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Abstract
Background Polycystic ovary syndrome (PCOS) is a common endocrine disorder affecting women of reproductive 
age. It is characterized by symptoms such as hyperandrogenemia, oligo or anovulation and polycystic ovarian, 
significantly impacting quality of life. However, the practical implementation of machine learning (ML) in PCOS 
diagnosis is hindered by the limitations related to data size and algorithmic models. To address this research gap, we 
have increased the sample size in our study and aim to utilize two ML algorithms to analyze and validate diagnostic 
biomarkers, as well as explore immune cell infiltration patterns in PCOS.

Methods We performed RNA-seq analysis on granulosa cell, including 13 samples from normal controls and 25 
samples from women with PCOS. The data from our study were combined with publicly available databases. Batch 
effects were corrected using the ‘sva’ package in R software. Differential expression analysis was performed to 
identify genes that exhibited significant differences between the two groups. These differentially expressed genes 
(DEGs) were further analyzed for Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways. Hub genes were selected by intersecting the results of both methods after using LASSO and SVM-RFE for 
central gene selection for DEGs. Receiver Operating Characteristic (ROC) curves were employed to verify the accuracy 
of models by SVM and XGBoost. CIBERSORT analysis was performed to determine the relative abundances of immune 
cell populations. GSEA was analyzed to illustrate the expression patterns of genes within highly enriched functional 
pathways. RT-qPCR was used to validate the reliability of hub genes.

Results 824 DEGs were found between the normal control and PCOS groups, including 376 upregulated and 448 
downregulated genes. These DEGs were associated with endocytosis, salmonella infection and focal adhesion based 
on the KEGG enrichment analysis. Through overlapping LASSO and SVM-RFE algorithms, we identified four hub 
genes (CNTN2, CASR, CACNB3, MFAP2) that are significantly associated with the PCOS group. The diagnostic efficacy 
validation set using SVM and XGBoost yielded AUC values of 0.795 and 0.875, respectively, indicating their potential 
as diagnostic biomarkers. Consistent with the data analysis, the upregulation of CNTN2, CASR, CACNB3, and MFAP2 in 
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Background
Polycystic ovary syndrome (PCOS) is a common endo-
crine disorder among women of reproductive age, typi-
cally starting in adolescence, with a prevalence of 6 − 21% 
[1]. PCOS is implicated as the cause in up to 30% of cou-
ples seeking infertility treatment. Moreover, it elevates 
the risk of obesity, insulin resistance (IR), metabolic syn-
drome, and cardiovascular diseases [2–4]. Research has 
found that early screening for PCOS is crucial and can 
lead to better long-term reproductive and metabolic out-
comes [5]. A cross-sectional study investigating PCOS 
diagnostic experiences via an online questionnaire found 
that one third of women reported diagnostic delays [6]. 
Therefore, exploring potential biomarkers that contrib-
ute to the development of polycystic ovary syndrome is 
critical.

High-throughput sequencing technology is an effec-
tive method for identifying possible disease-associated 
genes for the discovery of new diagnostic and therapeu-
tic approaches [7, 8]. Machine Learning (ML) is a statis-
tical-based approach that employs algorithms to analyze 
previous data and predict output values with acceptable 
accuracy. It is particularly valuable for evaluating high-
dimensional transcriptome data and identifying biologi-
cally significant genes [9, 10]. With the development of 
machine learning, more and more study applied ML to 
PCOS [11–13]. Previous study combining high-through-
put sequencing analysis and ML to find potential bio-
markers based on RNA-seq from public databases [12], 
but only use one algorithmic model to identify critical 
genes [13]. However, larger data size and more refined 
algorithmic models are required to make the real percep-
tion and application of ML in PCOS diagnosis clearer.

In our research, we incorporate RNA-seq and machine 
learning techniques to identify potential diagnostic bio-
markers for PCOS and investigate the role of immune cell 
infiltration in PCOS pathogenesis. RNA-seq serves as a 
powerful tool enabling comprehensive analysis of gene 
expression profiles, thus facilitating the identification of 
differentially expressed genes associated with PCOS. In 
order to identify potential biomarker genes for PCOS, 
which can enhance early diagnosis and intervention 

strategies, we utilized two ML algorithms (LASSO and 
SVM-RFE) based on our own RNA-seq data and pub-
licly available databases. These algorithms have demon-
strated robust performance even in complex RNA-seq 
datasets and are resilient to noise and outlier properties. 
Different from previous studies, we not only integrated 
multiple high-throughput sequencing data of PCOS for 
analysis, but more importantly, we combined two eligi-
ble machine learning algorithms to screen for signature 
genes. In addition, to determine the relative abundances 
of immune cell populations, we performed CIBERSORT 
analysis.

