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TOPS-speed complex-valued convolutional
accelerator for feature extraction and
inference

Yunping Bai1, Yifu Xu 1, Shifan Chen1, Xiaotian Zhu2, Shuai Wang1, Sirui Huang1,
Yuhang Song1, Yixuan Zheng1, Zhihui Liu1, Sim Tan3, Roberto Morandotti 4,
Sai T. Chu 2, Brent E. Little5, David J.Moss 6 , XingyuanXu 1 &KunXu1

Complex-valued neural networks process both amplitude and phase infor-
mation, in contrast to conventional artificial neural networks, achieving addi-
tive capabilities in recognizing phase-sensitive data inherent in wave-related
phenomena. The ever-increasing data capacity and network scale place sub-
stantial demands on underlying computing hardware. In parallel with the
successes and extensive efforts made in electronics, optical neuromorphic
hardware is promising to achieve ultra-high computing performances due to
its inherent analog architecture and wide bandwidth. Here, we report a
complex-valued optical convolution accelerator operating at over 2 Tera
operations per second (TOPS). With appropriately designed phasors we
demonstrate its performance in the recognition of synthetic aperture radar
(SAR) images captured by the Sentinel-1 satellite, which are inherently
complex-valued and more intricate than what optical neural networks have
previously processed. Experimental tests with 500 images yield an 83.8%
accuracy, close to in-silico results. This approach facilitates feature extraction
of phase-sensitive information, and represents a pivotal advance in artificial
intelligence towards real-time, high-dimensional data analysis of complex and
dynamic environments.

Artificial neural networks (ANNs) emulate the human brain’s learning
processes, comprising interconnected nodes that adapt basedondata.
With sufficient computing power and trainingdata, ANNs excel at tasks
such as pattern recognition, speech processing, and decision-
making1–6. While generic ANNs are real-valued, exclusively handling
amplitude information, wave-related scenarios that involve both
amplitude and phase information highly desire neural networks tai-
lored for waves (i.e., complex-valued neural networks). Applications
where complex-valued neural networks are heavily needed include
radar technologies,which rely onunderstandingphase information for

target detection and localization, such as analyzing ice thickness or
industrial activities at sea using synthetic aperture radar (SAR) images
captured by satellites7,8; telecommunications, where the intricate
interplay of amplitude and phase defines signal characteristics; and
robotics, where precise wave-based sensing enhances spatial
awareness9–14.

The complex-valued operations in neural networks are generally
decomposed as real-valued multiply-and-accumulate operations,
which can be achieved through reading and writing data back-and-
forth between the memory and processor in von Neumann
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architectures. As the data capacity (such as for massive satellite net-
works) and neural network scale (such as for Large Language Models)
dramatically increase, the underlying computing hardware of
complex-valued neural networks are expected to feature more
advantages such as: (a) efficient computing architectures/interfaces
compatible with waves and complex-valued data; (b) sufficiently large
fan-in/out, needed for processing high-dimensional data in practical
wave-related scenarios; (c) high bandwidth/throughput, for analysis of
fast-varying features of waves in real-time.

In parallel with the failure of Moore’s Law and thus extensive
efforts made in electronics15–18, optical neuromorphic computing
hardware19–44, offering ultra-high speeds facilitated by the >10THz
wide optical band, and minimal energy consumption down to
2.5 × 10−19 J per operation due to their analog architecture19,20, are
promising for complex-valued neural networks. Recently, decent
advances have been made with optics, such as complex-valued matrix
multiplication operations using delicate photonic integrated circuits42

or diffractive optics22,43, and complex-valued activation functions
involving 2D materials44. However, existing work primarily focuses on
the acceleration of fully-connected networks (i.e., formed by matrix
multiplication operations), and thus the data input dimension is
limited by the hardware parallelism. Optical neuromorphic
hardware capable of processing high-dimensional, high-speed com-
plex-valued data streams, or fast-varying waves, have not been
demonstrated yet.

