifications to output lay-
ers. In this case, we trained a regression model using ECSG to predict
ΔHd , by removing the Sigmoid functions from the last layers of the
base-level models. The performance of the ECSG regressor can be
found in Supplementary Table 4, where the mean absolute error of
ΔHd in the test set is 0.064 eV/atom, surpassing other models in
accuracy.

In addition to theMPdatabase, we further trained the ECSGmodel
and other existing models on the OQMD20 and JARVIS50 databases to
conduct amoredetailed comparisonof their performance, as shown in
Supplementary Tables 5 and 6. Notably, ECSG exhibits significant
advantages in performance, particularly evident in the JARVIS dataset
where it surpasses other comparisonmodels in the key indicators such
as ACC, F1, AUC, and AUPR, demonstrating its excellent prediction
ability. ECSG achieves a remarkable AUC score of 0.988.

However, on the OQMD dataset, while ECSG continues to lead in
terms of ACC and AUC, it falls short in the F1 score. This discrepancy
may arise from a serious imbalance in the distribution of positive and
negative samples in the OQMD dataset. With positive samples
accounting for only 11.3% of the dataset, the model may be biased
towards predicting samples as negative, leading to a decline in the
F1 score. In such a scenario, the F1 score might not accurately reflect
the true performance of themodel, as it represents theharmonicmean
of precision and recall, both of which can be misleading in the pre-
sence of sample imbalance. In such cases, focusing on AUPR values is
more prudent, as it offers a comprehensive evaluation of the model’s
performance across different classification thresholds, particularly
valuable in handling imbalanced datasets51. Compared to the AUPR
value of 0.775 for Roost, the AUPR value for ECSG increased to 0.840,
demonstrating the effectiveness of this method.
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The superior performance of our method can be attributed to
two factors. Firstly, we utilize SG to integrate models based on dif-
ferent domain knowledge. Individualmodels, relying solely on single-
domain knowledge, may be prone to inductive bias and may exhibit
limitations in performance. However, by employing SG to integrate
multiple models, we can combine different knowledge sources,
allowing them to complement each other and eliminating inductive
bias. Secondly, recognizing the absence of models incorporating
electronic configuration, we introduce EC information into our fra-
mework by ECCNN. Theoretically, if the electronic structure of
materials can be obtained, many of their micro properties can be
easily known. This can be typically accomplished through first-
principles calculations with EC as inputs. However, the advancement
in deep learning and artificial intelligence has expanded the potential
to leverage original information, like pixels in an image. ECCNN
transforms the spatial arrangement of atomic electrons within a
material into a three-dimensional matrix. This matrix encapsulates
original EC information, which is then processed by a CNN to extract
meaningful features about the internal space within each atom. This
comprehensive approach, steeped rich domain knowledge, addres-
ses the limitations of existing models and ultimately leads to
improved performance.

The significance of our findings lies in their potential to pro-
foundly impact various applications, particularly in the fields of
material discovery and design. Accurate predictions of compound
stability can provide valuable guidance to researchers, empowering
them to prioritize and select promising candidates for further
experimental investigation. This streamlineddiscovery processhas the

potential to simplify the development process significantly and hasten
the creation of new materials with desired properties.

Sample utilization efficiency
Thematerial research community faces the challenge of the scarcity of
labeled data, a consequence of the high cost associated with obtaining
labels through theoretical computation or experimental procedures.
This scarcity hinders the development of effective machine learning
models. In this context, sample efficiency becomes a critical metric for
evaluating model performance. It refers to the ability of a learning
algorithm to effectively utilize small training data while achieving
robust generalization performance. Unfortunately, current models
often struggle with low sample efficiency when confronted with lim-
ited data. This limitation underscores the urgent need for improved
approaches to address this issue within the context of material
research.

To assess the sample efficiency of our proposed method, we
conducted experiments using training sets of varying sizes. Initially, we
utilized 90% of the MP database (76,513 samples) as the training set,
with the remaining portion (8501 samples) set aside for evaluating the
model’s performance. We commenced by training each base-level
model individually using only 10% of the training dataset. Subse-
quently, we gradually increased the size of the training set by adding
10% of the original dataset at each step. Following model training, we
evaluated its performance on the test set.

As depicted in Fig. 3, we illustrate the sample efficiency of ECSG
and two other models Roost, and CrabNet, each demonstrating good
performance as indicated in the benchmarking test. Figure 3a reveals

Fig. 2 | Performance comparison of models across metrics and Area Under the
Curve (AUC) curves. a The hist plot of different models in terms of seven metrics.
Source data are provided as a Source Data file. b AUC curves, and (c) zoomed AUC
curves of differentmodels. The comparisonmodels include Electron Configuration

models with Stacked Generalization (ECSG), Roost48, CrabNet69, Random Forest
(RF), AdaBoost (Ada), Magpie30, Meredig31 ElemNet29, Atom Table Convolutional
Neural Networks (ATCNN)37 and Electron Configuration Convolutional Neural
Network (ECCNN).
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the enhancement in the AUC values for all models as the data size
increases, suggesting that larger datasets benefit all models. Particu-
larly notable is the superior performance of ECSG, especially with
smaller data sizes. For example, to achieve an AUC of 0.800 on theMP
database, ECSG requires only 10% of the training data, whereas the
comparison models, Roost and CrabNet, need 70% to reach the same
performance level. Similar conclusions can be drawn when comparing
performance using other metrics, as evidenced in Fig. 3b, c.

The improved sample efficiency of ECSG can be explained from
the perspective of minimizing empirical risk. Given a hypothesis h, the
expected risk is defined as the average loss of h across all possible
examples drawn from the true conditional probability distributions
p x, yð Þ, as formalized in Eq. (4).