Methods
Study design and participant selection
RNA-seq was conducted on a total of 6 normal control 
individuals and 10 women diagnosed with PCOS. The 
study protocol received approval from the Ethics Com-
mittee of the Second Xiangya Hospital of Central South 
University, following the guidelines of the Council for 
International Organizations of Medical Sciences. Diagno-
sis of PCOS in women was based on the 2003 Rotterdam 
criteria, requiring the presence of at least two of the fol-
lowing clinical manifestations: (1) oligo-ovulation and/or 
anovulation; (2) clinical and/or biochemical hyperandro-
genemia; and (3) polycystic ovaries. Prior to confirming 
the diagnosis of PCOS, individuals with thyroid disease, 
diabetes, hypertension, cardiovascular disease, endo-
metriosis, neoplasia, renal disease, or recent use of hor-
monal drugs within the last three months were excluded. 
The normal control group consisted solely of infertile 
individuals with tubal occlusion or male azoospermia.

Collection of human granulosa cells and RNA extraction
We collected granulosa cells from 6 normal control indi-
viduals and 10 women with PCOS. All individuals were 
on the first in vitro fertilization cycle and treated with 
gonadotropin-releasing hormone antagonist regimen. 
Transvaginal ultrasound-guided follicular aspiration. Fol-
licular fluid samples from each subject were centrifuged, 
and granulosa cells with the supernatant discarded were 
collected and washed in phosphate-buffered saline (PBS) 

PCOS was confirmed by RT-qPCR analysis on human granulosa cells. Furthermore, according to CIBERSORT analysis, a 
significant reduction in CD4 memory resting T cells was revealed in the PCOS group compared to the normal control 
group (P < 0.05).

Conclusions This study identified CNTN2, CASR, CACNB3, and MFAP2 as potential diagnostic biomarkers for PCOS, 
which provides strong evidence for existing research on hub genes. Furthermore, the analysis of immune cell 
infiltration revealed the significant involvement of CD4 memory resting T cells in the onset and progression of PCOS. 
These findings shed light on potential mechanisms underlying PCOS pathogenesis and provide valuable insights for 
future research and therapeutic interventions.

Keywords Polycystic ovary syndrome, Machine learning, Hub gene, Predictive models, Bioinformatics, CIBERSORT
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as described previously [14]. Washed cell precipitates 
were resuspended in PBS, layered on Ficoll (LTS1077; 
TBD Science) solution and separated from erythro-
cytes by centrifugation. The cell layer at the Ficoll/PBS 
interface was aspirated and rinsed with PBS to remove 
residual Ficoll. The final cell sediment was incubated in 
DMEM-F12 medium containing 10% fetal bovine serum 
and 1% penicillin-streptomycin in a humidified atmo-
sphere of 5% CO2 at 37 °C for 12 h. The granulosa cells 
were then collected for subsequent RNA extraction. Total 
RNA was extracted from collected human granulosa cells 
according to TRIzol reagent (CW0580S; Cowin Biotech) 
under the manufacturer’s protocol.

RNA sequencing (RNA-seq) analysis
After RNA quantification and identification, 1  mg of 
RNA was taken from each sample for sequencing. The 
mRNA was isolated and interrupted to fragment the 
mRNA. After synthesizing a two-stranded cDNA, the 
ends of the double-stranded cDNA are repaired. The 
junction is ligated to the cDNA with the addition of the A 
base at the 3’ end. The product is amplified. According to 
the product requirements, select the appropriate detec-
tion method for quality normal control of the library. 
After denaturing the PCR product to single-stranded, 
the single-stranded cyclic product is obtained by cycliza-
tion, and the linear DNA molecules that have not been 
cyclized are digested. The single-stranded cyclic DNA 
molecules are replicated by ring rolling to form a DNA 
nanoball (DNB) containing multiple copies. The resulting 
DNBs are spiked into mesh pores on the chip using high-
density DNA nano-chip technology and sequenced by 
co-probe anchored polymerization (cPAS). After cluster-
ing generation, library preparations were sequenced on 
the DNBSEQ platform and 150 bp paired-end reads were 
generated. Salmon is a tool data for rapid quantification 
of transcripts from RNA-seq.  Use salmon v1.10.2 map-
ping-based model to quantify pairs of clean reads with 
reference transcripts [15]. All downstream analyses are 
based on high quality clean data. Reference genome and 
gene model annotation files were downloaded directly 
from the Genome website. Bioinformatics analysis was 
performed using the R studio tool. P value < 0.05 and 
|logFC| > 0.495 were used to define significant differen-
tially expressed genes.

Bioinformatics analysis
Data collection
Given the difficult accessibility of ovarian granulosa cells, 
in order to expand the sample to ensure the accuracy of 
the analysis, another 7 normal controls and 15 women 
with PCOS were obtained from two datasets of the GEO 
database [16], GSE34526 and GSE137684. Finally, 13 nor-
mal controls and 25 women with PCOS were enrolled 

in this study for analysis. The datasets GSE155489, 
GSE168404, and GSE95728 were utilized for external 
validation and underwent the same processing. Among 
these, GSE155489 contains 4 PCOS samples and 4 con-
trol samples, GSE168404 includes 5 PCOS samples and 
5 control samples, and GSE95728 comprises 7 PCOS 
samples and 7 control samples. Datasets related to PCOS 
(Polycystic Ovary Syndrome) were screened in the Gene 
Expression Omnibus (GEO) database  (   h t  t p :  / / w w  w .  n c b 
i . n l m . n i h . g o v / g e o /     ) to identify datasets associated with 
Polycystic Ovary Syndrome. The search was conducted 
using the keywords “PCOS” or “granulosa cells”. Inclusion 
criteria for the PCOS group were as follows: (1) the data-
set must include patient groups with Polycystic Ovary 
Syndrome and normal control groups; (2) sequencing 
should be performed on granulosa cells.