Here, we report a complex-valued optical convolution accelerator
(CVOCA), capable of extracting high-dimensional ultrafast hierarchical
features of waves or complex-valued data streams. We propose and
demonstrate methods to map complex-valued information onto ana-
log optical physical systems in a fast manner, including complex-
valued electro-optic modulation for input data and wavelength syn-
thesizing for convolutional weights. By interleaving high-speed time-
multiplexed, complex-valued input data and spectrally synthesized
wavelengths from a microcomb source45–51, we achieve a computing
speed of over 2 Tera operations per second (TOPS). Further, we use
this system to process SAR images captured recently by the Sentinel-1
satellite (https://sentinel.esa.int/web/sentinel/copernicus/sentinel-1),
which are inherently complex-valued and intricate for inference7–9,52–54.
Experimental tests with 500 samples yielded an accuracy of 83.8%,
close to in-silico results. This universal feature extractor or data com-
pressor, with its high-performance and efficient neuromorphic hard-
ware tailored for intricate phase-sensitive data (or wave) processing
tasks, will impact many applications from telecommunications to
radar systems and satellite imaging, where it can be placed in satellites
for the Copernicus program, enabling faster and better understanding
of the Earth7,8.

Results
Principle of operation
For complex-valued input data X = |X | ·exp[ j·φ]=XR + j·XI (XR = |X | ·
cosφ; XI = |X | ·sinφ) and kernel weights W = |W | ·exp( j·θ) =WR + j·WI

(WR = |W | ·cosθ; WI = |W | ·sinθ), the convolution results can
be given as Y = [ |X | ·exp( j·φ)]*[|W | ·exp( j·θ)]=(WR*XR −WI*XI) +
j·(WR*XI +WI*XR), which demand fast complex-valued multiplication
operations and a sliding window across the input data X achieved by
the underlying hardware accelerator. During complex-valued con-
volution operations, the input data need to be multiplied by complex-
valued weights in sequence (i.e., following the sliding windowmanner,
Fig. 1), which involves simultaneous multiplications of modules (i.e.,
|X | · |W | ) and summation of phases (i.e., φ + θ). The entire complex-
valued convolution operation demands massive amplitude and phase
operations, intrinsically requiring accurate and delicate power and
phase manipulations in the optical domain. In addition, all the above
operations need to be accomplished at high speeds, thereby

effectively achieving the acceleration of complex-valued convolutional
calculations. As such, this complicated computing operator poses
more substantial requirements on the underlying computing hard-
ware, in contrast to the real-valued counterparts.

Here, we propose a high-performance CVOCA capable of accel-
erating the complex-valued convolutionoperations at a high-speed for
inference tasks (Fig. 2). Specifically, the primary challenge to imple-
ment the CVOCA lies inmapping the complex-valuedweights onto the
physical optical system. To achieve this, we propose a “synthetic
wavelength” method to construct complex-valued weights W in a
stable and incoherent manner. Each synthetic wavelength (i.e.,
complex-valued weight) W[m] (m∈[1, M]) comprises of two micro-
comb lines with the power adjusted as WR[m] and WI[m]. We shape
and interleave an on-chip microcomb as even and odd wavelength
channels (Mwavelengths for each path) to carry the real and imaginary
components ofW (i.e., optical power equals toWR[m] at λeven[m] and
WI[m] at λodd[m], respectively, m∈[1, M]). While different wavelength
channels are orthogonal (i.e., the corresponding Nyquist bandwidth,
or half of adjacent wavelengths’ spacings, is larger than the electrical
bandwidth of input data X), the orthogonality between the real and
imaginary parts of W is guaranteed.

In parallel, the input data vector X = |X | ·exp(j·φ) = XR + j·XI is
time-multiplexed with a symbol duration of T, with its real and ima-
ginary parts encoded onto a cosine wave with fast-varying amplitudes
and phases as X[n] = |X[n]|·cos{ωct +φ[n]} (ωc = 2π/T denotes carrier’s
angular frequency, n denotes discrete temporal locations of the
symbols). This cosine wave can also be given as X[n] =
XR[n]·cosωct +XI[n]·sinωct, denoting that the real and imaginary parts
of input data X are carried by a pair of orthogonal bases cosωct and
sinωct, respectively.

Then, the input wave X[n] and its Hilbert transform j·X[n] are
modulatedontowavelengths λodd and λeven that correspond toWR and
WI, respectively, thus yielding weighted replicas WR[m]·X[n] and
WI[m]·j·X[n], across the two sets of wavelengths.

