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Abstract

The identification of cancer driver genes is crucial for understanding the complex processes involved in cancer development,
progression, and therapeutic strategies. Multi-omics data and biological networks provided by numerous databases enable the
application of graph deep learning techniques that incorporate network structures into the deep learning framework. However, most
existing methods do not account for the heterophily in the biological networks, which hinders the improvement of model performance.
Meanwhile, feature confusion often arises in models based on graph neural networks in such graphs. To address this, we propose
a Simplified Graph neural network for identifying Cancer Driver genes in heterophilic networks (SGCD), which comprises primarily
two components: a graph convolutional neural network with representation separation and a bimodal feature extractor. The results
demonstrate that SGCD not only performs exceptionally well but also exhibits robust discriminative capabilities compared to state-of-
the-art methods across all benchmark datasets. Moreover, subsequent interpretability experiments on both the model and biological
aspects provide compelling evidence supporting the reliability of SGCD. Additionally, the model can dissect gene modules, revealing
clearer connections between driver genes in cancers. We are confident that SGCD holds potential in the field of precision oncology and
may be applied to prognosticate biomarkers for a wide range of complex diseases.

Keywords: cancer driver genes; multi-omics data; graph neural networks; heterophilic networks; precision oncology

Introduction
In biomedical research, it is generally accepted that the onset
of cancer is associated with the accumulation of mutations in
driver genes. Therefore, accurately identifying cancer driver genes
is paramount for clarifying the biological processes that underlie
carcinogenesis and for the advancement of personalized oncology
pharmaceuticals [1, 2].

Over the past decade, many statistics methods have emerged
to detect cancer driver genes. The approaches based on frequency
such as MuSic [3], MutSigCV [4], and OncodriveCLUST [5] generally
operate under the assumption that mutations in driver genes tend
to recur more often across samples compared to those in non-
driver genes, thereby facilitating the recognition of highly mutated
genes as cancer driver genes. Nonetheless, these techniques often
struggle to identify driver genes with rare mutations.

As machine learning (ML) advances rapidly and large-scale
cancer genomics projects involving thousands of patients
continue to release multi-omics data [6–8], numerous ML-based
approaches have also shown noteworthy success in identifying
cancer driver genes. Essentially, these methods concentrate
on deriving low-dimensional representations of genes from a
variety of biological attributes to effectively distinguish driver
genes from non-driver genes. For instance, LOTUS [9] employs

a support vector machine to detect pan-cancer driver genes,
while TUSON [10] utilizes a LASSO regression for the same
purpose. Furthermore, there are various methods designed
to detect personalized cancer driver genes, such as sysSVM
[11] and IMCDriver [12]. Nonetheless, most existing ML-based
methods focus exclusively on multi-omics data to construct gene
embeddings for the identification of cancer driver genes, failing to
take into account the topological features provided by biological
networks.

Some methods focusing on networks are conducted under the
assumption that cancers are driven by alterations in numerous
genes that interact intimately within biological networks. There-
fore, these methods identify cancer driver genes by targeting
genes that take on critical topological positions in biological net-
works using network propagation strategies, such as pgWalk [13],
RWRH [14], and BiRW [15]. However, the lack of omics data has
weakened their performance.

With the emergence of graph neural networks (GNNs), the
fusion of multi-omics data and networks for identifying cancer
driver genes is becoming promising [16–19]. For example, EMOGI
[20] is a method built on graph convolutional neural network
(GCN) [21] that leverages multi-omics data as gene features along
with the protein–protein interaction (PPI) network to identify
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cancer driver genes. MTGCN [22] merges biological and structural
features to develop enhanced representations, utilizing a multi-
task framework designed to improve the tasks of node and link
prediction. SMG [23] performs a node reconstruction task to
obtain a pre-trained encoder, which is then used for downstream
tasks including gene identification and disease subnetwork
identification. Although the aforementioned methods have
yielded some success in cancer driver gene identification,
they all rely on the homophily assumption. Recently, many
researches have shown that most biological networks tend
to exhibit heterophily property [24, 25]. For instance, PPIs
encompass both physical interactions and functional associations
between various biomolecules, exhibiting a low homophily
ratio, as elaborated in Supplementary Materials, Section 2.
Additionally, the quantity of cancer driver genes is markedly
fewer than the total number of genes within the biomolecular
networks [26, 27].