RðhÞ=
Z

lðhðxÞ, yÞdpðx, yÞ=E½lðhðxÞ, yÞ� ð4Þ

where l is the loss function. However, since p x, yð Þ is typically
unknown, the empirical risk RI hð Þ is used as an approximation for
R hð Þ by averaging the loss function of all samples, as formalized in
Eq. (5).

RI hð Þ= 1
I

XI
i = 1

l h xi
� �

, yi
� � ð5Þ

In Fig. 4, three functions are depicted: (1) ĥ= argminR hð Þ repre-
sents the function that minimizes the expected risk； (2)
h* = argminhϵHR hð Þ denotes the function in hypothesis space H that
minimizes the expected risk; (3) hI = argminhϵHRI hð Þ means the func-
tion in H that minimizes the empirical risk. As shown in Fig. 4a, the
total error of hI can be decomposed into two components, as

Fig. 3 | Model performance under varying training data sizes. a Area Under the
Curve (AUC), (b) f1-score, (c) accuracy (ACC) values of Electron Configuration
models with Stacked Generalization (ECSG), Roost48, and CrabNet69 under varying

training data sizes from the Materials Project database. The x-axis represents the
percentage of the training set used to train themodels. Source data are provided as
a Source Data file.

c

start

b

start

a

start

Fig. 4 | Illustration of error decomposition and the approach of Electron
Configuration models with Stacked Generalization (ECSG) to limited data
problems. a Decomposition of error between expected risk and empirical risk.
(b, c) show how ECSG solves limited data problems by augmenting data and
restricting hypothesis space using domain knowledge. Triangles represent starting
points; the blue stars (ĥ) denote the optimal hypothesis; the green four-pointed

stars (h*) and the orange squares (hI ) represent the hypotheses that minimize
expected risk and empirical risk, respectively, within hypothesis spaceH. The area
enclosed by the dotted line (eH) and h~I correspond to the hypothesis space and the
resulting hypothesis after incorporating diverse knowledge sources. Eapp refers to
the error between the optimal hypothesis inH and the global hypothesis, while Eest

represents the error between hI or h~I and h* .
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formalized in Eq. (6):

E R hI

� �� R ĥ
� �h i

=E R h*
� �

� R ĥ
� �h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
EappðHÞ

+E R hI

� �� R h*
� �h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Eest ðH, IÞ

ð6Þ

where EappðHÞ quantifies the ability of the functions in H to approx-
imate the optimal hypothesis ĥ, while EestðH, IÞmeasures the extent to
which empirical risk can replace expected risk.

Equation (6) shows that the total error can be reduced by
decreasing both EestðH, IÞ and Eapp Hð Þ. On the one hand, enhancing the
data with domain knowledge can enable the model to be more fully
trained, thereby reducing EestðH, IÞ. As shown in Fig. 4a, b, with more
informative data, the hypothesis is optimized from hI to h~I , getting
closer to h*. On the other hand, with the combination of various prior
knowledge introduced by base-level models, the hypothesis space H
can be altered, enabling the learning algorithm to form a more accu-
rate approximation of the true unknown hypothesis, thereby reducing
Eapp Hð Þ. As depicted in Fig. 4c, The new hypothesis space eH constrains
the possible functions hI within a more reliable region, which can
shorten the optimization path and bring the optimal function in the
hypothesis space h* closer to the truth ĥ. In summary, by considering
both the data augmentation and the constraint on the hypothesis
space, it is possible to minimize the total error and improve the per-
formance of hI .

These results highlight the remarkable sample efficiency of our
method, a vital factor in the domain ofmaterial researchwhere labeled
data is frequently in short supply. By effectively leveraging a small
training dataset, our method notably outperforms existing models.
This holds substantial implications for material discovery and design,
empowering researchers to attain precise predictions evenwhen faced
with limited resources, ultimately reducing the dependence on
extensive labeled datasets. Consequently, our approach can stream-
line research efforts within the field, offering amore efficient and cost-
effective approach to exploration and development.

Ablation study
The proposed model integrates a diverse range of ideas from the
materials science and machine learning domains. To comprehend the
individual contributions of each base model of ECSG to its perfor-
mance improvement, we tested the performance of each base model
after removing it from ECSG.

From Table 1, it is evident that removing Roost has the greatest
impact on the results, with significant declines across variousmetrics—
for instance, ACC drops by 0.028 and AUC by 0.025. In comparison,
removing ECCNN and Magpie has a smaller effect. For example, after
removing Magpie, ACC only decreases by 0.002. Furthermore, when
comparing theperformanceof combining twomodels to using a single
model, removing Roost shows the largest impact. Specifically, when
Roost is removed from the combination of Magpie and Roost, ACC
drops sharply from 0.799 to 0.702. This suggests that Roost is the
most critical contributor to the model’s performance. One possible

explanation is that although Roost primarily learns atomic interactions
through a graph attention network (GAT), it also incorporates some
information about atomic properties when embedding nodes in
the graph.

SG is another essential module in ECSG. To study its contribution,
we examined the effects of different model combination methods.
Aside from SG, the most common methods are voting and averaging.
We compared the results of SG with these methods on the MP data-
base, as shown in Supplementary Table 7. SG performs the best, fol-
lowed by averaging, while voting lags behind. For example, compared
to averaging, SG improves ACC, F1, and AUC from 0.788, 0.719, and
0.865 to 0.807, 0.752, and 0.886, respectively. Voting achieves the
lowest scores, with ACC, F1, and AUC at 0.763, 0.693, and 0.747. Other
combination methods, such as averaging and weighted averaging,
apply preset rules todirectly combine theoutputs of basemodels,with
fixedweights assigned to each. If the error of a basemodel on a specific
sample is large, it can negatively impact the final prediction, especially
when theweight is set improperly. However, SG candynamically adjust
the contribution of each model and assign reasonable weights to dif-
ferent base models, avoiding large errors caused by improper weight
assignment.