Here we designed a complex-valued electro-optic modulator
(CVEOM) to perform the electro-optic modulation of complex-valued
input data and kernel weights. It has two optical input ports (for the
input of λodd and λeven, respectively), two parallel sub-Mach-Zehnder
modulators (for the input of X[n] and j·X[n]) and one optical output
port. The CVEOM featured imbalanced delays between the two mod-
ulation paths to compensate for the delay difference between λodd and
λeven (induced by subsequent dispersion).We note that the CVEOM is a
non-trivial device, not only for convolution accelerators demonstrated
in this work but also for other neuromorphic or communications
applications involving complex-valued data. Although we employed
discrete fiber-based components to build the CVEOM (including two
Mach-Zehnder Modulators, a 90° electrical hybrid coupler with an in-
phase output X and a quadrature output j·X, and a tunable optical
delay line to compensate for the delay differences), we note that it
features similar components as classic IQ modulators such that it can
be massively produced as well; nonetheless, the “wavelength synthe-
sizing” technique of CVEOM enables manipulating the phases of
optical carriers, rather than just the input signals as IQmodulators do.
We note that the performance/consistency of the CVEOM can be fur-
ther optimized for multi-wavelength operation, with readily available
techniques such as waveguide designs55 and feedback bias
controllers56.

Next, the weighted replicas at all wavelengths are progressively
delayed via dispersion, with delay steps equal to the symbol duration
T. As the delay difference between λodd and λeven, induced by disper-
sion, are compensated inside the CVEOM, the delayed replicas of X[n]
and j·X[n] are aligned in time, given as WR[m]·X[n −m + 1] and
j·WI[m]·X[n −m + 1], respectively. Finally, all weighted and delayed
replicas are summed upon photodetection, yielding the output
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convolution results

Y½n�= ½jW½m�j exp½j � θ½m���*½jX½n�j exp½j � φ½n���

=
XM

m= 1

jW½m�j � jX½n�m+ 1�j � exp½j � ðθ½n�+φ½n�m+ 1�Þ�

=
XM

m= 1

WR½m� � XR½n�m+ 1�+ j �WR½m� � XI½n�m+ 1�

+ j �WI½m� � XR½n�m+ 1� �WI½m� � XI½n�m+ 1�
= fðWR*XRÞ½n� � ðWI*XIÞ½n�g+ j � fðWR*XIÞ½n�+ ðWI*XRÞ½n�g

ð1Þ

where the real and imaginary parts are carried on the amplitude and
phase information of the output wave Y (i.e., the pair of orthogonal
bases cosωct and sinωct after decomposition).

As such, the convolution window effectively slides across the
input data at a speed equal to its baud rate 1/T. This can be further
denoted by its computing speed, given as 2 ×M/T × 4 operations per
second (OPS), which linearly scales with the signal baud rate and
number of employed wavelengths.

Notably, the CVOCA realized mapping the complex-valued
weights (involving amplitude and phase) onto the synthetic optical
wavelengths via the CVEOM, which can efficiently manipulate the
amplitude and phase of input complex-valued data by controlling the
optical power of two sets of wavelengths λodd and λeven. This approach
avoids direct manipulation of optical phases, which are susceptible to
external environments and remain challenging to be accurately con-
trolled, and supports intensity detection to directly obtain the output

calculated results, thus leading to higher robustness and potentially
lower cost, in contrast to coherent schemes. As a result, a convolution
accelerator for complex-valued data can be achieved in this work, in a
high-speed, robust, and low-cost manner.

Complex-valued matrix convolution
In the experimental demonstration of our CVOCA, a key building
block is the soliton crystal microcomb source that yielded tens of
wavelength channels for the mapping of the complex-valued con-
volutional kernel weights W (Fig. 3). The employed soliton crystal
microcomb, featuring a 50.2 GHz free spectral range, originated from
wideband parametric oscillation in a micro-ring resonator (MRR),
offering a small footprint, a large Nyquist bandwidth and a large
number ofwavelengths.We interleaved themicrocomb as two sets of
comb lines (λodd and λeven), each withM = 9 comb lines (18 in total) to
implement a 3 × 3 complex-valued convolution kernel. For a proof-of-
concept demonstration, we designed 4 convolution kernels based on
a classic real operator S and its transpose ST (note S·ST = 0). Each
weight matrix was flattened into a vector for comb spectra shaping
via a Waveshaper.