A few methods have tried to enhance the accuracy of iden-
tifying cancer driver genes on heterophilic graphs. For exam-
ple, HGDC [27] is designed to tackle the heterophilic nature of
biological networks to identify cancer driver genes, integrating
graph diffusion technique with hierarchical attention mecha-
nisms. However, the graph diffusion convolution (GDC) employed
by HGDC necessitates the calculation and storage of diffusion
matrices such as the heat diffusion kernel or personalized PageR-
ank, which can be computationally burdensome for large-scale
graphs. Moreover, based on GCN, HGDC also encounters the issue
of feature confusion, a common challenge for traditional GNNs in
heterophilic graphs.

In this study, we propose an efficient approach named
SGCD (Simplified Graph neural network for identifying Cancer
Driver genes in heterophilic networks), which utilizes simpli-
fied GNNs for identifying cancer driver genes in heterophilic
networks. We innovatively introduce representation separation
(RS) to replace the traditional message-passing mechanism
of GCN, effectively mitigating the issue of feature confusion
in GNNs when dealing with these graphs. The experimental
findings consistently indicate that SGCD surpasses the state-
of-the-art approaches, highlighting its excellence. Furthermore,
subsequent model interpretability experiments and biologi-
cal interpretability experiments provide compelling evidence
for the powerful interpretability of SGCD. In addtion, SGCD
can dissect gene modules, enabling a comprehensive anal-
ysis of the association between gene modules and cancer
mechanisms.

Material and methods
Data collection and preprocessing
From the Cancer Genome Atlas (https://portal.gdc.cancer.gov/),
we collect oncogenomics (mutations and copy number varia-
tions), epigenomics (DNA methylation), and transcriptomics (gene
expression) data, comprising over 29 446 samples across 16 dis-
tinct malignancies.

For each gene, we calculate gene mutation rate, copy
number aberrations, differential DNA methylation rate, and
differential gene expression rate across the 16 cancer types (see
Supplementary Materials Section 3 for details). By integrating
the feature vectors from all cancer types, we construct a 64-
dimensional feature vector for every gene. Subsequently, min-
max normalization is conducted on the features of each gene.

The lists of known driver genes are sourced from the Network
of Cancer Genes (NCG) v6.0 [28], COSMIC Cancer Gene Census

(CGC v91) [26], and DigSEE [29], which serve as positive samples.
In contrast, negative samples are obtained by excluding gene lists
from NCG, COSMIC, OMIM [30], as well as pathways from KEGG
[31].

The PPI data is from CPDB [32], MULTINET [33], PCNet [34],
STRINGdb [35], and IRefIndex [36]. Particularly, we exclusively
consider interactions with high confidence. For the CPDB network,
only interactions with a confidence score above 0.5 are included,
while for STRINGdb, a threshold of 0.85 is applied. MULTINET
and the 2015 IRefIndex version are directly retrieved from the
Hotnet2 github repository. For the updated IRefIndex, our pri-
mary focus is on binary interactions between two proteins as
well as human interactions. The process of PCNet is the same
as EMOGI [20]. To integrate different PPI data into the consis-
tent format, we first convert gene names from different formats
into uniform symbol names. Each gene is then characterized
as a node in the graph, with edges constructed between nodes
to reflect the corresponding protein-protein interactions. Conse-
quently, we obtain a total of six PPIs in a unified format, and the
overview of PPIs can be found in Table S2 in the Supplementary
Materials.

