
Automatic detection, classification, 
and segmentation of sagittal MR 
images for diagnosing prolapsed 
lumbar intervertebral disc
Md. Abu Sayed1, G. M. Mahmudur Rahman1, Md. Sherajul Islam1, Md. Alimul Islam1, 
Jeongwon Park2,3, Hasan Ahmed1, Akram Hossain1 & Rahat Shahrior1

Magnetic resonance (MR) images are commonly used to diagnose prolapsed lumbar intervertebral 
disc (PLID). However, for a computer-aided diagnostic (CAD) system, distinguishing between 
pathological abnormalities of PLID in MR images is a challenging and intricate task. Here, we 
propose a comprehensive model for the automatic detection and cropping of regions of interest 
(ROI) from sagittal MR images using the YOLOv8 framework to solve this challenge. We also propose 
weighted average ensemble (WAE) classification and segmentation models for the classification and 
the segmentation, respectively. YOLOv8 has good detection accuracy for both the lumbar region 
(mAP50 = 99.50%) and the vertebral disc (mAP50 = 99.40%). The use of ROI approaches enhances 
the accuracy of individual models. Specifically, the classification accuracy of the WAE classification 
model reaches 97.64%, while the segmentation model achieves a Dice value of 95.72%. This automatic 
technique would improve the diagnostic process by offering enhanced accuracy and efficiency in the 
assessment of PLID.

Keywords  Magnetic resonance imaging, Prolapsed lumbar intervertebral disc, YOLOv8, Weighted average 
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Lower back pain (LBP) has become an emerging problem in global health, impacting around 7.5% of the global 
population1. Currently, it is an increasingly important issue, with individuals facing significant disabilities being 
77% more susceptible to LBP2. Ossification of the facets, spinal stenosis, or intervertebral disc (IVD) herniation 
can result in nerve compression, thereby exacerbating illness conditions associated with LBP3. A specific example 
of this problem is the prolapsed lumbar intervertebral disc (PLID), also known as a herniated disc, which occurs 
when the disc material protrudes over the normal intervertebral boundaries in the lumbar area. Because of 
the pressure exerted by the displacement of the spinal cord, patients experience symptoms like numbness and 
discomfort in the lower extremities, as well as generalized irritation. The process of disc herniation follows a 
series of well-defined stages. The degree of lumbar pain severity is directly correlated with the degree of nucleus 
displacement outside its normal boundaries throughout these stages4,5. In instances of significant severity, the 
level of discomfort may require the implementation of surgical measures. Consequently, an accurate herniation 
diagnosis is necessary for effective lower back pain therapy.

The identification of lumbar disc herniation is often dependent on the utilization of imaging modalities 
such as computed tomography (CT), X-rays, myelography, and magnetic resonance imaging (MRI)6,7. While 
CT, X-rays, and myelography utilize radiation for the purpose of medical imaging, which can potentially 
have adverse effects on the human body, MRI emerges as a comparatively safer alternative. When it comes 
to medical imaging, MRI is considered the safer option compared to CT scans, X-rays, and myelography due 
to the requirement of using radiation that has adverse effects on human health. As a non-invasive imaging 
modality, MRI utilizes radiofrequency and magnetic fields to generate accurate visual depictions of soft tissues 
in the spinal region, such as nerves and discs, rather than the utilization of ionizing radiation. Therefore, the 
safety profile and capacity to provide comprehensive imaging make MRI largely acknowledged as the most 
feasible technique for visualizing intervertebral disc herniation8. The utilization of a non-invasive methodology 
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is of utmost importance within the framework of lower back pain, as it guarantees a comprehensive and secure 
evaluation for accurate diagnosis and appropriate therapy.

Over the past few years, substantial efforts have been devoted to developing techniques, including machine 
learning (ML) and deep learning (DL) techniques, for the detection and diagnosis of PLID. Schmidt et al.9 created 
a graphical model that employs a probabilistic approach for labeling vertebral discs in whole-spine MR images. 
This method is semi-automated and requires user intervention to extract features from the image manually. 
To solve this problem, Prisilla et al.10 proposed a fully automated YOLO model to detect lumbar intervertebral 
discs, which achieves detection accuracy above 90%. Several machine learning techniques have been put forth to 
categorize disc herniation. Hybrid models were created by Unal et al.11 to identify disc abnormalities from lumbar 
spine MR scans after image characteristics were manually removed. With an accuracy of 97.75%, this model was 
utilized to divide lumbar disc disease into two groups. Fully automated feature extraction techniques, like DL, 
have been presented as a solution to the issue, as the prior work required feature extraction to be done manually 
to train the ML model. Kubaisi et al.12 proposed a convolutional neural network (CNN) model with a transfer 
learning strategy to deal with the problem of insufficient training data and used the regions of interest (ROI) 
method, leading to the best possible results for classifying disc states into two classes. They investigated different 
CNN models to suggest the best one for the problem. Alsmirat et al.13 developed a computer-aided diagnostic 
(CAD) system using AlexNet, known as the CNN model. The researchers employed transfer learning, ROI, and 
data augmentation techniques to further enhance the accuracy and robustness of the model. The recognition 
accuracy was 91.38%, while the detection accuracy was 95.65%. Šušteršic et al.6 introduced a new deep learning 
strategy involving boundary box cropping through. U-Net segmentation outcomes, then classifying sagittal MR 
images into five categories using DiscNet. The classification accuracy of the model was 87% for the axial image 
and 91% for the sagittal MR image. Various segmentation models have also been put forth to diagnose disc 
herniation. Support vector machines (SVM) and a histogram of oriented gradients (HOG) feature extractor 
were used in a machine learning (ML) approach developed by Ghosh et al.14 for the identification of vertebral 
discs. The MR sagittal images of the spine were segmented into three different classes, such as spine, vertebrae, 
and intervertebral disc, using the auto-context approach. In another study, Sáenz-Gamboa et al.15 produced 
multiclass segmentation of the lumbar spine using an ensemble model. They ensembled different variants of 
U-Net models for segmenting twelve types of tissue in the sagittal plane of the spine. They achieved 76.7% mean 
intersection over union (mIoU) without background information. Furthermore, the BianqueNet segmentation 
model was introduced by Zheng et al.16 to quantify intervertebral disc degeneration (IVD) with 90.19% mIoU 
for the intervertebral disc. Even though there is a significant advancement in ML and DL for the classification 
and segmentation of disc herniation, these techniques still need expertise in interaction and a time-consuming 
approach due to the many image processing and semi-automated approaches for the ROI.