Integration of structure information
To further enhance the prediction accuracy of the ECSG model, we
integrated structure-based models into the framework. Structural
information, when available, provides not only the elemental compo-
sition but also the spatial arrangement of atoms, offering a more
detailed understanding of a material’s properties.

To evaluate the impact of incorporating structural information,
we compared the performance of ECSG integrating the Crystal Graph
Convolutional Neural Network (CGCNN)36, which relies on structural
information, and composition-only ECSG. We added a base-level
model CGCNN into ECSG, referred to as ECSG+C, where the final
prediction is obtained by SG to combine the outputs of each base
model. We downloaded 125,451 structural datasets from the MP,
referred to as the MP-structure dataset, covering 89,204 unique
compositions, and split them into training and test sets in an 8:2 ratio
based on composition. In addition to the seven performance metrics
previously discussed, we conducted an additional experiment to
evaluate the models’ ability to distinguish polymorphs. The test set
contained 1471 samples with polymorphs, fromwhichwe paired stable
and unstable materials with identical compositions, creating a total of
1038 polymorph pairs. We then assessed the models’ ability to cor-
rectly differentiate these pairs, represented by ACC_M in Supplemen-
tary Table 8.

As shown in Supplementary Table 8, the structure-based models
outperformed the composition-only models across all performance
metrics. When structural information was integrated into ECSG, per-
formance improved further. Specifically, ECSG’s accuracy increased
from 0.826 to 0.844, and the AUC improved from 0.879 to 0.905.
Although incorporating structure information may be less

Table 1 | The performance of combining different base models in ECSG on the MP database

Model ACC Precision Recall F1 NPV AUC AUPR

M1 0.766 0.727 0.669 0.697 0.788 0.842 0.770

M2 0.741 0.712 0.603 0.652 0.758 0.820 0.740

M3 0.702 0.662 0.532 0.590 0.721 0.766 0.670

M1 +M2 0.805 0.776 0.725 0.750 0.823 0.883 0.828

M1 +M3 0.779 0.733 0.711 0.722 0.809 0.861 0.800

M2 +M3 0.799 0.761 0.729 0.745 0.822 0.873 0.813

M1 +M2 +M3 0.807 0.778 0.728 0.752 0.824 0.886 0.834

M1, M2, and M3 represent the base models ECCNN, Roost, and Magpie respectively.
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advantageous for exploring newmaterials, given that structural data is
not always readily available in this case, when structures are known,
using this information can significantly enhance themodel’s predictive
accuracy. Consequently, we now offer two distinct input options: one
for caseswhere structural data is unavailable andpredictions arebased
solely on compositional data, and another where both structural and
compositional information are utilized for higher accuracy. This flex-
ibility ensures that ECSG remains effective even when only composi-
tional data is accessible, while also offering improved accuracy when
structural information is available (Relevant frameworks are available
on our GitHub repository).

However, distinguishing polymorphs remains a challenge for all
models. CGCNN correctly identified only 19.3% of polymorph pairs.
Although the overall performance of ECSG improved after integrating
structural data, the ability to distinguish polymorphs decreased to
12.1%. The poor performance in predicting polymorphs likely arises
from the limited resolution to effectively distinguish between poly-
morphs of the same composition. Future research should focus on
addressing the challenge of distinguishing the energetics of
polymorphs.

Prediction in unknown space
Although we have quantified the accuracy of the ECSG on large-scale
databases such as MP, JARVIS, and OQMD, thereby demonstrating the
guidance of this method in predicting the thermodynamic stability of
compounds, it is worth noting that this approach is not directly
equivalent to the problem ofmaterials discovery. This limitation arises
because our method primarily evaluates a limited component space
that has been previously explored. The data used for training and
testing are randomly sampled from the same space. Thus, their data
distributions are very similar, which allows us to achieve good results.
However, the predictive capabilities of ECSG in space where the data
distribution is very different from known space, or even completely
unknown, have not been evaluated. To better simulate real-world
materials discovery scenarios, which typically involve exploration in
unknown spaces, we tested the ability of ECSG to predict the stability
of perovskite halides, lithium (Li)-containing oxides, and transition
metal oxides in unknown space.

Perovskite halides. First, we use perovskite halides as an example to
test the ability of ECSG to predict stability in unknown space. Per-
ovskite, a class of compounds with structural characteristics similar to

CaTiO3, typically follows the formula ABX3. Over time, perovskite has
garnered increasing attention among researchers52. However, a major
challenge in developing new perovskites is the extensive composi-
tional space, which demands a significant investment of time and
resources to explore. As depicted in Fig. 5a, b, the presence of diverse
atoms occupying the A-site and B-site contributes to the vast compo-
sitional space of perovskite.

In perovskite ABX3, whereX represents a halogen element (X = Cl,
Br, I), they are referred to as perovskite halides. Perovskite halides are
promising candidates for solar cells, which directly convert sunlight
into electrical energy, satisfying the demand for renewable energy53.
The power conversion efficiency (PCE) of perovskite halides solar cells
can achieve 23.3% for a small-area device (9 mm2)54.