Overview of SGCD
SGCD is a straightforward and effective method comprising pri-
marily two components: a GCN with RS and a bimodal feature
extractor. The overview of SGCD is shown in Fig. 1. Firstly, SGCD
leverages a GCN with RS to learn node embeddings from multi-
omics and PPIs. Secondly, SGCD incorporates a bimodal feature
extractor to preserve the topological information from PPIs and
the multi-omics information. Finally, SGCD aggregates the rep-
resentations obtained from the above two modules to calculate
the likelihood of a gene functioning as a driver gene. Additionally,
SGCD employs GNNExplainer to identify cancer gene modules
by detecting compact subgraph structures through a masking
method.

GCN with RS
Recently, many studies have theoretically demonstrated that
RS can enhance the generalization capability of GNNs on
heterophilic graphs [37, 38]. Therefore, SGCD introduces RS to
replace the traditional message-passing mechanism of the GCN.
As far as we know, we are the first to utilize RS within the
framework for identifying cancer driver genes. Considering there
is an attributed biological network denoted as G = {A, X}. A
represents the adjacency matrix and X ∈ R

n×f is the features
matrix, where n indicates the overall number of genes and f is
the dimension of multi-omics data. Firstly, to prevent significant
differences in features distribution between high-degree and
low-degree nodes during information passing, SGCD applies
symmetric normalization as follows:

Ã = D̃− 1
2 (A + I)D̃− 1

2 (1)

where D̃ = D + I, D is the diagonal degree matrix of A, and I is the
identity matrix.

To fully leverage node representations, SGCD extracts both
the representations of first-order neighboring nodes and second-
order neighboring nodes. Besides, since potentially large differ-
ences in features between connected nodes in heterophilic graph,
aggregating neighbor information through layer-by-layer stacking
(i.e., sum operation) can cause node representations to become

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae691#supplementary-data
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae691#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae691#supplementary-data
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Figure 1. Overview of SGCD. (a) Collection of PPIs and 64-dimensional multi-omics data. (b) GCN with RS Module. We leverage a GCN with RS to learn node
embeddings from multi-omics and PPI networks. (c) Bimodal feature extractor. It incorporates two Multilayer Perceptrons (MLP) to separately embed the
topological information and the multi-omics. (d) Prediction module. We combine the convolution-derived representation with the bimodal MLP-derived
representation through a linear layer to estimate whether a gene serves as a driver gene. (e) GNNExplainer is adopted to identify cancer gene modules.

similar, which hinders the performance of the model from effec-
tively distinguishing between different classes of nodes [39]. SGCD
alleviates the confusion in representing central nodes in dissimi-
lar node pairs through concatenation. The node representation hG

can be defined as follows:

r(l)
1 = Ãr(l) (2)

r(l)
2 = Ã2r(l) (3)

r(l+1) = ReLU(concat([r(l)
1 , r(l)

2 ])) (4)

hG = logσ(concat([r(1)W(1), ..., r(l)W(l), ..., r(L)W(L)])) (5)

where r(0) = XW(0), l ∈ {0, 1, ..., L}, L is the layer number of con-
volutions, {W(0), ..., W(l), ..., W(L)} are a series of trainable matrices,
ReLU is the rectified linear unit, σ is softmax function.

Bimodal feature extractor
Due to the complex relationships between graph topology and
label distributions in heterophilic graphs, many conventional
GNNs may fail to fully leverage the graph topology in such
contexts [40, 41]. In contrast, MLPs are essentially fully connected
neural networks, where each layer performs a linear transfor-
mation on the feature vectors followed by a nonlinear activation
function. This design makes MLPs rely solely on the features of
the nodes without considering adjacency relationships, thereby
maintaining local independence of nodes and effectively avoiding
interference from neighboring nodes. In our study, regarding G as
a combination of two modalities: topology and multi-omics, SGCD
designs a bimodal feature extractor based on MLP to separately
embed the adjacency matrix into hA and the multi-omics into
hX. This design enables SGCD to acquire distinct topological
and omics information, avoiding a conflation of them. Then,

SGCD integrates information from two modalities to generate
the representations of nodes. The details are as follows:

hA = MLPA(A) (6)

hX = MLPX(X) (7)

hBI = αhA + βhX (8)

where α and β are hyperparameters.