In this study, we have developed a comprehensive automated approach for identifying and extracting the ROI 
from sagittal MR images. This automated ROI extraction technique enhances classification accuracy and reduces 
processing power. By cropping the IVD regions, CNN models can better focus on the pathological abnormalities 
caused by disc herniation in MR images. Additionally, we perform both classification and segmentation of lumbar 
disc herniations. The automated ROI detection is executed in two stages using the YOLOv8 framework. The first 
stage involves identifying and cropping the lumbar area, followed by detecting the IVDs within the cropped 
lumbar regions. We evaluate various pre-trained Keras CNN models for image classification along with several 
image segmentation models, assessing their performance with and without fine-tuning using ROI images. To 
classify disc herniation, we use a weighted average ensemble (WAE) classification model, and for lumbar region 
segmentation, we employ a WAE segmentation model. Custom loss functions are used in segmentation tasks to 
address class imbalance issues. Since individual models often suffer from low prediction accuracy due to high 
bias or variance, our proposed fully automated WAE models can classify and segment MR images with high 
accuracy. These models are trained and tested on a private PLID dataset, delivering outstanding results. This 
methodology enhances the diagnostic process by providing greater efficiency and precision in evaluating lumbar 
disc herniation.

Materials and methods
A. Collection of dataset
In this study, the diagnostic records and spine MR images of individuals with LBP are obtained from the 
radiology information system at Mymensingh Medical College Hospital. These data records were obtained 
between March 30, 2023, and April 5, 2023, under the close surveillance and monitoring of the hospital authority 
and qualified health professionals. Besides, the corresponding authority of Mymensingh Medical College 
Hospital has permitted us to use this data for study and research by providing a "no objection certificate." The 
classification involved the collection of mid-sagittal T2W lumbar MR images from 286 patients diagnosed with 
PLID and 11 patients with no significant spinal problems. In the segmentation task, mid-sagittal T2W lumbar 
MR images were used from a larger number of 403 patients, including 286 with PLID, 25 with protrusion and 
disc bulge, 17 with spinal canal narrowing, 64 with a degenerative disc, and 11 with normal findings. Some 
irrelevant images were excluded during the study. These images are obtained using a Philips 1.5 T MRI scanner. 
The study was conducted in accordance with Mymensingh Medical College Hospital’s relevant guidelines and 
regulations, and the full dataset (MR images and associated medical records) used in this study was anonymized 
and de-identified. Ethical approval for this study was obtained from the Human Research Ethics Committee 
(HREC) of Mymensingh Medical College Hospital (Approval Number: 01-24012).

B. Labeling of the dataset
Initially, MicroDICOM software (Version: DICOM viewer 2023.1, ​h​t​t​p​s​:​​/​/​w​w​w​.​​m​i​c​r​o​d​​i​c​o​m​.​​c​o​m​/​n​e​w​s​/​2​0​7​-​m​
a​r​c​h​-​7​-​2​0​2​3​-​n​e​w​-​v​e​r​s​i​o​n​-​d​i​c​o​m​-​v​i​e​w​e​r​.​h​t​m​l​​​​​) was used to convert the DICOM pictures into JPG format. The 
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APEER ANNOTATE17 web application is used to create masks for semantic segmentation, and these masks 
are exported as a tiff file, which is a lossless compression format. For the detection task, the Roboflow web 
application is used to label images18. Various imaging series of MRI, including axial and sagittal T1W, T2W, 
T2*W, and spectral attenuated inversion recovery (SPAIR), are used to diagnose disc herniation in the clinic19. 
However, this study employed T2W and T2*W MR images. Each series of MR images has multiple numbers 
of frames. Here, we only use a mid-sagittal image for each patient. Because the mid-sagittal slice has more 
picturesque features of disc herniation than other slices and the patients who have no T2W image, we prefer the 
T2*W image for increasing the amount of data.

C. Proposed system
The techniques proposed for machine learning have been executed in the following manner:

	1.	� Data augmentation: In the current study, our engaged dataset has been augmented to minimize overfitting 
and increase the number of training pictures.

	2.	� ROI detection: Initially, mid-sagittal MR scans were used to identify lumbar regions and intervertebral discs 
using the YOLOV8 model.

	3.	� Bounding box-based ROI cropping: In this stage, the bounding box area found by the YOLOv8 model is 
cropped.

	4.	� Classification of disc herniation: At this stage, the intervertebral disc, which is divided into two classes—the 
herniated disc and the lack of herniation—is used to classify disc herniation.

	5.	� Lumbar spine segmentation: Furthermore, using sagittal T2W MR images, the lumbar regions are segment-
ed into four unique classes: vertebral disc, vertebrae, spine, and backdrop. The overall workflow of the pro-
posed method is shown in Fig. 1.

Google Colab, a platform with a graphics processing unit (GPU) backend, was used for this research. The Intel 
Core i5-8257U central processor unit (CPU) running at 3.90 GHz and a Tesla K80 GPU with 10 GB of RAM 
made up the processing gear used in this study. Models were implemented using the Keras and TensorFlow 
frameworks20.