We collected thermodynamic stability data for 496 perovskite
halides from the literature. Among these materials, there are 408
materials in the MP database. To ensure the perovskite halide data set
is independent of the training set, we remove these duplicate samples
fromMP.Allmodelswere retrainedusing the remainingdata inMP and
their performance was subsequently tested on the perovskite halide
dataset. The performance comparison of ECSG and other models is
shown in Supplementary Table 9. ECSGalsooutperformsothermodels
in predicting the stability of perovskite halides, with ACC and AUC
values reaching 0.790 and 0.758, respectively. However, we also
observed that the F1 score and the AUPR value of all models in the
unknown space are relatively low. This is caused by the unbalanced
samples in the test set, with the stablematerials beingmuch fewer than
the unstable materials. In this context, a lower AUPR value than AUC
does not indicate poor performance. For instance, a completely ran-
dommodel would have an AUC value of 0.5, but the AUPR valuewould
equal the proportion of positive samples, P. Therefore, for the baseline
model on thisdataset, AUC shouldbe0.500andAUPR shouldbe0.122.
Our model’s AUPR is 0.474, which is about 4 times that of the random
model, indicating a significant improvement. This demonstrates that
compared to the previous trial-and-error method, our approach can
greatly enhance the efficiency of developing new materials.

Li-containing oxides. In the field of electric vehicles (EVs) and con-
sumer Electronics, Li-ion batteries are the most used power supply
units. Li-containing oxides, usually as cathode, are essential compo-
nents in Li-ion batteries. During the charge and discharge cycles of Li-
ion batteries, cathodes facilitate the embedding and release of Li-ions
within their structures through redox reactions. To meet the growing

Fig. 5 | Illustration of single and double perovskites. a A single ABX3 perovskite structure. b A double perovskite with two cations in each of the A- and B-sublattices
(denoted as AA′BB′X6), respectively. Brown and grey represent A-sites, while purple and green represent B-sites.
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demand for enhanced battery performance, materials researchers
have been fervently seeking cathode materials with higher energy
density and stability. Thus, the discovery of new Li-containing oxides
as candidate cathode materials holds paramount importance.

To investigate whether our model is helpful in solving this pro-
blem, we verified the predictive ability of ECSG in the space of unex-
plored Li-containing oxides. Different from testing in perovskite
halides, we extract all materials containing Li and O fromMP, resulting
in 6168 samples, with 750 stable materials. Subsequently, we use the
remaining data in MP for training and employ the extracted Li-
containing oxides for testing. Notably, as there are no Li-containing
oxides in the training set, the model encounters a completely
unfamiliar space, thereby enhancing the credibility of its prediction
ability.

The test results are presented inSupplementary Table 10. It can be
found that ECSG exhibits superior performance across all four eva-
luation metrics. Consistent with prior findings on perovskite halides,
ECSG achieves high scores on ACC and AUC, while exhibiting com-
paratively lower scores on F1 and AUPR. As previously discussed, this
disparity arises from the imbalance of positive and negative samples in
the test set. It is important to note that the relatively low AUPR score
does not mean poor model performance. AUPR offers valuable
insights, particularly when dealing with data imbalance51. Hence, our
focus primarily centers on comparing the AUPR values of the models.
Notably, among these evaluation metrics, ECSG has the largest lead in
AUPR, with an improvement of 13.3% over the second-highestmodel in
AUPR. Conversely, its lead in AUC is more modest, standing at 5.73%.
This underscores the superior performance of our method, particu-
larly in the context of testing on imbalanced datasets.

Transition metal oxides. Another material under evaluation in the
unknown space is transition metal oxides. These materials exhibit
unique properties due to their partially occupied d-shells, even though
the s-shell ions of positive metals are fully filled with electrons. This
characteristic endows them with a variety of unique properties,
including reactive electronic transitions, high dielectric constant, wide
bandgap, and good electrical properties. In this study, we use Fe-
containing oxides and Mn-containing oxides as examples to test the
model’s ability to predict unknown transition metal oxides. Similar to
our approach with Li-containing oxides, we extracted 7137 transition
metal oxides from the MP database and used the remaining data of
MP to train the models. In the extracted datasets, the number of
positive samples is 1211, accounting for 17.0% of the total number of
samples.

The test results for the trainedmodels on the extracted transition
metal oxide dataset are presented in Supplementary Table 11. ECSG
continues to exhibit robust predictive capabilities for the stability of
transition metal oxides. Except for the F1 score, ECSG achieves the
highest score across other metrics. It is important to note the limita-
tions of the F1 score, as it only reflects the model’s ability to predict
positive samples and can vary with changes in the classification
threshold. Besides, models with high F1 scores do not necessarily
perform well in other metrics. For example, despite the superior
F1 score of Meredig, it lags behind in other metrics. Overall, ECSG’s
performance is the best among all models evaluated.

From these three examples, it can be observed that ECSG main-
tains high accuracy in predicting material stability, even in unknown
spaces, indicating its great potential for discovering new materials.
Moving forward, we will conduct a case study combining ECSG and
high-throughput technology to explore perovskite oxides in a
wider space.