Differentially expressed genes analysis
Data form RNA-seq analysis and two datasets, GSE34526 
and GSE137684 were merged, and batch effects were cor-
rected using the ‘sva’ package in R software. Addition-
ally, visualization of the data was performed. The whole 
analytic workflow is shown in Fig. 1. After preparing the 
data, we conducted differentially expressed genes analy-
sis on the PCOS datasets using the R package “LIMMA”, 
calculating the differences between the PCOS group and 
the normal control group. To better accommodate data 
variability, dynamic logFC was calculated by the follow-
ing formulas to set a threshold to filter out genes with 
significant changes that may be biologically significant.

|logFC| > [mean (|logFC|) + 2sd (|logFC|)] [17].
Finally, the thresholds for differentially expressed genes 

(DEGs) analysis were set at P < 0.05 and |logFC| > 0.495.

Enhancement of functionality
To identify the functions of differential genes in PCOS, 
we employed the “clusterProfiler” R package to conduct 
enrichment analysis on Gene Ontology (GO) terms and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways.

Hub genes selection and validation
We employed both SVM-RFE and LASSO for the feature 
selection of hub genes associated with PCOS. SVM-RFE 
is a feature selection method based on Support Vector 
Machines, which operates by iteratively training SVM 
models and removes the least important features. Con-
versely, LASSO is a regularization technique commonly 
applied in linear regression models for feature selection. 
It introduces an L1 regularization term into the loss func-
tion, summing the absolute values of model coefficients. 
LASSO achieves automatic feature selection and sparse 
solutions by forcing certain coefficients to shrink towards 
zero. We chose to intersect the results of both methods 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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to enhance the robustness of the feature selection pro-
cess after using LASSO and SVM-RFE for central gene 
selection for DEGs, which helps to identify genes that 
show significance in various models. These two machine 

learning algorithms were implemented by R packages 
“e1071” and “glmnet”. Through the intersection analysis 
of features selected by the two algorithms, we ultimately 
identified the hub genes associated with PCOS.

Fig. 1 Flowchart describing the process of exploration. GSEA gene set enrichment analysis, CIBERSORT cell-type identification by estimating relative 
subsets of RNA transcripts, DEGs differentially expressed genes, GO gene ontology, KEGG kyoto encyclopedia of genes and genomes, LASSO least Abso-
lute Shrinkage and Selection operator, SVM-RFE support vector machine recursive feature elimination, XGBoost extreme gradient boosting, ROC receiver 
operating characteristic curve

 



Page 5 of 16Chen et al. Journal of Ovarian Research            (2025) 18:1 

We divided the datasets into training and validation 
sets. Within each set, we employed SVM and XGBoost 
models utilizing the identified hub genes to predict 
PCOS. The performance of these predictions was 
assessed based on Receiver Operating Characteristic 
(ROC) curve, with the Area Under the Curve (AUC) cal-
culated to gauge the predictive power of the algorithms. 
Statistical significance was determined through a two-
tailed test, with P < 0.05.

SHAP
We further illustrate the importance of features by 
employing SHAP (SHapley Additive exPlanations), which 
enables us to focus on feature engineering, thereby visu-
alizing the impact of features on model predictions 
within machine learning (ML) models. We implement 
this using the R package “shapviz”.

Evaluation and correlation analysis of immune cells
For each sample, we performed CIBERSORT analysis to 
determine the relative abundances of immune cell popu-
lations. This was accomplished by R package “cibersort”, 
which leverages LM22 gene signature matrix to quantify 
levels of 22 distinct immune cell types [18]. Subsequently, 
comparisons were made between samples from PCOS 
and normal control subjects. We assessed the correla-
tions between infiltrating immune cell and the hub genes 
using non-parametric (Spearman’s correlation) to eluci-
date their relationships.

GSEA
To illustrate the expression patterns of genes highly 
enriched functional pathways, we employed the “cluster-
Profiler” package in R for Gene Set Enrichment Analysis 
(GSEA). Statistical significance was defined by adjusted 
P < 0.05. Genome-wide enrichment analysis was con-
ducted between patients with Polycystic Ovary Syn-
drome (PCOS) and normal control groups.

After identifying key hub genes using machine learn-
ing, we further explored the expression patterns of 
genes within the functional pathways associated with 
these individual hub genes. Specifically, we calculated 

the median expression value of each hub gene across all 
PCOS patients and categorized patients into “High” or 
“Low” expression groups based on whether their gene 
expression values exceeded the median. Subsequently, we 
performed GSEA on the high and low expression groups 
of these hub genes in PCOS patients to investigate the 
differences in gene expression patterns within functional 
pathways between the two groups. Using this approach, 
we studied the four hub genes that we identified.