Data augmentation
Data augmentations were needed to increase the training data in machine learning21. This improves the 
performance and robustness of the machine-learning models21. For the detection tasks, the MR images were 
set to a mode of ‘black’ and had a rotation range spanning from −200 to + 200. In order to adjust brightness, the 
mid-sagittal MR images were adjusted to a brightness range of −25 to + 25 percent. For the classification and 
segmentation tasks, the following augmentation was performed:

•	 Random rotation: The rotation parameter was set to a range of 00 to 300, utilizing the ‘nearest’ mode for image 
orientations.

•	 Brightness: The brightness levels ranged from 10 to 50 percent.

Fig. 1.  The overall workflow of the proposed method. (a) First, the YOLOv8 model is used to detect lumbar 
regions in sagittal MR images. The detected bounding box areas are then cropped. Subsequently, the IVDs are 
further detected using the YOLOv8 model. These IVDs are then classified into PLID and NO PLID categories 
using CNN models. (b) The cropped lumbar regions are then inputted into segmentation models to segment 
the lumbar regions into three distinct classes: vertebral disc, vertebrae, and spine.
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•	 Horizontal flip: A horizontal flip was performed.
•	 Shifting: Horizontal and vertical shifts ranged from 0 to 20 percent, with ‘nearest mode’.

Transformations that had physical significance were performed. Some irrelevant transformations, such as the 
vertical shift, were excluded. The datasets were divided as follows: 75%, 15%, and 10% were used for training, 
validation, and testing, respectively. In addition, the image size used for this study is 400 × 400.

Region of interest (ROI) detection
The YOLO model has been utilized in several applications for detecting, segmenting, and classifying medical 
images22,23. This network functions on a single stage, in contrast to the two-stage detection mechanism of the 
region-based convolutional neural network (R-CNN). Singular neural networks process information more 
quickly than two-stage detection networks24. The sagittal MR image detection is accomplished using YOLOv8. 
In this study, we set epochs to 100, a batch size of 8, a learning rate of 0.02, and stochastic gradient descent (SGD) 
with a momentum value of 0.9.

ROI cropping using bounding box
The cropping ROI was executed to remove unnecessary data from the image. It reduces the computer’s processing 
power and increases the accuracy of the ML models25. ROI cropping can crop a portion of the image needed to 
highlight for medical purposes, such as lumbar regions. Two-stage detection using the YOLOv8 model is used to 
crop the lumbar regions and IVD. In the first stage, the lumbar regions are encircled by a rectangular box that is 
the detection output of the YOLOv8 model. The ROI of masks is cropped, corresponding to the rectangular box 
of their image. In the second stage, the IVDs are identified within the cropped lumbar regions, and these discs 
are then further cropped for use in the classification task. The dimension of a rectangular box is augmented by 
10% to ensure that the necessary data associated with the ROI is addressed.

Weighted average ensemble methods
Ensembling is a methodology employed in machine learning that involves the combination of decisions 
derived from multiple models. This study employed a weighted average ensembling approach, wherein weight 
values were assigned based on the performance of the models. Finding the optimum model’s weight is the key 
objective of the ensembling approach. In this study, the grid search algorithm was employed to ascertain the 
optimal weight for the model. Grid search is a widely used method for determining the optimal combination of 
parameters within a predefined range.

	 Wopt = [w1, w2, w3 . . . . . . . . . wn]

	
W AEM =

∑n

i=1 Mi×wi∑n

i=1 wi
� (1)

The optimal weights given to the models, which vary from 0 to 1, are indicated by the variable "Wopt". “WAEM” 
stands for the weighted average ensemble model, which generates predictions based on the weighted models, 
whereas "Mi" denotes the individual models. In the classification task the n value was 6 and in the segmentation 
task it was 8.

Disc herniation classification
In this stage, several pre-trained Keras models were employed to determine the optimal models for a WAE 
approach. The primary objective of classification is to categorize MR images of the spine as either suffering from 
herniation or not. Six different Keras models have been investigated:

•	 Visual Geometry Group (VGG16/19)26,
•	 Residual Networks (ResNet50)27,
•	 InceptionV328,
•	 Extreme Inception (Xception)29,
•	 Densely Connected Convolutional Networks (DenseNet121)30

In earlier research, these models showed excellent performance in disc state classification12,13,30. There are two 
variants of the VGGNet architecture: VGG16 and VGG19. The VGG16 and VGG19 models have fully linked, 
pooling, and convolutional layers in their architecture. Interestingly, VGG19 contains fourteen convolution 
layers, whereas VGG16 has only twelve26. This is a considerable difference in the amount of convolution layers 
between the two. A residual block with up to 150 levels has been introduced by the ResNet architecture27. 
ResNet50 was selected for this study because it performed better than the previous ResNet versions. The 
InceptionV3 model comprises various layers, including convolution, pooling, batch normalization, dropouts, 
and fully connected layers28. The Xception model incorporates depth wise separable convolutions into its 
architecture. This convolution reduces computation time compared to classical convolution29. The accuracy of 
classifications may decrease as the layers in a CNN become more profound and complex, and the information 
from the input layers may potentially diminish with every successive layer added. DenseNet introduces a novel 
architecture incorporating dense blocks to establish connections between layers. The dense block comprises 
convolution, batch normalization, and ReLU activation layers30. This study investigated transfer learning from 
ImageNet with and without fine-tuning approaches for disc state classification. Utilizing the transfer learning 
approach minimizes the challenge caused by limited training data31. The investigation was performed as follows:
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The bootstrapping approach is used to train these pre-trained models. For our classification needs, we 
modify the top layers of the pre-trained models while freezing their convolution layers. We refer to this process 
as not being fine-tuned. Some convolution layers that have been frozen earlier are unfrozen and trained on a 
bespoke dataset during the fine-tuning phase. Both with and without fine-tuning, ROI images are run through 
the models. In this study, we configure the model with 2 dense layers, 1 dropout layer with a dropout rate of 
20%, epochs of 35, a batch size of 5, and use the Adam optimizer. The softmax activation function is applied, 
with categorical cross-entropy as the loss function. The learning rate is set to 0.001 for feature extraction and 
0.0001 for the fine-tuning approach. Table S1 in the supplementary materials displays the hyperparameters 
used in training. The training procedure is terminated using the early stop function with patience 10 to avoid 
the training data overfitting. The optimization of models has been achieved by altering the hyperparameters. 
Various techniques are employed to address class imbalances in datasets, including data augmentation, class 
weighting, and algorithmic modifications. Class weighting refers to assigning reduced weights to the majority 
class and increased weights to the minority class during training. We assign a weight of 0.702 to the NO PLID 
data and a weight of 1.73 to the PLID data. The weights are set as follows: 0.1 for ResNet50 and Exception, 0.2 for 
VGG16 and InceptionV3, 0 for VGG16 and DenseNet121. A grid search procedure was employed to determine 
the optimal weighted values. Images without an ROI are also examined using these approaches. The training 
procedure was ended by using the early stop function to avoid overfitting the training data. Evaluation measures 
were computed once the models were trained. These models were weighted average ensembles, and a grid search 
procedure was used to identify the best-weighted values. The overall classification workflow is shown in Fig. 2a, 
and the ensembling process is shown in Fig. 2b.