To evaluate the performance of the CVOCA, we tested two sets of
input data, including: (a) an input datamatrix Xa constructed from the
conjugates of the four kernel weight matrices W* and their Hilbert
transform j·W*, such that the output feature map Ya can illustrate the
process of multiplication or dot product (and thus convolution) of
complex-valued matrices and the capability of simultaneously pro-
cessing amplitude and phase (i.e., real and imaginary) information
(Fig. 3, see full results in Supplementary information); (b) a blood cell
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and the length and direction of the arrows show the amplitude and complex angle
of data. b The complex-valued kernels with amplitude and phase. c The illustration

shows the process of complex-valued convolution operation, wherein the outputs
(green arrows) come from the complex-valued summation of multiple delayed
weighted replicas.
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image Xb captured via fluorescence microscopy (https://github.com/
Shenggan/BCCD_Dataset), with the real and imaginary components
constructed as its horizontal and vertical derivatives, to demonstrate
the CVOCA’s capability for practical datasets (Fig. 4, see full results in
Supplementary information).

In the experiments, the input complex-valued data matrix was
subsequently flattened and encoded onto a cosine wave’s amplitude
and phase information. Then the electrical wave was input into the
CVEOM, where it and its Hilbert transform were individually modu-
lated onto the interleaved wavelength sets λodd and λeven, yielding
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W11. fThe electrical waveforms show the convolution results, with the experimental
and simulated results denoted as solid and dashed lines, respectively. The feature
maps are experimental results for kernel W11, featuring distinct locations of max-
imum real and imaginary elements, as highlighted in dashed boxes.
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weighted replicas, which were then coupled together and transmitted
through a spool of dispersion compensation fiber. The delay step
between adjacent wavelengths, introduced by dispersion, matched
with the symbol duration, thus achieving the time-wavelength inter-
leaving needed for convolution operations. Notably, the λodd and λeven
wavelength channels exhibited a relative delay of T/2 due to disper-
sion, which was compensated with a tunable optical delay line inside
the CVEOM. Finally, the delayed replicas were summed upon photo-
detection to yield convolution results.

After decoding, the real and imaginary components of the output
were obtained. We note that to achieve negative weights, the delayed
replicas were separated into two spatial paths by a Waveshaper,
according to the sign of W, then converted to electrical signals via a
balanced photodetector. Feature map matrices were obtained after
resampling, where each element representing the sum of the Hada-
mard product between the kernel weightmatrix and the inputmatrix’s
elements within the convolution window, or receptive field. As such,
when the convolution window aligned with: (a) the region in X that
equals to the kernel’s conjugate, the maximized real output |W | 2 was
yielded (2 | S | 2 in Fig. 3); (b) the region in X that equals to the kernel’s
conjugated Hilbert transform, the maximized imaginary output j·|W | 2

was yielded (j2 | S | 2 in Fig. 3). This is illustrated in the feature maps Ya

yielded by the four kernels (Fig. 3), where distinct locations of the
maximum real and imaginary elements correspond to hierarchical
complex-valued features extracted by different kernels. Such char-
acteristics of complex-valued convolution are also denoted in the
processing of biological images in Fig. 4. Notably, while the strides of
the convolution window were inhomogeneous due to the matrix-
flattening process, they did not hinder the performance of our
approach (serving as a subsampling function for pooling) and can be
tailored as generic homogeneous strides when necessary.

We note that the CVOCA’s performance was investigated under
different system settings, involving the symbol rate 1/T (14.245 GBaud
forXa, 14.245 × 2GBaud forXb), the spacing of λodd and λeven (200GHz
for Xa, 100GHz for Xb; which indicates that the same dispersive
medium can be used for both cases and thus the input data rate can be
adjusted by simply reprogramming the Waveshaper and change the
wavelength channels’ spacing). The cosinewave’s frequencyωc/2πwas
set as 14.245 GHz for both cases. The peak computing speed of the
system reaches 2 ×M/T × 4 = 2 × 9 × 14.245 G × 4 = 1.0256 TeraOPS for
Xa and 2 × 1.0256= 2.0512 TeraOPS for Xb. This is the fastest complex-
valued computing hardware so far.