Case studies
Two-dimensional Materials with wide bandgap. To further validate
the reliability of the proposed ECSG across multiple application

scenarios, we conducted a case study on 2D materials, focusing on
identifying wide bandgap semiconductor candidates. Since the dis-
covery of graphene in 2004, 2D materials have rapidly become the
forefront of materials science research due to their unique physical
and chemical properties. These materials with atomically thin single-
layer/few-layer atomic/molecular layer structures have shown broad
application prospects in many fields, especially in electronics and
optoelectronics55. 2D materials, with their excellent electrical con-
ductivity and photoelectric conversion properties and the two-
dimensional characteristics of their structures, make it possible to
manufacture lighter, thinner, and stronger electronic products such as
smartphones and computers. Although currently developed 2D
materials, such as graphene, have excellent performance in many
aspects, their small bandgap limits their development in the semi-
conductor field. Therefore, researchers have begun to turn their
attention to finding semiconductor alternatives to graphene. 2D
materials with wide bandgap (>2 eV) have attracted widespread
attention due to their potential toworkunder blue and ultraviolet light
and are believed to be expected to play a key role in the development
of new optoelectronic devices56.

However, designing materials that meet performance require-
ments but lack thermodynamic stability would hinder their practical
use, leading to wasted resources and time. Therefore, in addition to
meeting specific property requirements, thermodynamic stability is
also required to ensure their practical use. Many of the properties of
2D materials are due to their unique electronic structure. Building on
this understanding, we use the ECSG, which incorporates the infor-
mation of electron configuration, to find potential 2D semiconductor
candidate materials with wide bandgap to meet the needs of future
technological development.

First, we extracted the composition and stability information of
the materials from the entire C2DB database and trained a model to
predict the thermodynamic stability of 2Dmaterials57. Then, we tested
the trained model on the 2Dmatpedia database, which contains 4743
materials56. Supplementary Table 12 shows the test results of the ECSG
model and the comparisonmodel on thesematerials. The results show
that ECSG performs best or second best in all metrics. Although
CrabNet outperforms ECSG in recall and NPV, this is mainly due to its
tendency to predict more results as positive classes, resulting in a
higher false positive rate and thus reduced precision. Although RF also
shows suboptimal results in some metrics, its poor performance in
recall leads to the omission of many potential candidate materials.
According to Supplementary Table 12, ECSG can find 172 more true
positive samples than RF, showing its advantage in identifying positive
samples. In contrast, the prediction results of ECSG aremore balanced
and more suitable for practical applications.

After showing that ECSG can achieve good stability prediction
performance on the 2Dmatpedia database, we combined the large
language model (LLM) DARWIN-7B58, which has been proven to per-
formwell in predicting experimental bandgaps, to screen 2Dmaterials
with bandgaps greater than 2 eV. Next, we conducted a statistical
analysis of the samples predicted by ECSG to be positive and the
samples predicted by Darwin-7B to have a bandgap greater than 0 eV.
As shown in Fig. 6, a total of 393 2D materials with bandgap greater
than 2.0 eV were found. After verifying the stability using labels from
2dMatpedia, 313 of them were found to meet the stability require-
ments. The stability prediction accuracy of ECSG for these materials is
79.6%. It was demonstrated that ECSG can be used to screen out
materials that meet specific practical applications, avoiding the inef-
fective screening of experimentally unstable materials and sig-
nificantly improving the screening efficiency.

Double perovskite oxides
As mentioned above, the chemical formula of perovskite oxides is
represented as ABO3. Perovskite oxides are widely used in various
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fields such as electrode materials for supercapacitors, catalysis, and
solid oxide fuel cells59,60.

Initially, we compiled adatabaseof 1333double perovskite oxides.
This database served as the basis for training a super learner through
ECSG to predict the stability of perovskite oxides. Given the differing
environments of the cations in A-sites and B-sites, base-level models
that solely consider element concentration are insufficient to distin-
guish the sites in perovskite oxides. For example, the elemental com-
positions of XYO3 and YXO3 are identical, leading to similar stability
predictions in composition-only models. However, XYO3 and YXO3
are distinct compounds. To address this issue, we integrated a new
base-level model, proposed by Talapatra et al.61, into ECSG. This base-
level model utilizes atom-specific features and geometric character-
istics of the compound as inputs, effectively overcoming the limita-
tions of the above three models. The resulting ensemble model
demonstrated an accuracy, f1-score, and AUC score of 0.971, 0.966,
and 0.997, respectively.

We constructed the candidate space of perovskites by enumer-
ating all possible ABO3, A2BB′O6, AA′B2O6, and AA′BB′O6

compounds. In this process, we considered all metal elements up to Bi,
resulting in a total of 67 different types of cations that could occupy
A-sites or B-sites. This lead to P(67, 2) = 4422 possible ABO3 type per-
ovskites. For A2BB′O6, AA′B2O6, andAA′BB′O6 type perovskites, there
were 143,715, 143,715, and 4,598,880 potential combinations, respec-
tively. After filtering for charge neutrality, 4,524,608 unique com-
pounds remained, forming the candidate composition space.

Since theA andB sites can beoccupiedby different atoms, double
perovskite oxides have a huge composition space with more than 4
million possible composition combinations, and the composition
space that has been explored so far is only a small part. It is a challenge
to screen out candidate materials that meet the conditions in such a
huge composition space. In previous studies, we have shown that the
learner trained by ECSG can effectively predict samples in unexplored
areas. Subsequently, we utilized the trained super learner to predict
the stability of all perovskite oxides within this space. The prediction
results are depicted in Fig. 7. As illustrated in Fig. 7a, over 40% of
compounds have a low probability (less than 0.2) of being stable. By
setting the cutoff probability to 0.5, we identified 1,877,443 perovskite
oxides predicted to be stable, substantially narrowing down our
search range.