Custom loss function
Dice loss32 measures the similarity between predicted and ground truth segmentation masks. The model tries to 
reduce the dice loss during training. Dice loss is especially useful for imbalanced segmentation tasks. Dice loss 
can be represented as,

	
LD = 1 −

2 ×
∑n

i
(pi×qi) + 1∑n

i
pi +

∑n

i
qi + 1

� (2)

where n represents the number of pixels in the segmentation mask, pi is the probability of classifying pixel “i” 
as belonging to the object in the predicted mask. qi is the ground truth probability of classifying pixel “i” as 
belonging to the object in the ground truth mask. The focal loss33 is a loss function commonly employed in ML, 
with its primary purpose being to reduce the effect of class imbalance challenges. It can be represented as,

	 LF (pt) = − (1 − pt)γ × log (pt)� (3)

Here γ ˃ 0 when γ = 1, it works like a cross-entropy function, pt represents the predicted probability for the 
correct class. We used compound loss34,

	 Focal Dice Loss = LD + λ × LF (pt)� (4)

The trade-off between dice and focal loss is λ.

Lumbar region segmentation
Several segmentation models have been investigated after various preprocessing techniques, including ROI 
cropping, annotation, and resizing. In this stage, the following segmentation models were used:

•	 U-Net35

•	 LinkNet36

•	 Feature Pyramid Network (FPN)37

•	 Pyramid Scene Parsing Network (PSPNet)38

•	 DeepLabv3 + 39

Images are categorized using the U-Net architecture by allocating a specified class to each pixel. Two components 
comprise the system: an encoder that extracts features from images and lowers them to a lower dimension, 
and a decoder that concatenates these features to produce the required output35. LinkNet refers to the network 
that results when addition is used instead of concatenation in U-Net36. Again, FPN refers to the network that 
emerges when a 1 × 1 convolution is done, and the U-Net concatenation operation is also altered to addition37. 
A pyramid pooling module built within the PSPNet architecture efficiently absorbs global information into 
the network38. These models do not use distinct layers but operate very similarly to the U-Net. An encoder 
and a decoder component make up the Deeplabv3 + architecture. Contextual information is extracted from the 
image via its atrous convolution layer39. The U-Net, LinkNet, FPN, and PSPNet architectures were used in the 
Segmentation Models repository on GitHub. Each of these designs had an encoder that was previously trained 
using ImageNet40. Pre-trained encoders from VGG19, ResNet34/50, and ResNext5041 were employed in the 
current study. Even though more encoders were tested, the results were insufficient to meet the desired goals. 
The procedures were performed as follows:

Individual models like U-Net, LinkNet, FPN, and PSPNet with pretrained encoders such as VGG16, 
ResNet34, ResNet50, and ResNext50, as well as DeepLabv3 + with ResNet50, are examined on private MR 
datasets with PLID. We set the epoch to 30, the batch size to 3, use the Adam optimizer with a learning rate of 
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0.003, and implement an early stop function with patience 10 to terminate training. Here we have especially used 
the custom loss function ‘Dice Focal Loss’ to reduce the effect of class imbalance challenges by using class weights 
of 0.25. Table S2 in the supplementary materials displays the hyperparameters used in the training process. After 
training the models, we combine them using a weighted average-ensembling approach. The weights are set as 
follows: 0.1 for FNP with ResNet34, LinkNet with ResNet34 and PSPNet with ResNet50, 0.2 for U-Net with 
ResNet34 and ResNet50, and 0 for the others model. A grid search procedure is used to determine the optimal 
weight values. Figure 2c, d explains the overall segmentation processes.

Evaluation metrics
A thorough understanding may not always be obtained from classification accuracy only, especially if there is an 
imbalance in the distribution of classes within the observed data. Rather, a better comprehension of unbalanced 
data is provided by accuracy, the area under the receiver operating characteristic (ROC) curve, recall, f1-score, 
and confusion matrix42. The models produce better results for some assessment measures. An explanation of 
assessment metrics is provided below.