Model prediction
Ultimately, we combine the convolution-derived representation
hG with the bimodal MLP-derived representation hBI through a
linear layer to calculate the likelihood of a gene functioning as
a driver gene as follows:

p = log σ [(hG + hBI)W
′
] (9)

where W
′
is a trainable matrix.

In our study, we utilize the binary cross-entropy loss to train
the model:

L = −
n∑

i=1

(
yi log

(
pi

)) + (1 − yi) log
(
1 − pi

)
(10)

where yi is the true label of gene i, pi is the prediction score of gene
i, and n is the number of nodes.

Our model is built using Python 3.8, PyTorch Geometric 2.0.1
[42] and PyTorch 1.10.1. To identify the optimal hyperparameters
for SGCD, we apply Optuna [43] to automate hyperparameter
search. This optimization is obtained using stratified five-fold
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cross-validation on the training set, ensuring consistent propor-
tions of known cancer genes and non-cancer genes across all sets.
In our experiments, the hidden layer dimension of GCN with RS is
set to 64. To regularize the model and mitigate overfitting, a weight
decay of 5 × 10−5 is applied. The learning rate is set to 0.0149. The
coefficient for MLPA is 0.0204, and for MLPX it is 0.001. The model
is trained for 30 epochs, and the number of hops is 2.

GNNExplainer
We apply GNNExplainer [44] to interpret key interactions for
genes. For a given node i, GNNExplainer identifies a connected
subgraph GSi ⊆ G. It is described below:

min
Mi ,fi

− log P�

(
Y = ŷi | G = Ai � σ (Mi) , X = Xi � σ

(
fi
))

(11)

where Ai represents the adjacency matrix and Xi represents multi-
omics features. Mi ∈ R

n×n denotes the mask matrix for the
adjacency matrix and fi ∈ R

m denotes multi-omics features, which
need to be learned for node i. n is the total number of genes, and
m denotes the dimension of the multi-omics features. The trained
GNN model is denoted by �. � stands for Hadamard product, and
σ refers to the activation function (sigmoid).

For undirected graphs like PPI, Mi is preserved while optimizing.
The values of Mi reflect the significance of the associated edges.
The explanatory subgraph GSi used for predicting ŷi at node i is
determined as follows:

GSi = Ai � 1 {Mi ≥ θ} (12)

where θ stands for edge threshold.

Results
Performance assessment of SGCD
To assess the effectiveness of SGCD in cancer driver gene identi-
fication, we compare it with five methods, including the standard
GNN method GCN [21] and four advanced GCN-based approaches
specifically designed for cancer driver gene identification, includ-
ing EMOGI [20], MTGCN [22], SMG [23], and HGDC [27].

• GCN [21] is a quintessential type of GNN that aggregates
features from itself along with features from its direct neigh-
bors. This mechanism captures the local information in the
graph, allowing for richer node representations.

• EMOGI [20] is an explainable method built on GCN that
utilizes pan-cancer multi-omics data as gene features in
combination alongside the PPI networks to generate more
meaningful representations.

• MTGCN [22] merges biological and structural features to
develop enhanced representations. It introduces a Chebnet-
based multi-task framework [45], boosting both the main
and auxiliary tasks. In addition, it includes a weight learning
mechanism that dynamically adjusts the relative contribu-
tions of each task.

• SMG [23] adopts the pretrain-finetune strategy. During the
pretraining phase, it randomly masks certain nodes, and
utilizes an GNN-based encoder to recover these masked
nodes by referring to the information from their surrounding
neighbors. During the subsequent fine-tuning stage, SMG
takes advantage of the pre-trained encoder to represent the
PPIs and utilizes a tailored layer to predict results for the
specific tasks.