Validation of hub genes by RT-qPCR in human granulosa 
cells
Real-time fluorescence quantitative PCR (RT-qPCR) was 
then performed to quantify the expression levels of hub 
genes (CNTN2, CASR, CACNB3, MFAP2) in the normal 
control and PCOS groups. The primer sequences of these 
four genes are shown in Table 1. Student’s t-test was used 
to statistically analyze the comparison between groups. 
Data are expressed as mean and standard error (SEM). 
P < 0.05 was considered as significant difference.

Results
Screening of DEGs in PCOS
We combined the selected datasets (GSE34526, 
GSE137684, and data from 16 patients), adjusted for 
batch effects, and standardized the data to ensure consis-
tent processing (Fig. 2). As shown in Fig. 3a, we identified 
824 differentially expressed genes (DEGs), with 376 genes 
upregulated and 448 genes downregulated.

Functional characterization of significant DEGs
To deepen our understanding of the DEGs, we conducted 
functional analyses. The KEGG enrichment analysis 
highlighted associations of DEGs with endocytosis, sal-
monella infection, and focal adhesion. We also observed 
enrichments in multiple signal transduction pathways, 
including the cell cycle, ubiquitin-mediated proteolysis, 
lysosome, and sphingolipid signaling pathway (Fig.  3b). 
Notably enriched biological processes included small 
GTPase mediated signal transduction, organelle fission, 
and establishment of organelle localization. In terms of 
cellular components, the GO analysis revealed an abun-
dance of DEGs in the mitochondrial matrix, nuclear 
envelope, and vacuolar membrane. In the molecular 
function analysis, DEGs were particularly enriched in 
phospholipid binding, protein serine/threonine kinase 
activity, and protein-macromolecule adaptor activity 
(Fig.  3c, d). Furthermore, GSEA demonstrated DEGs 
were enriched in B cell receptor signaling pathway and 
natural killer cell-mediated cytotoxicity (Fig. 3e).

Table 1 Primer sequence used in quantitative real-time qPCR 
analysis
Target genes Primer Sequence
CNTN2 Forward 5’- G T C A C G G G A G T A C C A G A A C G-3’
CNTN2 Reverse 5’- T G T A G A C A A A G T A C T G G G C A T C G-3’
CASR Forward 5’- G C C A A G A A G G G A G A A A G A C-3’
CASR Reverse 5’- C A C A C T C A A A G C A G C A G G-3’
CACNB3 Forward 5’- T T G G A C G C T G A C A C C A T C A A C C-3’
CACNB3 Reverse 5’- A G C G A A T G A G A C G C T G G A G T A C-3’
MFAP2 Forward 5’- T C C G C C G T G T G T A C G T C A T T-3’
MFAP2 Reverse 5’- C T G G C C A T C A C G C C A C A T T T-3’
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Identification of potential diagnostic genes based on 
machine learning algorithms and validation of diagnostic 
hub biomarkers
To identify hub genes with significant discriminative 
power between PCOS and normal controls, we employed 
the LASSO logistic regression algorithm and SVM-RFE. 
The LASSO logistic regression analysis identified 11 
genes with non-zero coefficients based on the LASSO 
coefficient profiles. The optimal tuning parameter (λ) was 
determined to be 0.06851194 through the selection of the 
tuning parameter map (Fig. 4a). The SVM-RFE algorithm 
identified 9 genes with the lowest 10-fold cross-validation 
(CV) error (Fig. 4b). By overlapping the results from both 
algorithms, a Venn diagram in Fig. 4c revealed four gene 
targets (CNTN2, CASR, CACNB3, MFAP2) as potential 
diagnostic markers. The expression levels of these hub 
genes (CNTN2, CASR, CACNB3, MFAP2) were dis-
played in Fig.  4d, illustrating their upregulation in the 
PCOS group compared to the normal control group.

To validate the model developed by LASSO and SVM, 
we utilized ROC curves to assess their diagnostic capabil-
ities. A higher area under the curve (AUC) value, closer 
to 1.0, indicates a more reliable diagnostic model. In this 

study, the AUC values for the hub genes (CNTN2, CASR, 
CACNB3, MFAP2) in the training and validation sets, as 
determined by SVM, were 0.830 [0.778, 0.882] and 0.795 
[0.765, 0.826], respectively (Fig.  4e, f ). The AUC values 
for the diagnostic efficacy of hub genes (CNTN2, CASR, 
CACNB3, MFAP2) in the training and validation sets, 
as determined by XGBoost, were 0.971 [0.941, 1.000] 
and 0.875 [0.750, 1.000], respectively (Fig.  4g, h). These 
results indicate that the hub genes perform well in both 
the training and validation sets, highlighting their poten-
tial as diagnostic biomarkers. It is noteworthy that the 
XGBoost model achieved a particularly high AUC value 
in the training set, suggesting its favorable generalization 
ability. Overall, these findings demonstrate the excellent 
diagnostic capabilities of machine learning models con-
structed with the four identified potential biomarkers 
(CNTN2, CASR, CACNB3, MFAP2).