Accuracy: it quantifies the model’s accuracy by determining the proportion of correct outcomes by the model 
relative to the total number of input cases. Accuracy can be represented as

Fig. 2.  Flowchart depicting the entire training and ensembling process. The details of (a) the training 
procedure for classification tasks, (b) the training procedure for segmentation tasks, (c) the ensembling 
procedure for classification tasks, and (d) the ensembling procedure for segmentation tasks. Once the models 
complete their training, they are combined using weighted average ensembling techniques.
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Accuracy = T P + T N

T P + T N + F P + F N
� (5)

Specificity: the metric measures the proportion of correct negative outcomes by the model to the total number 
of negative instances. Specificity can be represented as

	
Specificity = T N

(T N + F P ) � (6)

Precision: It measures the proportion of correct positive outcomes by the model to the total number of cases the 
model classified as positive. Precision can be represented as

	
P recision = T P

T P + F P
� (7)

Recall: the metric measures the proportion of correct positive outcomes by the model to the dataset’s total 
number of positive cases. Recall can be represented as

	
Recall = T P

T P + F N
� (8)

F-Score: it is calculated by taking the mean of the recall and precision value harmonics, providing a more 
balanced evaluation of the model’s overall effectiveness. F-Score can be represented as

	
F − Score = 2 ∗ T P

2 ∗ T P + F P + F N
� (9)

Mean average precision (mAP): the average precision (AP) indicates how precision varies with recall as the 
classification threshold is altered. mAP is a metric that calculates the average precision over multiple categories 
in a multi-class detection task. The number of classes is represented here by M. Formula of mAP can be written 
as,

	
mAP = 1

M

n∑
i=1

AP i� (10)

Dice similarity coefficient (DSC): it provides a numerical measure of how closely the predicted segmentation 
map (A) matches the actual segmentation map (B)43. DSC can be represented as,

	
DSC = 2 (|A ∩ B|)

(|A| + |B|) � (11)

Intersection over union (IoU): ): it provides a quantitative measure of the amount of overlap that exists between 
the predicted segmentation maps (A) and the ground truth segmentation maps (B) by dividing the area of their 
intersection by the area of their union44. The mean Intersection over Union (mIoU) values were computed using 
Eq. (5) for various class labels denoted by "i”. IoU can be represented as

	
IoU = (|A ∩ B|)

(|A ∪ B|) � (12)

	
IoU i = T P i

T P i + F P i + F N i
� (13)

	
MeanIoU = 1

i

4∑
i=1

IoU i� (14)

where FP represents the occurrence of a false positive, TP represents the occurrence of a true positive, FN 
represents the occurrence of a false negative, and TN represents the occurrence of a true negative.

Results and discussions
A. Detection results
The training and validation box loss and mAP curves for sagittal MR images are shown in Fig. 3a, b. Initially, 
the validation curve shows some irregularities at the beginning of the training process. These fluctuations can 
be attributed to the variability in the spine MR images or an insufficient amount of training and validation 
data. Such inconsistencies in the dataset can lead to unusual patterns in the validation curve during the early 
stages of training. The assessments of the experiment employed mAP50 and mAP50-95 metrics to evaluate the 
clarity of the experimental results. For lumbar region detection, the mAP50, precision, and recall values are 
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99.50%, 99.9%, and 100.00%, respectively. For vertebral disc detection, the mAP50 is 99.40%, with precision at 
98.70% and recall at 99.30%. The results show that the model performs remarkably well in detecting both the 
lumbar area and vertebral discs, with nearly perfect precision and recall metrics. The high mAP50 values in both 
categories imply robust performance at lower confidence thresholds. However, the drop in mAP50-95, notably 
in the vertebral discs, indicates that the model’s performance is less consistent at higher confidence thresholds. 
This is usual, as higher confidence thresholds necessitate more precise localization. Overall, the findings are 
extremely positive, especially given the vital importance of correct detection in medical imaging. The nearly 
perfect precision and recall values demonstrate the model’s reliability in real-life applications. Improvements 
could focus on improving performance at higher confidence thresholds, resulting in even greater accuracy 
across all levels of overlap. A confidence value of 0.25 was utilized during the object detection process, resulting 
in a 100 percent detection rate for the lumbar and intervertebral discs. Only detections with confidence scores 
greater than 0.25 are considered valid. The detection results for the lumbar region and IVDs are shown in Fig. 4. 
Initially, the YOLOv8 model was used to detect the lumbar spine region. Once detected, the model cropped 
the lumbar regions based on these detections, as illustrated in Fig. 4a. The cropped lumbar regions were then 
reintroduced into the YOLOv8 model for a second round of detection, this time focusing on identifying the 
lumbar IVDs. The model detected the lumbar IVDs and subsequently cropped these regions according to the 
new set of detections, as shown in Fig. 4b.

The YOLOv8 model used here accurately identifies the lumbar regions and IVDs, providing bounding boxes 
for the regions of interest (ROI). After detection, YOLOv8’s outputs are used to crop and isolate the detected 

Fig. 3.  Training and validation metrics charts of various models. (a,b) Depict the training and validation box 
loss and mAP curve, respectively, for both lumbar region and IVD detection using YOLOv8. (c,d) Represent 
the accuracy and loss curves of different fine-tuned CNN classification models. Additionally, (e,f) show the 
training and validation loss and IoU score curves of different segmentation models.

 

Scientific Reports |          (2025) 15:593 8| https://doi.org/10.1038/s41598-024-84301-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


IVDs, providing clean and focused input data for the classification task. This cropping step significantly reduces 
noise and irrelevant information in the input, which improves the performance of subsequent classification 
models (such as CNN architectures). By providing high-quality, precisely cropped ROIs, YOLOv8 enhances the 
feature extraction process and ensures that the classification models can focus on the relevant features indicative 
of conditions like disc herniation.

The YOLOv8 model is also renowned for its exceptional speed, making it suitable for real-time applications. 
The other model such as Faster R-CNN is typically slower due to their more complex processing pipelines. The 
YOLOv8 model has demonstrated superior accuracy compared to Faster R-CNN and EfficientDet. For instance, 
the YOLOv8 model achieved an mAP50 of 0.62 with a GPU latency of 1.3 ms, while Faster R-CNN achieved an 
mAP50 of 0.41 with a GPU latency of 54 ms and EfficientDet achieved an mAP50 of 0.4745. The YOLOv8 model 
also excels in real-time object detection, offering superior speed and efficiency compared to Faster R-CNN, 
SSD, and RetinaNet46. While transformer-based models such as DETR have shown promise, YOLOv8 delivers 
competitive accuracy with lower computational overhead47.