Complex-valued convolutional neural network
To validate the capability of the CVOCA in complex-valued feature
extraction, we used it to accelerate the first convolutional layer of
complex-valued convolutional neural networks (CVCNNs) for both a
benchmarking handwritten digits dataset and a SAR (Synthetic Aper-
ture Radar) imaging dataset, wherein we used two different system
settings as introduced above (case Xb for handwritten digits, and case
Xa for SAR images), achieving a single-kernel computing speed up to
2.0512 TeraOPS, over 3 times faster than prior photonic convolution
accelerators used in inference tasks30,33,34.

For the first handwritten digit dataset57, the full CVCNN includes
one complex-valued convolutional layer and one fully-connected
layer. Each input complex-valued imagewith a size of 14 × 28originates
from folding single real-valued 28 × 28 images58, whereinhalf datawere
regarded as the real parts, and the other data formed the imaginary
parts (Fig. 5). The input complex-valued images are convoluted with
two parallel 3 × 3 complex-valued convolutional kernels, and then
generating two complex-valued feature patterns. Here, the CVOCA’s
parameters is set the same as the above test for input dataXb, yielding
the same computing speed of over 2 TOPS. The corresponding
experimental results for 500 images yield a recognition accuracy of
91%, close to in-silico results.

We note that the MNIST dataset serves as a benchmark test to
validate the reach of our complex-valued convolution accelerator. Due
to the process of converting real-valued input data into complex-
valued data (where the real and imaginary parts do not necessarily
correlate with each other in practice), the recognition accuracy
degraded in contrast to real-valued neural networks58. The method of
real-to-complex conversion needs to be tailored and further optimized
according to specific datasets (i.e., correlations of the raw input data)
and tasks, to obtain performance improvements in contrast to real-
valued neural networks.

Furthermore, we also used the CVOCA to accelerate a CVCNN
specifically tailored for recognizing SAR images (https://sentinel.esa.
int/web/sentinel/copernicus/sentinel-1)7–9,52–54, wherein complex-
valued convolution operations account for over 90% of the overall
computing power. SAR images present a challenge as they are inher-
ently complex-valued in their raw forms — non-trivial in contrast to
benchmark datasets such as handwritten digits. This tailored utiliza-
tion of the CVCNNwithin the SAR context underscores the critical role
played by complex-valued convolution operations, further emphasiz-
ing the efficacy of our approach in addressing the computational
demands of intricate tasks, particularly in SAR image recognition. The
SAR images’ real and imaginary components exhibit inherent correla-
tions, jointly conveying the physical properties of the detected
objects, thus CVCNNs can significantly outperform real-valued CNNs,
which typically neglect the imaginary information (https://sentinel.esa.
int/web/sentinel/copernicus/sentinel-1)7–9,52–54.

The demonstrated SAR images dataset was captured by the
Sentinel-1 satellite of the Copernicus program, encompassing 7
categories of Earth surfaces, including agriculture, forest, high-
density urban, high-rise building, low-density urban, industry region,
and water region (https://sentinel.esa.int/web/sentinel/copernicus/
sentinel-1)52–54. Each sample includes two complex-valued 100 × 100
SAR images, obtained from two polarization channels of the satellite
(horizontal-horizontal, or HH, and horizontal-vertical, or HV).

For both polarization channels, each input SAR image was con-
volved with four 3 × 3 complex-valued kernels, yielding four 34 × 100
feature maps (because of non-symmetric convolution strides, Fig. 6).
Subsequent networkoperationswere performed in silico.Wenote that
although the kernels were sequentially implemented in the experi-
ments, parallel operation is straightforward to implement by dupli-
cating the current paths. The matrix-flattening methods, device
parameters, and signal processing flow remained consistent with
demonstrations in the above section for input data Xa. The experi-
mental results closely matched with in-silico results, except for that
our CVOCA’s input data rate was at 14.245 GBaud — over ten times’
faster than its electronic counterparts (generally at ∼1 GHz clock rate)
and capable of processing ∼13.7 million 100 × 100 SAR images
per second.