We randomly selected 35 compounds with stability probabilities
greater than 90% (63 in total) for first-principles calculations to vali-
date the accuracy of our machine-learning method. The detailed pro-
cedures of the first-principles calculations are expounded upon in the
Method section. The findings revealed that, out of the 35 compounds,
25 matched our predictions. Using the convex hull of OQMD and
JARVIS as references, 26 and 32 materials are stable among these 35
materials, respectively. The full list of these compounds is shown in
Supplementary Table 13. For comparison, we also applied the stability
prediction model Talapatra et al.61 After training the model on the
same dataset, we randomly selected 35 materials from the top 63
predicted scores in the candidate space for DFT validation. The ver-
ification results are shown in Supplementary Table 14.According to the
convex hull in MP, OQMD, and JARVIS, only 2, 1, and 6 of the double
perovskite oxides selected by the comparison model were stable,
respectively. It should be noted that the calculated stability results are
based on the currently available databases. As these databases con-
tinue to expand and evolve, the calculated stability outcomes may be
subject to change.

Through high-throughput experiments, we demonstrated the
superiority of our method in predicting the stability of perovskite
oxides. The advantages of this method are principally evident in

Fig. 7 | The prediction results of Electron Configuration models with Stacked
Generalization (ECSG) in the unknown candidate space. a Stability probability
distribution of perovskite oxides. The x-axis and the y-axis denote the stable
probability and the number of perovskite oxides with stable probability x.

b Periodic table highlighting the occurrence frequency of elements in the A-site or
B-site of predicted stable perovskite oxides. Gray elements represent no occur-
rences. Source data are provided as a Source Data file.

Fig. 6 | The bandgap histogram of samples that are predicted to be thermo-
dynamically stable.The legendsof stable or unstable indicate the true labels in the
2DMatpedia database. The bandgap values were predicted by LLM DARWIN-7B58.
Source data are provided as a Source Data file.
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several aspects. Firstly, leveraging machine learning techniques sig-
nificantly shortens the development cycle of materials, thereby saving
time and resources. Compared to traditional trial-and-error methods,
our approach allows for the rapid screening of perovskite compounds
withpotential stability froma vast chemical space, furnishing guidance
for subsequent experimental and optimization endeavors. Addition-
ally, our method exhibits strong generalization capabilities, encom-
passing all inorganic crystalline compounds in the MP database and
extending to the specific subset of perovskite compounds.

To further explore the regulationof perovskite oxides stability, we
analyzed the element informationof these stable compounds inA-sites
and B-sites. As shown in Fig. 7(b), stable compounds are most readily
formed when perovskite oxides encompass elements such as V, Cr,
Mn, Fe, Co, and Ni. Upon observing the position of these elements in
the periodic table, it becomes apparent that a majority of these ele-
ments belong to the third period’s transition elements.

Discussion
In recent years, machine learning and deep learning techniques have
been extensively utilized for predicting compound stability. However,
notable challenges remain. One major issue is the unsatisfactory clas-
sification accuracyof variousmodels in predicting compound stability.
Besides, previous models exhibit inefficiencies in sample efficiency,
limiting the practical application of machine learning technologies in
the discovery of stable compounds. To tackle these challenges, we
propose a machine learning framework called ECSG, which con-
solidates the strengths of different base-level models. The meta-level
model derived from ECSG is superior to each base-level model in all
classification metrics and sample efficiency, enabling swift and accu-
rate screening stable compounds. To demonstrate the effectiveness of
ECSG, we applied it to predict the stability of perovskite oxides. The
prediction model exhibited remarkable performance, achieving an
accuracy rate of over 97%. As a result, we identified numerous stable
perovskite oxides from a large pool of candidate compounds. By
counting the probability of occurrence of each element in these stable
compounds, we inferred that the oxides containing elements such as
V, Cr, Mn, etc. are highly probable to form stable perovskite oxides.

Our method addresses several critical challenges in applying
machine learning in materials science. One challenge is the scarcity of
domain knowledge and data, which can result in underperforming
machine learning models. Insufficient domain knowledge results in
overly simplistic assumptions or theories underpinning the machine
learning models, leading to a parameter space that deviates sig-
nificantly from the ground truth. Furthermore, data scarcity can cause
optimization algorithms, such as gradient descent, to converge pre-
maturely on areas far from the ground truth. Our proposed method
effectively tackles these issues by combining multiple models to
expand the parameter space, even beyond the collective space of
individualmodel spaces, thus increasing the likelihoodof approaching
the ground truth. By leveraging the mutual complementarity of dif-
ferent base-level models, we significantly reduce the error between
predictions and ground truth, even if some individual base-level
models are suboptimal.

Our method also offers advantages in integrating heterogeneous
data in materials science and engineering. Data in these fields often
exhibits heterogeneity, encompassing numerical table data, spectra
data, and image data. For example, titanium alloys involve composi-
tion data, XRD data, and microscopic images. Different types of data
have distinct advantages in machine learning. Different modules can
be added to ECSG to process different types of data. We illustrate how
to combine heterogeneous data in Supplementary Note 3. Traditional
methods often require converting heterogeneous data into a uniform
format before inputting it into a model, which can lead to loss of
information.However, ourmodel directly leverages thesediversedata,
obviating the need for additional processing and maximizing data

integrity preservation. By employing SG technology, we seamlessly
integrate these diverse data types and harness the unique advantages
of each, consequently enhancing prediction performance.

We plan to extend the ECSG model to predict several critical
material properties, including bandgap, Young’s modulus, and alloy
hardness. These properties are essential for a wide range of applica-
tions inmaterials science andengineering. For instance, the bandgap is
a key determinant of electrical conductivity, making it a crucial para-
meter in semiconductor and photovoltaic technologies.