• HGDC [27] is designed to tackle heterophily within biological
networks for the identification of driver genes. HGDC
combines graph diffusion methods with hierarchical
attention mechanisms. By utilizing graph diffusion to
create supplementary views, HGDC significantly improves
prediction accuracy across various biological networks.

To guarantee an equitable comparison, all methods utilize
identical processed feature vectors and PPI networks, includ-
ing CPDB [32], MULTINET [33], PCNet [34], STRINGdb [35], IRe-
fIndex [36], and IRefIndex-2015 [36]. The parameters for the base-
line models are either configured according to their papers or
adjusted as needed to maximize their performance. The datasets
are divided into a training set (75%) and a testing set (25%),
and then we train the SGCD and baseline models separately to
attain optimal performance. As shown in Fig. 2(a) to Fig. 2(f), SGCD
achieves the best AUPRC in different PPIs than other baseline
models, indicating the advantage of SGCD in detecting potential
cancer driver genes.

To validate the robustness of SGCD, we evaluate performance
under both feature perturbation and network perturbation. Fea-
ture perturbation is implemented by randomly masking node
features, where the values are set to 0, with masking rates of
0.25, 0.50, 0.75, and 0.90. Network perturbation is performed by
randomly deleting edges in the network, with deletion rates set
at 0.25, 0.50, 0.75, and 0.90. Then, we train SGCD and baseline
models at each perturbation rate. The results shown in Fig. 2(g)
and 2(h) demonstrate that with the increasing rate of feature per-
turbation or network perturbation, SGCD consistently shows the
best performance and experiences a relatively smaller decrease in
performance compared to baseline models. These results indicate
that SGCD evinces strong robustness, adapts well to real-world
conditions, and consistently performs with stability and excel-
lence.

The time overhead of an algorithm is a crucial metric for evalu-
ating its efficiency. In this research, we record the running time of
SGCD and baseline models across different PPIs. As shown in the
Fig. 2(i), SGCD persistently achieves minimal time overhead (log
10-transformed) across all datasets, highlighting its exceptional
time efficiency.

Ablation study
To analyze the contribution of every step within SGCD model
architecture, we carry out ablation experiments on MULTINET.
The results of ablation experiments are shown in Table 1. We
notice that the performance of merely using classic MLP architec-
ture (MLPA + MLPX) significantly surpasses that of GCN (as shown
in Fig. 2a), which suggests that traditional convolutional methods
may lead to feature confusion, resulting in even worse perfor-
mance than MLP. Additionally, the comparison between GCN with
RS and the GCN-based method EMOGI (as shown in Fig. 2a) also
demonstrates that feature separation can effectively reduce the
confusion in node information aggregation within heterophilic
networks, thereby significantly improving the performance of
models in such networks. Finally, the complete framework of
SGCD model shows superior performance compared to GCN with
RS + MLPA or GCN with RS + MLPX, indicating that SGCD suc-
cessfully improves cancer driver gene identification by integrating
GCN with RS and bimodal feature extractor.

Overall, the results of the ablation study confirm the effective-
ness of each step of SGCD. Specifically, the results demonstrate
that substituting RS for the traditional message-passing mecha-
nism of GCN significantly reduces feature confusion, ultimately
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Figure 2. Performance assessment of SGCD. (a) AUPRC performance comparison on CPDB. (b) AUPRC performance comparison on MULTINET. (c) AUPRC
performance comparison on IRedfIndex. (d) AUPRC performance comparison on PCNet. (e) AUPRC performance comparison on STRINGdb. (f) AUPRC
performance comparison on IRedfIndex_2015. (g) Feature robustness analysis of SGCD and baseline models. (h) Network robustness analysis of SGCD
and baseline models. (i) The time overhead analysis of SGCD and baseline models.