During Post-resampling, the extracted feature maps were further
processed in silico to yield recognition results (Fig. 7). We experi-
mentally tested 500 samples (i.e., 2 × 500 complex-valued SAR images)
and obtained a classification accuracy of 83.8%, close to the 85.4%
achieved in silico. We note that the recognition accuracy (i.e., the
accuracy of the demonstrated complex-valued convolution accel-
erator) mainly depends on the accuracy of the experimental system’s
time/frequency response, which was subject to factors including:
weight control accuracy (subject to non-ideal wavelength-division
responses of modulators, photodetectors, and amplifiers, compen-
sated for here by the peripheral comb shaping system); the delay
errors between the CVEOM’s two arms (experimentally compensated
for using delay lines and reduced to ps level) and adjacent wavelength
channels (induced by high-order dispersion, negligible in our case
using a spool of dispersion compensation fiber); inter-symbol inter-
ference caused by system bandwidth limitations/nonlinearities — a
common issue inoptical communications that canbecompensated for
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via post-digital electronics. This experimental validation of CVOCA for
SAR image recognition not only shows the hardware’s ability in cap-
turing intricate features of complex-valued data but also highlights its
practical utility in real-world applications such as Earth observation
and remote sensing.

Discussion
In addition to its demonstratedperformance, theCVOCAcanbe scaled
to achieve significantly higher levels of parallelism and performance
using readily available commercial off-the-shelf technology. By utiliz-
ing the full S, C, and L telecommunications bands (1460–1620 nm,
>20THz), we can accommodate over 200 channels (with a 100GHz
spacing). This capability can be further enhanced by leveraging
polarization and spatial dimensions, enabling speeds in the PetaOPS
regime. Moreover, while the comb source is already integrated, other
essential components such as the optical spectral shaper, complex-
valued modulator, dispersive media, demultiplexer, and photo-
detector can also be integrated using advanced nanofabrication
techniques59–64, enabling monolithic integration of the CVOCA with
high computing speed and low SWaP (Size, Weight, and Power
consumption).

In addition, while a single convolutional layer was demonstrated
for the image recognition tasks in this work to validate the perfor-
mance of the CVOCA, this does not indicate any limitations onto the
network’s scale or completeness.Ononehand, theCVOCAcan serve as
a computing unit, or a chiplet when integrated, that can be invoked
iteratively in a complicated (digital-analog hybrid) computing system,
thus do not impose any limitations onto the achievable neural network
scale; on the other hand, for other neuromorphic functions such as
nonlinear activations44, fully-connected layers42 have readily been
implemented using optics, which can be integrated together with the
CVOCA to form a complete optical neural network.

Further, we note that this CVOCA representsmajor advances over
the previous work30 including:
a. Capability of extracting features of complex-valued data, or

waves. This is enabled by innovative data mapping techniques,
such as the CVEOM for data input and wavelength synthesizing
technique for the kernel weights, enabling encoding both
amplitude and phase information onto analog physical hardware
in a fast manner. Followed by delicate time-wavelength interleav-
ing of complex-valued data and weights, the complex-valued
convolutional window can slide across the input data, at a speed
of 28 Giga symbols per second, yielding feature maps of input
waveswith a computing speed of over 2 TOPSper kernel, opening
up possibilities for real-time processing of waves in applications
ranging from satellite imaging to telecommunications. We note
that, although a complex-valued convolution is constituted by
four real-valued convolutions that can be separately accelerated
with the approach in ref. 30 (i.e., W*X = [WR*XR - WI*XI]+
j·[WR*XI +WI*XR]), our approach that directly processes complex
values is more efficient/compact. Specifically, on one hand, four
separate systems are needed if using the real-valued approach30,
thus significantly increasing the overall complexity in terms of
data fan-in/-out, delay error compensation, weight control, signal
synchronization etc.; on the other hand, our approach is
compatible with waves (i.e., |X[n]|·cos{ωct +φ[n]}), thus having
the potentials of bypassing AD/sampling/demodulation pro-
cesses and directly processing raw complex-valued data from
communications and SAR systems, albeit requiring further
investigations in terms of data encoding/decoding protocols etc.

b. Optimized performances. This work achieves a higher single-
kernel computing speed for inference tasks, due to the enhanced
data rate and additional parallelism brought about by complex-
valued operations. In performing handwritten digits recognition,
this CVOCAoperates at over 2 TOPS,which is about 4 times that of

previous work30 (5 × 5 kernel, 2 × 25 × 11.9G =0.595 TOPS) and
even higher than other convolution accelerators33,34.