B. Classification results
Using ROI (IVDs) images, feature extraction and fine-tuned models were examined throughout the classification 
phase. Figure 3c, d displays the accuracy and loss curves for the various fine-tuned CNN models. It shows that 
the ResNet50 model has the lowest loss and the greatest accuracy for both the training and validation phases. 
However, due to insufficient training and validation data, there were variations in the accuracy and loss curves. 
These inconsistencies underscore the impact of data quantity on the model’s performance. The class imbalance 
issue has emerged in this case since there are more normal instances than PLID cases. To address the issue, 
we weighted the majority class with a lower value during training and the minority class with a higher value. 
This adjustment helps the model focus more on the minority class. As a result of this weighting approach, the 
WAE model achieved a prediction accuracy of 100% for normal images and 97.87% for herniated disc images, 
as illustrated in Fig. 5a. Additionally, as depicted in Fig. 5b, the model’s AUC is a commendable 98.94%, with 
a true positive rate of 97.87% and a false positive rate of 0. This indicates the model’s strong performance in 
distinguishing between normal and herniated disc cases.

We also performed the ablation studies, which assess the importance and effectiveness of each component in 
achieving the overall results of the proposed deep learning model. The results of the ablation study for the WAE 
classification and segmentation models are shown in Table 1. For the classification task, when ROI cropping is 
removed and fine-tuning is applied, the model achieves an accuracy of 93.10%. When ROI cropping is used but 
fine-tuning is not applied, the accuracy increases to 96.84%, showing a 3.74% improvement. Finally, when both 
ROI cropping and fine-tuning are used together, the model’s accuracy reaches 99.37%, which is an additional 
2.53% improvement. This demonstrates that both ROI cropping and fine-tuning are crucial for optimizing the 
classification model.

Based on Table 2, which presents evaluation metrics for disc state classification using various fine-tuned 
models on ROI (IVD) images, the WAEM has the best accuracy of any model at 99.37% and a top AUC score 
of 98.94%, suggesting strong performance in differentiating between different disc states. Notably, the WAEM 
model achieves perfect specificity and precision, indicating that it accurately detects all positive instances 
while eliminating false positives. Furthermore, it has a high recall of 97.87% and a remarkable F1-Score of 
98.93%, exhibiting both sensitivity to disc conditions and overall balanced performance across accuracy and 
recall parameters. These findings highlight the efficiency of the ensemble technique, which potentially utilizes 
the capabilities of multiple models to improve classification accuracy and reliability in medical applications. 
Figure  5c depicts a graphical representation of the accuracy of the different CNN models with and without 
a fine-tuned method. The results clearly show that using ROI and fine-tuning approaches improves model 
performance significantly. Notably, the fine-tuned ResNet50 and Xception models achieved the highest accuracy 
(99.84%). This demonstrates the benefits of optimizing model parameters using ROI and fine-tuning procedures 
to improve classification accuracy. Table 3 compares the performance of the suggested WAEM model with 
existing work from various authors. The proposed WAEM model achieves outstanding results, with an accuracy 
of 99.37%, the highest among all models given. It also achieves a perfect precision of 100%, suggesting that its 
predictions contain no false positives. Furthermore, WAEM has a great recall of 97.87% and a remarkable F1-
Score of 98.93%, demonstrating its capacity to accurately identify disc states. Other models, including VGG16, 
ResNet101, AlexNet, and KNN, reported lower accuracies and varying performance metrics across experiments 

Fig. 4.  The detection and cropping outcomes for both (a) the lumbar region and (b) the IVD in an MR image. 
The initial stage (a) shows detection and the cropping of lumbar regions. Subsequently, the second stage (b) 
depicts the detection and cropping of IVD following the identification of the lumbar regions.
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Method ROI cropping Fine-tuning Custom loss function Accuracy (%)

Proposed WAE classification model ✓ ✓ – 99.37

Without fine-tuning ✓  ×  – 96.84

No ROI cropping  ×  ✓ – 93.10

mIoU

Proposed WAE segmentation 
model – – ✓ 91.86

No custom loss function – –  ×  91.63

Table 1.  Results of the ablation study for WAE classification and segmentation model.

 

Fig. 5.  Evaluation of the WAEM’s performance in the classification task. (a) The confusion matrix of the 
WAEM highlights its remarkable accuracy for normal images. (b) The receiver operating characteristic (ROC) 
curve, where the AUC of the WAEM model demonstrates its strong ability to distinguish between different 
classes. (c) A graphical comparison of individual model’s accuracy with and without fine-tuned approaches, 
showcasing the significant performance enhancement achieved through the use of ROI and fine-tuning 
techniques.
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and datasets. This comparison demonstrates WAEM’s greater accuracy and precision, indicating that it can serve 
as a robust classification model for disc state identification.