Table 1. The ablation results of SGCD

Model AUPRC AUROC F1 ACC

GCN with RS + MLPA 0.7881 0.9320 0.6917 0.9015
GCN with RS + MLPX 0.7560 0.9242 0.6648 0.8948
GCN with RS 0.7557 0.9242 0.6634 0.8946
MLPA + MLPX (bimodal feature extractor) 0.6021 0.7791 0.5288 0.8755
GCN with RS + MLPA + MLPX (SGCD) 0.7900 0.9324 0.6939 0.9021

improving the generalization ability of GNNs in heterophilic
graphs. Furthermore, given the complex information between
graph topology and label distribution in heterophilic graphs,
the use of bimodal feature extractor can effectively extract
distinct topological and omics information from these graphs,
thus enabling a more optimized utilization of graph information.

Performance on independent test sets
To verify if the performance of SGCD and baseline models are
biased towards any cancer-related datasets, we evaluate them
on two independent datasets. We train SGCD the baseline meth-
ods using labeled samples, including both positive and negative
instances. The trained models are next used to predict cancer-
related genes in two independent test sets: one consists of 320

genes from the OncoKB [46] and another with 388 genes from
the ONGene [47]. After excluding genes that overlap with the
training samples, we regard the predicted cancer driver genes in
the test set as true positives, while genes absent from the test
set are classified as false positives. Although all methods perform
relatively poorly due to the insufficient number of true positives
in the independent test sets, Fig. 3 shows that SGCD consistently
surpasses the baseline models on both OncoKB and ONGene.

Prediction of potential cancer driver genes
We use SGCD to train and predict on six PPIs. Then, by aggregating
the top 100 predicted driver genes from each PPIs, a list of 315
potential cancer driver genes is obtained, as demonstrated in
Table S1 in the Supplementary Materials. Comparing SGCD with

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae691#supplementary-data
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Figure 3. Performance of SGCD and baseline models across two indepen-
dent sets based on OncoKB and ONGene.

Figure 4. Venn diagram of the overlap between the SGCD and other driver
genes identification methods.

several other identification methods, we observe that SGCD can
predict unique driver genes not observed by the other methods,
as shown in Fig. 4. This underscores the capability of SGCD to
uncover overlooked driver genes, highlighting its valuable genetic
insights. Among these unique genes, most of them are linked to
cancer onset and development. For example, many studies have
demonstrated that GNB1 is involved in the progression and drug
resistance of multiple cancer types [48]. Extensive research has
demonstrated that NR2C2 potentially function as either a tumori-
genic gene or a tumor-suppressive gene, depending on the type
of tumors [49, 50]. A previous study has indicated that PPP2CA
has potential to serve as a tumor suppressor gene across various
cancers, with its expression potentially modulated by rs13187105
or other SNPs that exhibit strong linkage disequilibrium [51].

To further analyze these potential cancer genes, we compare
them with two sets of candidate cancer driver genes derived from
sources based on published literature. The first source is the
CancerMine [52], a text-mined and regularly updated resource
that catalogs drivers, oncogenes and tumor suppressor genes
across various cancer types. The second source consists of a

highly reliable gene set gathered from the Candidate Cancer
Gene Database (CCGD) [53], encompassing all available data from
transposon-based forward genetic screens related to cancer. Over-
all, approximately 91% (287/315) of the potential driver genes have
evidences supporting their association with cancer. Furthermore,
among these evidence-supported genes, over 88% (253/287) are
supported by CancerMine, over 76% (220/287) are supported by
CCGD and over 64% (186/287) are supported by both CancerMine
and CCGD. These experimental results further substantiate the
strong reliability of the cancer driver genes identified by SGCD.