To further confirm the generalizability of the identi-
fied potential biomarkers, we have validated the reli-
ability of the model using XGBoost on six datasets 
including GSE137684, GSE34526, data from 16 patients, 
GSE155489, GSE168404, and GSE95728. The AUC values 
for the diagnostic efficacy of hub genes (CNTN2, CASR, 

Fig. 2 Standardization of samples and removal of batch effects. (a) Overall distribution of sample expression from three datasets, which are distinctly 
different, including data from 16 patients (green), GSE34526 (red), and GSE137684 (blue). (b) Expression levels of the three databases after the removal 
of batch effects. (c) PCA plots of the three databases before the elimination of batch effects. (d) PCA plots of the three databases after the batch effects 
have been removed
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CACNB3, MFAP2) in internal datasets were 0.875 [0.750, 
1.000] for GSE137684, 0.762 [0.667, 0.857] for GSE34526 
and 0.783 [0.667, 0.900] for the data from 16 patients, 
respectively (Fig.  5a, b, c). As for external datasets, we 

included GSE155489, GSE168404, and GSE95728, and 
the AUC values for the diagnostic efficacy of hub genes 
(CNTN2, CASR, CACNB3, MFAP2) were 0.750 [0.500, 
1.000], 0.700 [0.400, 1.000] and 0.643 [0.429, 0.857], 

Fig. 3 Analyses and identification of DEGs in PCOS and normal control groups. (a) Volcano plot of differential gene expression. (b, c) DEGs were repre-
sented by dot plots displaying GO and KEGG enrichment. (d) Network plot showing connection between functions from GO enrichment. (e) GSEA analysis 
of signature genes. DEGs differentially expressed genes, GO gene ontology, KEGG kyoto encyclopedia of genes and genomes, GSEA gene set enrichment 
analysis
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Fig. 4 Screening candidate hub genes for PCOS diagnosis. (a) Based on LASSO logistic regression algorithm to screen diagnostic markers. (b) Application 
of SVM_RFE for biomarker screening. (c) Venn diagram showed the intersection of diagnostic markers obtained by the two algorithms. (d) Expression 
level of hub genes (CNTN2, CASR, CACNB3, MFAP2). (e)The ROC curve of the diagnostic efficacy in training set based on SVM_RFE. (f) The ROC curve of the 
diagnostic efficacy in validation set based on SVM_RFE. (g) The ROC curve of the diagnostic efficacy in training set based on XGBoost. (h) The ROC curve of 
the diagnostic efficacy in validation set based on XGBoost. SVM-RFE support vector machine recursive feature elimination, LASSO least Absolute Shrinkage 
and Selection operator, XGBoost extreme gradient boosting, ROC receiver operating characteristic curve
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respectively (Fig. 5d, e, f ). Although the AUC values for 
the diagnostic efficacy of the external datasets is lower 
than that of the internal datasets, but they still proves 
that the model has a reliable generalization ability.

Feature explanation of the model based on SHAP
We implemented SHAP analysis based on the trained 
XGBoost model, and the SHAP summary plots (Fig. 6a, b) 
demonstrate the global interpretability of the XGB model 
as well as the importance of four features. In plot 6b, each 
dot represents a patient sample, where purple indicates 
a lower SHAP value and yellow indicates a higher SHAP 
value. As shown in Fig.  6c, the features ‘CACNB3 = 4.9’, 
‘CASR = 3.96’, ‘CNTN2 = 4.03’, and ‘MFAP2 = 6.08’ have a 
positive contribution to the model’s prediction for PCOS, 
with SHAP values of 0.409, 2.99, 1.62, and 6.08, respec-
tively. This indicates that the higher the values of these 
features, the greater the probability that the sample will 
be predicted as PCOS. These results provide a new per-
spective on the role of features within the model beyond 
their importance.

Infiltration of immune cells results
Figure  7a presents histograms depicting the expression 
levels of 22 immune cell types in the PCOS group and 
normal control group, as determined by the CIBERSORT 
algorithm. Monocytes and neutrophils constitute the 
majority of immune cells in both groups. Interestingly, 
the PCOS group exhibits higher levels of neutrophils and 
resting NK cells, while having lower numbers of activated 
NK cells, CD4 memory resting T cells, and CD4 memory 
activated T cells compared to the normal control group. 
Other immune cell populations show relatively minor 
differences between the two groups, suggesting the need 
for further experimental validation to understand the 
underlying causes. In Fig. 7b, the immune cell differential 
analysis plot highlights a significant reduction (P < 0.05) 
in CD4 memory resting T cells in the PCOS group com-
pared to the normal control group. Figure 7c depicts the 
correlation between the identified hub genes and the 22 
cell types. The results revealed a negative correlation 
between CD4 memory resting T cells, CD4 memory acti-
vated T cells, activated NK cells, and activated Mast cells 

Fig. 5 Confirming the generalizability of the identified potential biomarkers. (a) The ROC curve of the diagnostic efficacy in GSE137684 based on XG-
Boost. (b) The ROC curve of the diagnostic efficacy in GSE34526 based on XGBoost. (c) The ROC curve of the diagnostic efficacy in data from 16 pa-
tients based on XGBoost. (d) The ROC curve of the diagnostic efficacy in GSE155489 based on XGBoost. (e) The ROC curve of the diagnostic efficacy in 
GSE168404 based on XGBoost. (f) The ROC curve of the diagnostic efficacy in GSE95728 based on XGBoost
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with the hub genes. In contrast, resting NK cells and rest-
ing Mast cells showed a positive association with the hub 
genes.