C. Segmentation results
Various pre-trained encoders and models were evaluated using ROI images. Through a grid search approach, 
weights were assigned as follows: 0.2 to U-Net with ResNet34 and ResNet50, 0.1 to LinkNet with ResNet34, 0.1 to 
PSPNet with ResNet50, and 0.1 to FPN with ResNet34, while the other networks received a weight of 0. The FPN 
model with ResNet34 achieved the highest validation accuracy and the lowest loss. Due to differences in MR scans 
and the limited quantity of training data, the models showed some overfitting. Nevertheless, the results were still 
effective for diagnostic purposes. The insufficient data for training and validation caused some fluctuations in 
the loss and accuracy curves, as illustrated in Fig. 3e,  f. A comparative analysis of segmentation results generated 
by different models is provided, where Fig. 6a shows distinct input images using PLID and Fig. 6b the ground 
truth segmentation. Figure  6c–g displays the anticipated segmentation outcomes of different segmentation 
models. It can be shown from Fig.  6g that the utilization of WAE models yielded superior outcomes in the 
context of segmentation. The predicted results of single models, specifically Fig. 6e, f, exhibit over-segmentation 
and miss-segmentation in certain areas. However, the WAEM exhibits more precise segmentation than other 
models. The individual models were also evaluated with encoders such as VGG19, DenseNet121, InceptionV3, 
MobileNetV2, and Efficientb7, but we did not get satisfactory results for the datasets, so we excluded these 
models from the ensembling process. Ablation studies for the segmentation task shown in Table 1, without using 
the custom loss function, the model achieves a mIoU of 91.63%. When the custom loss function is applied, the 
mIoU increases slightly to 91.86%, showing an improvement of 0.23%. The results highlight the significant role 
of ROI cropping and fine-tuning in enhancing classification accuracy, while the custom loss function provides a 
modest but important improvement in segmentation performance. Table 4 provides a comprehensive evaluation 
of various models with pre-trained encoders, focusing on metrics such as mIoU and Dice coefficient. The U-Net 
model using the ResNet34 encoder has the highest metrics, with a mIoU of 91.55% and a Dice score of 95.57%. 
It indicates outstanding segmentation performance, which outperforms other encoder configurations. LinkNet, 
although slightly behind, demonstrates competitive performance with ResNet34, achieving a mIoU of 91.27% and 
a Dice score of 95.42%. However, models like FPN and PSPNet exhibit a drop in performance, particularly with 
the VGG16 encoder, which has the lowest mIoU at 86.18% and a Dice score of 92.52%. PSPNet with ResNet50 
and ResNext50 configurations also displays relatively lower performance, with mIoUs of 90.71% and 89.50%, 
respectively, and corresponding Dice scores. The DeepLabv3 + model, evaluated only with ResNet50, records 
an mIoU of 90.20% and a Dice score of 94.83%, showing strong but not leading performance. These findings 
demonstrate U-Net’s superior performance across multiple encoders, particularly ResNet34, emphasizing its 
robustness and reliability in medical image segmentation tasks. The variations in performance between models 
and encoder configurations highlight the importance of model architecture and encoder selection in optimizing 
segmentation results. Table 5 presents a comprehensive assessment of the proposed WAE model compared to 
previous methods. WAEM, investigated on a dataset of 403 patients, obtained a Dice coefficient of 95.74%, one 
of the highest previously reported. WAEM also performs exceptionally well in segmenting certain anatomical 
structures, with a spine IoU of 89.37%, a vertebrae IoU of 92.18%, and a vertebral disc IoU of 90.24%, for a mean 
IoU of 91.86%. The others performance metrics achieved by the WAE segmentation model are a Dice score 

Authors Models No. of class No. of patients Accuracy (%) Precision (%) Recall (%) F1-score (%)

Proposed model WAEM 2 286 99.37 100 97.87 98.93

A. kubaisi et al.12 VGG16 2 181 89.01 90.91 90.91 90.91

Q. Pan et al.53 ResNet101 5 500 88.76 – – –

M. Alsmirat et al.13 AlexNet 8 164 91.38 – – –

A. Al Imran et al.54 KNN 2 310 85.20 90.00 88.00 88.99

Table 3.  Comparative analysis of proposed classification models with existing approaches.

 

Models Accuracy with fine-tuning (%) Accuracy without fine-tuning (%) AUC (%) Specificity (%) Precision (%) Recall (%) F1-score (%)

VGG16 89.87 81.01 82.98 100 100 65.96 79.49

VGG19 92.41 82.28 87.23 100 100 74.47 85.37

ResNet50 96.84 94.94 95.91 98.20 95.65 93.62 94.62

DenseNet121 93.04 89.24 88.91 99.09 97.37 78.73 87.06

InceptionV3 93.03 92.41 91.98 94.60 87.50 89.36 88.42

Xception 96.84 90.51 96.52 97.30 93.75 95.75 94.74

AEM 98.10 93.67 96.81 100 100 93.62 96.70

WAEM 99.37 96.84 98.94 100 100 97.87 98.93

Table 2.  Detailed evaluation metrics for disc state classification of ROI images, comparing performance with 
and without fine-tuned models.
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Fig. 6.  A comparison of segmentation outcomes produced by different models. (a) Showcases various input 
images with PLID. (b) The ground truth segmentation of the input images. (c–g) The predicted segmentation 
results of different segmentation models. (e,f) Represent the segmentation outcomes of single models, 
highlighting instances of over-segmentation and miss-segmentation in certain areas. The WAEM, represented 
in (g), demonstrates more precise segmentation compared to other individual models.
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of 95.74%, an accuracy of 96.22%, a recall of 95.63%, and a precision of 95.86%. These results outperformed 
previous models, such as Zheng et al.'s BianqueNet16, which, despite having a high Dice score of 95.51% and 
comparable vertebral disc IoU, lags slightly in overall mean IoU. Notably, U-Net models and other methods such 
as Spine-GAN and SVM show significantly lower performance, particularly in the mean IoU. The improved 
attention U-Net by Wang et al.48 records a high Dice score but lacks comprehensive IoU metrics.