Enrichment analysis
We perform enrichment analysis of Gene Ontology (GO) and KEGG
pathways on the predicted cancer driver genes, and the results
show that these predicted genes exhibit notable enrichment in
numerous cancer-related pathways. For instance, as shown in
Fig. 5(a), in Go biological process enrichment, cell–cell adhesion is
essential for enabling extravasation from the primary tumor and
subsequent metastasis, while the loss of cell adhesion molecules
is closely linked to tumor progression [54]. As shown in Fig. 5(b),
in cellular component enrichment, membrane rafts, as targets
for cancer treatment, significantly contribute to cell survival
regulation by enhancing Akt activation. They are closely tied
to their pivotal role in regulating multiple stages of malignant
cell transformation, including growth, apoptosis susceptibility,
invasiveness, and metastatic capacity [55]. As shown in Fig. 5(c), in
GO molecular function enrichment, phosphatases act as molec-
ular switches capable of activating or deactivating various sig-
naling pathways, leading to abnormal cellular activities such as
unchecked proliferation, differentiation, angiogenesis, and metas-
tasis. Numerous phosphatases have been associated with the
initiation and pathogenesis of various types of cancer [56]. As
shown in Fig. 5(d), in KEGG pathway enrichment, the PI3K-Akt
signaling pathway, a pivotal regulator of diverse cellular functions,
is frequently dysregulated in cancer, fostering tumor initiation
and progression. Targeting this pathway, either as a standalone
approach or in conjunction with other therapeutic modalities,
has emerged as a highly efficacious strategy in the battle against
cancer [57].

Drug sensitivity analysis
Given that drug sensitivity reveals how cancer driver genes influ-
ence cancer cell responses to specific drugs, we select the top
10 predicted cancer driver genes in each PPIs for Cancer Ther-
apeutics Response Portal drug sensitivity analysis using Gene
Set Cancer Analysis (http://bioinfo.life.hust.edu.cn/GSCA) [58, 59].
Figure 6 illustrates the drug sensitivity analysis results for MULTI-
NET, while the results of other PPIs are present in Fig. S1 in
the Supplementary Materials. The results of the drug sensitiv-
ity analysis demonstrate that cancer driver genes identified by
SGCD has the potential to provide important perspectives on drug
targets, thereby enhancing both the effectiveness and precision
of cancer treatment. As exemplified by MULTINET in Fig. 6, the
majority of these genes exhibit significant correlations with drug
sensitivity, highlighting their potential involvement in affecting
responses to particular cancer therapies. For instance, AR-42 is
an innovative histone deacetylase inhibitor, and it demonstrates
antitumor effects in pancreatic cancer cells by impacting various
biochemical pathways [60]. PIK-93 promotes a treatment-friendly
tumor microenvironment when used in conjunction with anti–
PD-L1 antibodies, thus improving the effectiveness of PD-1/PD-L1
blockade cancer immunotherapy [61]. FK866, by blocking NAMPT-
driven NAD+ production, can reduce the activation and stemness
of CAFs, diminish the release of inflammatory cytokines and

http://bioinfo.life.hust.edu.cn/GSCA
http://bioinfo.life.hust.edu.cn/GSCA
http://bioinfo.life.hust.edu.cn/GSCA
http://bioinfo.life.hust.edu.cn/GSCA
http://bioinfo.life.hust.edu.cn/GSCA
http://bioinfo.life.hust.edu.cn/GSCA
http://bioinfo.life.hust.edu.cn/GSCA
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae691#supplementary-data
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Figure 5. Enrichment analysis. (a) Go biological process enrichment. (b) GO cellular component enrichment. (c) Go molecular function enrichment. (d)
KEGG pathway enrichment.

chemokines by suppressing PITX3 expression, and thereby inhibit
colorectal cancer metastasis [62].

Gene module dissection in pan-cancer
We utilize the GNNExplainer [44] to elucidate the influential fac-
tors associated with cancer driver genes across multi-omics data,
subsequently detecting the cancer gene modules. GNNExplainer
[44] utilizes a masking strategy to maximize the mutual infor-
mation between the predictions and the distribution of potential
subgraph structures, thereby identifying the most compact gene
module.

Firstly, we compare the topological characteristics of cancer
gene modules with non-cancer gene modules using graphical
metrics, such as PageRank, clustering coefficient, degree cen-
trality, and betweenness centrality (see Supplementary Materials
Section 5 for details). These modules are obtained by separately
applying GNNExplainer to the predicted cancer driver genes and
the non-cancer driver genes. The results of MULTINET are shown
in Fig. 7, which demonstrate that the topological structures of
cancer gene modules exhibit significantly greater consistency
compared to those of non-cancer gene modules (P < 9.52e-25,
t-test). The results of other PPIs can be found in the Fig. S2 in the
Supplementary Materials.