Function enrichment analysis of signature genes
GSEA pathway enrichment analysis was performed for 
hub genes. CNTN2 demonstrated positive correlations 
with inflammatory mediator regulation of TRP chan-
nels, JAK-STAT signaling pathway and Morphine addic-
tion, but negative with oxidative phosphorylation and 
ribosome (Fig. 8a). As for CASR, which is positively cor-
related with JAK-STAT signaling pathway and oxytocin 
signaling pathway, but negatively correlated with non-
alcoholic fatty liver disease, oxidative phosphorylation 
and ribosome (Fig.  8b). CACNB3, encodes a regulatory 
beta subunit of the voltage-dependent calcium channel, 
which is positively related to basal cell carcinoma, cyto-
skeleton in muscle cells, but displayed negative correla-
tions with lipid and atherosclerosis, long-term depression 
and rheumatoid arthritis (Fig.  8c). In addition, MFAP2 
demonstrated positive correlations with cell adhesion 
molecules, neuroactive ligand-receptor interaction, and 
oxidative phosphorylation, which is negatively related to 

biosynthesis of unsaturated fatty acids, lipid and athero-
sclerosis (Fig. 8d).

Validation of hub genes by RT-qPCR in human granulosa 
cells
We performed RT-qPCR to validate the expression levels 
of the hub genes in ovarian granulosa cells from normal 
control individuals and women with PCOS. Our findings 
were consistent with the data analysis, as we observed 
upregulation of CNTN2, CASR, CACNB3, and MFAP2 
in granulosa cells from PCOS patients compared to nor-
mal controls (Fig. 9).

Discussion
Polycystic ovary syndrome (PCOS) is a heterogeneous 
endocrine disorder that affects women of reproductive 
age globally [19]. However, the underlying mechanisms 
of PCOS pathogenesis remain unclear [20]. Studies have 
revealed the significant involvement of granulosa cells in 
PCOS pathogenesis [21]. Within the granulosa cell pop-
ulation, both mural granulosa cells and cumulus granu-
losa cells have been identified and recognized for their 
distinct functional characteristics [22]. In this study, 
our focus was directed towards mural granulosa cells to 

Fig. 6 Feature explanation of the model based on SHAP. (a) The SHAP summary plot demonstrates the features contributing to the XGBoost prediction 
model’s prediction of PCOS, ranked from highest to lowest contribution. (b) The position of each feature is arranged in descending order of importance 
according to the model’s predictions. Each dot represents a patient sample, where purple indicates a lower SHAP value and yellow indicates a higher 
SHAP value. (c) The SHAP force plot illustrates how various features collectively contribute to the final prediction outcome. By observing the magnitude 
and direction of the force corresponding to each feature, one can understand the specific impact of each feature on the prediction result
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identify a specific diagnostic marker for PCOS. Further-
more, we investigated the impact of immune cell infiltra-
tion on PCOS.

Our study identified 824 differentially expressed genes 
(DEGs) between the PCOS and normal control groups. 
Among these DEGs, 376 genes were upregulated and 
448 genes were downregulated. Subsequent GO enrich-
ment analysis indicated that these DEGs were primarily 
involved in small GTPase mediated signal transduction, 
organelle fission, establishment of organelle localization, 
phospholipid binding, protein serine/threonine kinase 
activity, and protein-macromolecule adaptor activity. 
KEGG enrichment analysis showed association with 
endocytosis, salmonella infection and focal adhesion, 
cell cycle, ubiquitin mediated proteolysis, lysosome and 
sphingolipid signaling pathway. We further employed two 
machine learning algorithms, LASSO and SVM-RFE, to 
effectively screen and identify specific diagnostic markers 
for PCOS. The Least Absolute Shrinkage and Selection 
Operator (LASSO) is a regression-based method used 
for variable selection in models with a large number of 
covariates. It identifies variables by minimizing the prob-
ability of classification error [23]. SVM recursive feature 

elimination (SVM-RFE) is a classification algorithm com-
monly employed for feature ranking and selection pur-
poses. It helps identify the most significant features for 
accurate classification [24]. In our study, we successfully 
identified four hub genes (CNTN2, CASR, CACNB3, 
MFAP2) associated with PCOS. To assess their diagnos-
tic efficacy, we evaluated the area under the curve (AUC) 
in the validation set using SVM and XGBoost algo-
rithms. The AUC values were 0.795 for SVM and 0.875 
for XGBoost, indicating promising diagnostic perfor-
mance of these hub genes. Considering the better perfor-
mance of the model in XGBoost, we further validated the 
model based on internal datasets and external datasets 
using XGBoost, confirming a better generalizability abil-
ity of the prediction model. Additionally, SHAP (SHapley 
Additive exPlanations) has demonstrated that CACNB3, 
CASR, CNTN2, and MFAP2 have a positive contribution 
to the prediction of PCOS, meaning that when the values 
of these features increase, the probability of the model 
predicting PCOS also increases. SHAP [25] provides us 
with a new perspective on features, not only in terms 
of their importance within the model but also in terms 
of how the feature values positively or negatively affect 