However, we recognize several challenges in expanding ECSG’s
scope to these properties.While compositional data provides a robust
foundation, it primarily captures the ratios of elements within a
material, often neglecting the spatial arrangement of these elements.
This limitation becomes significant when predicting properties sensi-
tive to crystal symmetry and doping levels, such as the bandgap. In
these cases, compositional data alone may lack the physical and che-
mical context needed to capture subtle variations, hindering predic-
tion accuracy.

Alloys can form multiple phases, including solid solutions, inter-
metallic compounds, and amorphous phases. Each phase exhibits
distinct chemical compositions and interactions that determine the
alloy’s overall properties. A key challenge in applying ECSG to alloys
lies in the need to predefine possible phases and their corresponding
compositions to ensure accurate predictions.

Moving forward, we plan to address these challenges by devel-
oping structure-based models and phase composition prediction
models. We will integrate these models into ECSG to capture both
compositional and structural aspects, enhancing the framework’s
ability to predict complex properties accurately. This ensembling
approach will allow ECSG to bridge the gap between compositional
and spatial information, making it more effective across diverse
material systems.

Methods
Database
In this work, we compared the performance of various models in
predicting the stability of inorganic compounds on three large DFT-
computed datasets, MP, OQMD, and JARVIS. Before using these data-
bases, data preprocessing was required. After excluding noble gas and
radioactive elements, the MP database contained 85,014 compounds
with information on thermodynamic properties such as formation
energy. Compounds with a ΔHd below 0meV/atom were considered
stable and are labeled accordingly. The same data processing method
was applied to the OQMD and JARVIS databases, and datasets in
unknown spaces. The number of positive and negative samples in each
database is shown in Supplementary Table 15.

In our experiment,wedividedourdataset into a test setDte, which
comprised 10% of the total data, and a training set Dtr, which con-
stituted the remaining 90%. To assess sample efficiency, we incre-
mentally increased the training set size in 10% increments of Dtr. This
meant starting the experiment with only 10% of Dtr as the training set,
subsequently increasing it to 20%, and finally employing the entire Dtr

as the training set.
When exploring new perovskite oxides, we utilized a database

which includes 3469 single/double perovskite oxides along with their
corresponding stability information. The stability of these compounds
was calculated using DFT. To ensure compatibility with the data
available in the MP database, all parameters and pseudopotential fla-
vors were carefully chosen. Additionally, the partition of the data into
training and testing sets within this database was consistent with the
MP database.

Base-level models
ECSG contains three base-level models: Magpie, Roost and ECSG.
Magpie incorporates chemical information for each element into its
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material representations using features such as atomic electro-
negativity, atomic radii, and elemental group. This results in a total of
132 features, generated using theMatminer62, and themodel is trained
using XGBoost.

Roost utilizes Matscholar embeddings63 and employs a GAT with
threemessage-passing layers. The output network of Roost consists of
a deep neural network with 5 hidden layers, each featuring ReLU
activations. The hidden units in these layers are 1024, 512, 256, 128, and
64, respectively.

In contrast to conventional computational models for predicting
compound stability, ECCNN uniquely incorporates the electronic
configuration of elements into its compositional input. Given the
complexity of interactions between atoms and electrons within com-
pounds, determining the precise electron arrangements can be chal-
lenging. To address this, we simplify the electron arrangements of
compounds by representing them as the electron configurations of
individual atoms. The input matrix of ECCNN has three dimensions:
each row vector represents the electron configuration of an individual
element (referred to as EC vectors), the column index corresponds to
the type of element, and the third dimension stacks features based on
the number of atoms in the chemical formula. This stacked input
matrix is then fed into ECCNN for prediction and analysis.

The types of elements in a compound are represented by their
electron configurations, which form the core of the model input.
According tomodern quantummechanics, the outer-shell electrons of
an atom are arranged in orbitals around the atomic nucleus according
to their energy levels. The energy levels are arranged in shells, starting
with shell 1 for elements in the first period, followed by shells 2, 3, and
so on. Within each shell, electrons are further divided into subshells,
denoted by letters (s, p, d, and f) eachwith specificmaximum electron
capacities: 2 for s, 6 for p, 10 for d, and 14 for f. Therefore, a subshell
can be labeled using the notation nx, where n represents the shell
number, and x corresponds to the subshell index (e.g., 2 s for the s
subshell in shell 2). In this study, the elements up to the seventh period
are considered. The subshells are organized by increasing electron
energy level: 1 s, 2 s, 2p, 3 s, 3p, 4 s, 3 d, 4p, 5 s, 4 d, 5p, 6 s, 4 f, 5 d, 6p,
7 s, 5 f, and 6 d. By using this notation to represent electron config-
urations, the ECCNN model can effectively capture and utilize the
relevant electronic information necessary for predicting compound
stability.

The construction of the features for ECCNN is illustrated in Fig. 8.
The first step involves identifying the categories of elements in the
compound. As shown in Fig. 8a, elements oxygen and aluminum are
identified from the compound Al2O3. To represent the number of
electrons in each subshell, one-hot encoding is employed, as displayed
in Fig. 8b. Through one-hot encoding, the length of the feature vector

for each subshell corresponds to its maximum electron capacity. For
example, [00 1], [0 1 0], and [1 00] represent0, 1, and2 electrons in the
2 s subshell, respectively. Subsequently, these subshell feature vectors
are concatenated to form atom features with a length of 168. Elements
up to the 118th element in the periodic table are considered in this
construction process resulting in the type of elements in a compound
being represented by a two-dimensional matrix of 118 × 168.