Furthermore, we analyze the relationship between different
gene modules. In lung cancer, MET and ALK are the most com-
monly encountered driver genes [63], but they have different car-
cinogenic mechanisms. MET gene abnormalities primarily include
MET exon 14 mutations, MET amplification, MET gene fusions,
and MET protein overexpression. These alterations can result in
abnormal activation of the MET signaling pathway, which, in turn,
can drive tumor development and progression [64]. By contrast,
the majority of mutations in the ALK gene occur as translocations
with a partner gene, resulting in a fusion oncogene, which is
subsequently overexpressed in cancers [65]. The gene modules of
MET and ALK identified by our method are shown in Fig. 7(b) and
7(c). Moreover, we notice that the MET gene module and the ALK
gene module share three common genes: STAT3, SHC1, and GRB2,
which combine the two gene modules into a high-order gene
module as shown in Fig. 7(d). It is worth noting that among these
genes, STAT3 is the known cancer driver gene, while SHC1 and
GRB2 are cancer driver genes predicted by SGCD (ranked in the
top 50 predicted cancer driver genes of MULTINET). The research
has shown that cancer driver genes are often found together in
the same modules instead of being randomly scattered [66], and
this suggests that the identified cancer genes SHC1 and GRB2 are
promising candidates for cancer driver genes.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae691#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae691#supplementary-data
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Figure 6. Correlation between drug sensitivity and mRNA expression for the top 10 predicted cancer driver genes.

Figure 7. Cancer gene module analysis on SGCD. (a) Graphical metrics of gene modules. (b) The structure of MET gene module. (c) The structure of ALK
gene module. (d) high-order gene module of MET and ALK.

Conclusion
Nowadays, cancer is one of the major threats to human health,
and its underlying mechanisms are complex. It is widely accepted
in the biomedical field that cancer emerges due to the accumu-
lation of mutations across various genes. Therefore, cancer driver
gene identification is important for uncovering the processes of
cancer initiation and progression.

In this research, we present an innovative model, SGCD, which
employs simplified GNNs to identify cancer driver genes in het-
erophilic networks. A key innovation of SGCD is the introduction
of the GCN with RS module, where RS replaces the traditional
message-passing mechanism, effectively mitigating potential fea-
ture confusion issues inherent in conventional GNNs. Addition-
ally, SGCD utilizes a bimodal feature extractor to capture both
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topological and omics information, thereby enhancing identi-
fication performance. The experimental findings indicate that
SGCD surpasses the state-of-the-art approaches, strengthening
the predictive accuracy and robustness of the model. Further-
more, subsequent model interpretability experiments and biolog-
ical interpretability experiments reveal that the potential cancer
driver genes identified by SGCD are closely associated with cancer,
validating the strong interpretability of SGCD. In addition, the
model is capable of dissecting gene modules, providing deeper
insights into the relationships between genes and their roles in
cancer. We believe that SGCD is a general method, offering novel
perspectives on the identification of cancer driver genes and
allowing its application beyond the field of cancer genomics to
other complex diseases.

Key Points

• An efficient method SGCD is developed for identifying
cancer driver genes in heterophilic network by utilizing
simplified graph neural networks.

• SGCD introduces representation separation to replace
the traditional message-passing mechanism in GCN, sig-
nificantly mitigating potential feature confusion.

• The computation experiments show the superiority of
SGCD compared to other baseline models.

• The biological interpretability experiments provide com-
pelling evidence supporting the reliability of SGCD.

• SGCD can dissect gene modules, revealing clearer con-
nections between driver genes in cancers.

Supplementary data
Supplementary data is available at Briefings in Bioinformatics
online.
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