Fig. 7 Immune cell composition in PCOS and normal control groups. (a) Histogram of the expression levels of 22 types of immune cells in PCOS and 
normal control groups. (b) Differential expressions of immune cell infiltration between two groups. (c) The correlation analysis between hub genes and 
the 22 cell types identified by CIBERSORT
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the model’s prediction for PCOS. This helps us to gain a 
deeper understanding of the model and guides us on how 
to adjust features or model parameters to optimize the 
model, reducing errors that may arise from sample limi-
tations and other factors. The results of SHAP is consis-
tent with the mRNA expression distribution of the hub 
genes between the PCOS group and the normal control 
group, and subsequent RT-qPCR validation has yielded 
the same results. The role of the hub genes revealed by 
SHAP in the predictive model aligns with their biological 
performance trends.

In our study, we followed a similar approach to Liu et 
al. by combining LASSO and SVM-RFE to identify hub 
genes for PCOS diagnosis [12]. However, there were dif-
ferences in our feature selection strategies, specifically 
regarding the input of differentially expressed genes 
in the models. While Liu et al. selected the intersec-
tion of genes from the training and validation groups, 
which resulted in only 90 genes after excluding 95% of 
the DEGs, we included all 824 DEGs to mitigate selec-
tion bias and account for sample diversity. This dif-
ference in strategy likely contributed to the divergent 
results between our study and Liu et al., as the exclusion 

of certain genes in their approach may have overlooked 
critical factors relevant to our findings.

CNTN2, a member of the contact proteins family and 
the immunoglobulin superfamily of cell adhesion mol-
ecules, is involved in the development and maintenance 
of the nervous system. It specifically regulates the prolif-
eration and differentiation of cerebellar neurons [26, 27]. 
While there is limited direct evidence linking CNTN2 to 
PCOS, a study by Qin et al. reported elevated levels of 
CNTN2 mRNA in the ovaries of pubertal goats. It sug-
gested that this elevation may be involved in reproduc-
tive regulation by activating the receptor tyrosine kinase/
Ras/MAPK signaling pathway, influencing GnRH recep-
tor signaling, or affecting transcription factors (TFs) 
associated with related genes [28]. This indirect evidence 
indicates a potential role for CNTN2 in reproductive 
processes, but further research is needed to explore its 
specific involvement in PCOS.

CASR, consistent with previous research, has been 
found to be significantly elevated in patients with PCOS 
and may serve as a functional marker for the condi-
tion [29]. CASR is a calcium sensing receptor that plays 
a crucial role in maintaining calcium homeostasis by 

Fig. 8 GSEA for the single diagnostic gene. (a) GSEA analysis for CNTN2. (b) GSEA analysis for CASR. (c) GSEA analysis for CACNB3. (d) GSEA analysis for 
MFAP2. GSEA gene set enrichment analysis
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directly sensing changes in extracellular calcium ion con-
centration [30]. Our study provides strong evidence for 
the involvement of CASR in the pathogenesis of PCOS. 
Upregulated CASR leads to a lower extracellular cal-
cium set point, resulting in reduced parathyroid hor-
mone secretion, decreased renal calcium reabsorption, 
and increased calcitonin secretion, leading to lower cir-
culating calcium levels [31]. It has been reported that 
activated CASR can promote IL-6 secretion through sig-
naling pathways involving Gαs/PKC, MEK1/2, mTORC1, 
and trans-activated EGFR [32]. Studies have shown that 
IL-6 levels are significantly increased in individuals with 
PCOS compared to those without the condition [33]. 
Therefore, CASR may be involved in the development 
and progression of PCOS through the activation of IL-6.

CACNB3 encodes a regulatory β-subunit of voltage-
dependent calcium channels that play a role in regu-
lating calcium channel surface expression and gating. 
Additionally, it is believed to be a key regulator of migra-
tory dendritic cell migration, controlling tissue-specific 
immune responses during injury and inflammation [34]. 
These findings suggest that CACNB3 may be associated 
with inflammation in PCOS. Although there is limited 
research linking CACNB3 specifically to PCOS, further 
investigations are necessary to fully understand the role 
of CACNB3 in the pathogenesis of the condition.

Microfibrillar-associated protein 2 (MFAP2) is an 
extracellular matrix protein that interacts with micro-
fibrils and modulates the bioavailability of signaling 
molecules like TGF-β [35]. Currently, there is no direct 

Fig. 9 Validation of RT-qPCR in human. Expression levels of hub genes (CNTN2, CASR, CACNB3 and MFAP2) in granulosa cells of normal control and PCOS 
groups. *P < 0.05
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evidence supporting a significant role for MFAP2 in 
the development of PCOS. Previous studies have sug-
gested that MFAP2 can activate the TGF-β/Smad3 sig-
naling pathway [36]. Shen et al. found that activation of 
the TGF-β1/Smad3 signaling pathway, demonstrated 
through experiments on rats, may inhibit follicle devel-
opment in polycystic ovary syndrome (PCOS) by regulat-
ing granulosa cell apoptosis [37]. Moreover, TGF-β1 has 
been shown to inhibit the activity of P450 aromatase, an 
enzyme involved in the conversion of androgens to estro-
gens [38]. Therefore, the upregulation of MFAP2 likely 
triggers the activation of the TGF-β/Smad3 signaling 
pathway, impacting granulosa cell apoptosis and poten-
tially contributing to the pathogenesis of PCOS. Despite 
limited research on MFAP2 in PCOS, it holds promise as 
a novel therapeutic target pending further validation.