Once the type of elements in a compound has been determined,
the number of atoms is represented by the third dimension of the
input. For inorganic compounds, the molecular weight is generally
small. In the training set, the maximum binary length of the atomic
count for a single element in the MP dataset is 8, So the length of the
third dimension is set to 8, resulting in a final input shape of
118 × 168 × 8. Here, 168 indicates the length of the EC vector, which
represents the electron configuration of different elements. 118
represents the number of possible element types in this study, while
the 8 channels represent the number of atoms of each element after
conversion to binary. For example, if A and B elements in a chemical
formula have 2 and 10 atoms respectively, their values in the 8 chan-
nels are 01000000 and 01010000. As demonstrated in Fig. 8c, if a
compound’s chemical formula contains n atoms of the i-th element,
the atom feature for that element is repeated n times in the third
dimension, with the remaining positions zero-padded. For example, in
the compound Al2O3, there are two Al atoms and three O atoms. In the
second dimension, all positions except those occupied by Al andO are
set to 0. The electron configuration feature of Al is then repeated
twice, and that ofO is repeated three times in the thirddimension. This
representation ensures that the model can effectively capture the
composition and structural information of the compound, enabling
ECCNN to accurately predict and analyze the stability of the
compounds.

Model training
We utilized a highly effective ensemble technique called SG to com-
bine the predictions from these individual models for forecasting the
thermodynamic stability of materials. This ensemble method involves
two types of models: base-level models and a meta-level model. To
create the ensemble model, multiple models (e.g., three models) were
trained separately using the available data. The output predictions
generated by these models were then collected and used as the
training set for a meta-level model. This meta-level model was trained
on these predictions to learn how to combine them effectively, ulti-
mately producing the ensemble model’s final predictions.

In this study, the base-level models include ECCNN, Roost, and
Magpie, denoted as f 1, f 2, and f 3. The meta-level model is a
multi-response linear regression (MLR), denoted as F . The outputs of the
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blue and orange cubes indicate elements Al and O, respectively, while the grey
cubes represent regions of the matrix that do not contain information about
electron configuration.
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base-level models, y1, y2, and y3, are assigned non-negative weights, ω1,
ω2, and ω3, by the meta-level model. The final weighted linear combi-
nation forms the ECSG output: F y1, y2, y3

� �
=ω1y1 +ω2y2 +ω3y3 + ε ,

where ω1, ω2, ω3, and ε are learnable parameters.
The training of the meta-level model requires a five-fold split of

the training set. As shown in Fig. 9, for each basemodel, we iteratively
train on four folds and predict on the remaining fold, repeat this five
times, and get the prediction of the model on the entire training set.
For example, model f 1 is trained on the four folds and predicts on the
remaining fold Vi, yielding ŷ ið Þ

1 . Repeating this process five times pro-
duces the set fŷð1Þ1 , ŷð2Þ1 , ŷð3Þ1 , ŷð4Þ1 , ŷð5Þ1 g, forming Z 1 after concatenation.
The same procedure is followed for f 2 and f 3 to generate Z2 and Z3.
Themeta-model is then trainedon {Z 1, Z2, Z3} and labels of training set
to obtain the parameters ω1, ω2, ω3, and ε.

When predicting new compounds T , we average the predictions
from f 1, f 2, and f 3 trained on each of the four folds in the previous
step. This yields outputs �y1, �y2, and �y3, from which we can obtain the
prediction of the stability of ω1�y1 +ω2�y2 +ω3�y3 + ε. This approach has
two advantages. Firstly, it increases the diversity of base-level models
by utilizing different samples in each cross-validation iteration. Sec-
ondly, the training data in the meta-level model remains distinct from
the foundational models, reducing the risk of overfitting.

First principles calculation
The total energy calculations in this study were performed using the
DFT framework as implemented in the Vienna ab initio simulation
package (VASP)64,65. The Generalized Gradient Approximation (GGA)
was used in the form of the parameterization proposed by Perdew,
Burke, and Ernzerhof (PBE). Brillouin zone integrations were per-
formed using a Monkhorst−Pack mesh with at least 5000 k points per
reciprocal atom. Full relaxations were realized by using theMethfessel
−Paxton smearing method of order one, followed by a final self-
consistent static calculation using the tetrahedron smearing method
with Blöchl corrections. A cutoff energy of 533 eV was set for all of the
calculations, and spin polarization was accounted for.

Both the cell volumes and ionic positions of the structures were
allowed to relax to their cubic ground states. The relaxations were

carried out in three stages: the first stage allowed changes in volume
(corresponding to the VASP ISIF = 7 tag), the second stage permitted
only the ions to relax (corresponding to theVASP ISIF = 2 tag), followed
by a final self-consistent static calculation. The relaxation process
continued until changes in total energy between relaxation steps were
within 1 × 10−6 eV and atomic forces on each atom were less than
0.01 eV/ Å.

As noted earlier, the MP database was employed to extract ΔHd

for all the compounds in the data sets. MP consists of DFT computa-
tions of experimentally observed compounds from the ICSD
database66, as well as hypothetical compounds thatmay ormay not be
experimentallyobservable. Toconstruct the convexhull for each set of
elements comprising A-A′-B-B′-O, the total energy data of all com-
pounds in the MP database was considered and extracted using the
database API67.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper in the Source Data file. All
described datasets are obtained from various public websites,
including MP (https://materialsproject.org), OQMD, and JARVIS. The
processed database files are available at https://github.com/Haozou-
csu/ECSG68. The results of DFT calculations are available at https://doi.
org/10.5281/zenodo.1420767868. Source data are provided with
this paper.

Code availability
All the machine learning models are implemented in Python and the
source code has been deposited at https://github.com/Haozou-csu/
ECSG and https://doi.org/10.5281/zenodo.1420253468.
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