Recently, Saeed et al.49 proposed the multi-scale feature fusion (MSFF) network for spine fracture 
segmentation using CT images. This approach involves a complex framework with six modules for spatial feature 
extraction, channel-wise feature enhancement, and positional focus on the region of interest. It is particularly 
effective in handling multi-scale features and improving segmentation border refinement. In another study, the 
same authors50 introduced a similar MSFF model employing multi-scale feature fusion techniques with five 
modules, but this approach was tailored for MRI images. In their further study51, they proposed a 3D MRU-Net, 
which incorporates residual blocks (MobileNetv2) and cascaded hierarchical atrous spatial pyramid pooling 
(CHASPP). This model facilitates multi-view feature extraction from 3D CT images. Including attention modules 
in the decoder enhances the model’s ability to focus on regions of interest. Furthermore, the same author52 
introduced CHASPPRAU-Net for spine segmentation and 3D MRU-Net with residual blocks (MobileNetv2) 
for vertebra recognition. These models demonstrate a more sophisticated approach to handling 3D data while 
incorporating attention mechanisms. In contrast, our proposed feature extraction approach leverages pre-
trained encoders such as VGG19, ResNet34/50, and ResNext50, trained on ImageNet for segmentation tasks. 
This approach focuses on transfer learning techniques using various architectures, including U-Net, LinkNet, 
FPN, PSPNet, and Deeplabv3 + . These models rely primarily on encoders for feature extraction and decoders 
for feature concatenation in segmentation tasks. While our approach emphasizes pre-trained 2D encoders for 
feature extraction, the works by Saeed et al. introduce more complex multi-scale feature fusion techniques. Their 
methods involve multiple modules, MobileNetv2 as an encoder (similar to our work), and CHASPP layers for 
feature extraction in spine-related segmentation tasks. Overall, the WAEM model establishes a new benchmark 
for accuracy and reliability in spine and vertebral disc segmentation, demonstrating its robustness and usefulness 
in clinical settings for precise anatomical segmentation.

To address the overfitting issues, we have included several measures to ensure the robustness of our model. 
The training and validation curves show minimal gap, indicating that overfitting is not significant. Additionally, 
we employed techniques such as dropout regularization, data augmentation, and an early stopping function to 
further mitigate overfitting. The fine-tuned pre-trained models which are trained on a large dataset were also 
used specifically for our work, leveraging transfer learning to improve generalization with a relatively small 
dataset. These efforts collectively demonstrate our commitment to reduce overfitting effectively. We acknowledge 
that cross-validation was not performed in this study due to time and computational constraints. However, 
we plan to include cross-validation in future work as part of a more comprehensive evaluation. Furthermore, 
although validation on independent datasets was not feasible due to a lack of access to external data, we have 
outlined this as a priority for future research. In the current study, to simulate independent validation and 
assess generalization ability, we used separate splits for training, validation, and testing, ensuring that the test 
set remained entirely isolated during model training. This approach allowed us to provide a robust evaluation of 
the model’s performance within the constraints of the available data. The accuracy of the models may degrade 
when applied to data from MR scanning devices of different manufacturers, due to variations in calibration and 

Authors Models No. of patients Dice (%) Spine IoU (%) Vertebrae IoU (%) Vertebral disc IoU (%) Mean IoU (%)

Proposed Model WAEM 403 95.74 89.37 92.18 90.24 91.86

Zheng et al.16 BianqueNet 223 95.51 90.35 94.25 90.19 91.60

J. Jairo et al.15 U-Net 181 – 75.50 86.00 88.70 83.40

S. Wang et al.48 Improved Attention U-Net 180 95.01 – – – –

Z. Han et al.55 Spine-GAN 253 87.10 87.00 81.00 87.30 –

S. Ghosh et al.14 SVM 212 – – – 84.00 84.00

S. Pang et al.56 SpineParseNet 215 89.22 – – – –

Cheng et al.57 MultiResU-Net 180 – – – 77.10 –

Table 5.  Detailed contrast between the proposed method and previous approaches.

 

Models

ResNet34 ResNet50 ResNext50 VGG16

mIoU (%) Dice (%) mIoU (%) Dice (%) mIoU (%) Dice (%) mIoU (%) Dice (%)

U-Net 91.55 95.57 91.20 95.38 90.90 95.22 90.83 95.18

LinkNet 91.27 95.42 90.11 94.77 90.83 95.17 90.64 95.07

FPN 90.89 95.21 89.85 94.63 89.73 94.56 86.18 92.52

PSPNet 90.84 95.18 90.71 95.11 89.50 94.43 90.39 94.93

DeepLabv3 +  – – 90.20 94.83 – – – –

Table 4.  Comparative evaluation metrics for different models utilizing pre-trained encoders.
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data acquisition parameters. The complexity of anatomical structures necessitates significant expertise for the 
manual segmentation of mid-sagittal MR images. Furthermore, categorizing intervertebral discs into specific 
groups is challenging, as some data points are ambiguous. For future work, it is crucial to expand the dataset, 
particularly with more instances of disc herniation, to improve the robustness of the models. Increasing the 
volume of training data can also help mitigate overfitting in detection and segmentation models.

Conclusions
We have developed an innovative approach for the accurate detection and cropping of ROI in medical imaging, 
specifically targeting the lumbar regions of the spine and IVDs using the YOLOv8 framework. To enhance 
the overall accuracy of the classification models, fine-tuned techniques are applied. To address the issue of 
insufficient training data, transfer learning is employed. Moreover, the problem of class imbalance is solved 
by assigning higher weights to the minority class and lower weights to the majority class during the training 
phase. The WAE classification model has demonstrated significant improvements in lumbar IVDs classification 
performance, achieving an accuracy of 99.37%, an F1-score of 98.93%, a precision of 100%, a recall of 97.87%, 
and an AUC of 98.94%. For the WAE segmentation model, we incorporated a range of pre-trained encoders, 
including U-Net, LinkNet, PSPNet, and FPN with VGG16, ResNet34, ResNet50, and ResNext50 encoders, as 
well as DeepLabv3 + with a ResNet50 encoder, all of which are pre-trained on ImageNet. This combination 
of models, alongside the WAE technique, has resulted in substantial performance enhancements. The WAE 
segmentation model achieved a mIoU of 91.86%, a Dice score of 95.74%, an accuracy of 96.22%, a recall of 
95.63%, and a precision of 95.86%. With this developed automated method, PLID assessments might be done 
more quickly and with more precision, greatly improving the diagnosis procedure.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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