Given the increasing evidence that immune dys-
regulation is associated with PCOS, understanding the 
immune landscape can provide insights into the dis-
ease’s mechanisms [39]. Therefore, in our study, we uti-
lized the CIBERSORT algorithm to analyze the immune 
cell composition in both the PCOS and normal control 
groups [40, 41], which is aim to investigate the poten-
tial role of immune cell infiltration in the pathogenesis 
of PCOS and to explore how these immune cells may 
interact with the identified hub genes (CNTN2, CASR, 
CACNB3, and MFAP2), Similar to previous studies, 
our findings revealed significant differences (P < 0.05) in 
immune cell populations, particularly a notable reduc-
tion in CD4 memory resting T cells in the PCOS group 
compared to controls [42, 43]. One possible explanation 
for this decrease is that programmed cell death protein 
1 (PD-1), which is highly expressed in CD4 T cells in the 
follicular fluid of PCOS patients, may fail to induce T cell 
activation or recruitment, leading to the failure of domi-
nant follicle selection and development, ultimately result-
ing in anovulation in PCOS [44, 45]. PD-1 is an inducible 
receptor that can inhibit T cell responses by interacting 
with programmed death ligand 1 (PD-L1) and PD-L2. 
Studies have demonstrated that an adequate and appro-
priately distributed population of T cells can contribute 
to follicular survival by providing trophic growth factors 
or suppressing adverse immunoreactivity [46]. Insuf-
ficient or deficient T cell populations may disrupt the 
control of follicular selection and development, thereby 
promoting the development of PCOS [47]. On the other 
hand, interleukin-2 (IL-2), produced by adjacent CD4 T 
cell populations, is involved in the development of CD4 
memory T cells [48]. However, the expression of IL-2 is 
lower in the PCOS group compared to the normal con-
trol group [49]. The aforementioned studies suggest that 
the reduction of CD4 T cells may have implications for 
follicular development and ovulation, which are critical 
processes affected in PCOS. Furthermore, we conducted 

correlation analyses between the identified hub genes 
and the various immune cell types. Our results indicated 
a negative correlation between CD4 memory resting T 
cells and the hub genes (CNTN2, CASR, CACNB3, and 
MFAP2), suggesting that alterations in these immune 
cells may influence the expression of the hub genes and, 
consequently, the pathogenesis of PCOS. Further experi-
ments are needed to determine the complex relationship 
between hub genes and immune infiltration in polycystic 
ovary syndrome.

However, our study possesses certain limitations. 
Firstly, the CIBERSORT analysis relied on a limited 
amount of available genetic information, which could 
have been influenced by disease-induced perturbations, 
interactions with cellular heterogeneity, or phenotypic 
plasticity properties. Secondly, although the sample 
size has been expanded compared to previous studies, 
it remains relatively small. Therefore, further valida-
tion using a larger cohort is necessary. Thirdly, potential 
limitations of this study encompass inherent biases asso-
ciated with factors such as race, region, and clinical mea-
surement methods.

In this study, we identified four upregulated hub genes 
in PCOS and observed notable differences in immune 
cells, particularly CD4 memory resting T cells, between 
PCOS and normal subjects. Exploring the involvement of 
these hub genes and CD4 memory resting T cells in the 
pathogenesis of PCOS represents a promising avenue for 
future research. We will also devote greater attention to 
understanding the role of immune cells in the develop-
ment of PCOS, with a specific focus on elucidating the 
changes occurring within the microenvironment of gran-
ulosa cells in PCOS. Furthermore, the findings of this 
study highlight the need for further large-scale experi-
ments and clinical investigations to validate the reliability 
of our results.

In summary, we conducted a screening of potential 
biomarkers for PCOS and explored the role of immune 
cell infiltration in the pathogenesis of PCOS. We antici-
pate that our study will contribute to the advancement of 
clinical diagnosis and treatment strategies for PCOS.

Conclusions
This study identified CNTN2, CASR, CACNB3, and 
MFAP2 as potential diagnostic biomarkers for PCOS. The 
findings regarding immune cell infiltration highlight the 
significant involvement of CD4 memory resting T cells in 
the pathogenesis and progression of PCOS. The discov-
ery of novel genes associated with PCOS and the analysis 
of immune cell infiltration provide valuable insights into 
understanding the underlying mechanisms of PCOS and 
have the potential to facilitate the development of new 
diagnostic and therapeutic strategies. However, further 
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validation through large-scale experimental and clinical 
studies is necessary to confirm these results.
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