c. More intricate inference tasks. This CVOCA was not only investi-
gated in the CVCNN by utilizing benchmark datasets (i.e., hand-
written digits) but also demonstrated in achieving extracting
features of complex-valued SAR images captured by a satellite.
Handwritten digits are relatively simple datasets with basic spatial
structure features (e.g., the pixel value for the background in each
handwritten digit image is simply zero). In contrast, real-world
applications exhibit a wide variation in pixel values and possess
more complex spatial structures. This complexity requires the
convolutional kernel to capture features in each image more
accurately for classification in the fully-connected layer. Although
only the initial complex-valued convolutional layer of the CVCNN
for recognizing SAR images was accelerated by utilizing the
CVOCA, the complexity and difficulty are both far beyond
handwritten digits recognition. Specifically, for the initial
complex-valued convolutional layer the CVCNN, 500 samples
with the size of 2 × 100 × 100 need to be calculated with four
parallel 3 × 3 complex-valued kernels in both HH and HV channel,
which is equivalent to perform the calculation of 80000
handwritten digits with the size of 28 × 28.

In conclusion, we demonstrate a complex-valued optical con-
volution accelerator with a computing speed exceeding 2 TOPS and
use the hardware for the recognition of complex-valued synthetic
aperture radar (SAR) images recently captured by the Sentinel-1
satellite. The system can process 13.7 million 100 × 100 SAR images
per second, while experimental tests with 500 samples yielded an
accuracy of 83.8% — close to in-silico results. This approach offers
neuromorphic hardware capabilities for phase-sensitive feature
extraction, with applications in telecommunications as well as in radar
and satellite image processing.

Methods
In this work, we employ a specific category of microcombs known as
soliton crystals48, which naturally form within micro-cavities featuring
appropriate mode crossings, eliminating the need for intricate
dynamic pumping and stabilization methods, and thus being suitable
for WDM-based applications including optical neural networks. The
coherent soliton crystal microcomb was generated through optical
parametric oscillation within a single integrated micro-ring resonator
(MRR), which was fabricated on a CMOS-compatible doped silica
platform30, featuring a high Q factor exceeding 1.5 million and a free
spectral range of ~50GHz. The pump laser at ~1570 nm was amplified
to initiate parametric oscillation in theMRR, yielding over 40 channels
in the telecommunications C-band (1540–1570 nm).

In the experiment, to achieve the designed kernel weights, the
generatedmicrocombwas shaped in power using two spectral shapers
based on liquid crystal on silicon (Finisar WaveShaper 4000S and
16,000A). The first was used to roughly shape and interleave the
microcomb lines for subsequent separate modulation, while the sec-
ond achieved precise comb power shaping and negative weights
together with a balanced photodetector. Specifically, the second
spectral shaper precisely shaped the comb lines’ power according to
the absolute value of weights, then separated the comb lines into two
groups according to the signs of the kernel weights. The two groups of
wavelengths were directed to two separate output ports of the
Waveshaper and input into a balanced photodetector (Finisar BPDV
2120 R). The balanced photodetector detected the optical power of
the negative-sign andpositive-signwavelength groups, and performed
differentiation of the yielded photocurrents, effectively achieving
subtraction of the twowavelength groups and thus negativeweights. A
feedback loop was employed to improve the accuracy of comb shap-
ing, where the error signal was generated by first measuring the

Article https://doi.org/10.1038/s41467-024-55321-8

Nature Communications |          (2025) 16:292 11

www.nature.com/naturecommunications


impulse response of the system and comparing it with the ideal
channel weights.

A dispersive compensationmodule with a dispersion of 43 ps/nm
was used to progressively delay the weighted replicas. Finally,
according to the signs of kernel weights, the second spectral shaper
routed the wavelength channels into the two input ports of a balanced
photodetector (Finisar BPDV 2120R). The output electrical temporal
waveform was received and sampled by a high-speed oscilloscope
(Lecroy).

Data availability
The experimental data generated in this study are provided in the
Supplementary Information.

Code availability
The codes that support the findings of this study are available from the
corresponding authors upon request.
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