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Abstract
Objective  Rapid on-site evaluation (ROSE) of respiratory cytology specimens is a critical technique for accurate 
and timely diagnosis of lung cancer. However, in China, limited familiarity with the Diff-Quik staining method and a 
shortage of trained cytopathologists hamper utilization of ROSE. Therefore, developing an improved deep learning 
model to assist clinicians in promptly and accurately evaluating Diff-Quik stained cytology samples during ROSE has 
important clinical value.

Methods  Retrospectively, 116 digital images of Diff-Quik stained cytology samples were obtained from whole slide 
scans. These included 6 diagnostic categories - carcinoid, normal cells, adenocarcinoma, squamous cell carcinoma, 
non-small cell carcinoma, and small cell carcinoma. All malignant diagnoses were confirmed by histopathology and 
immunohistochemistry. The test image set was presented to 3 cytopathologists from different hospitals with varying 
levels of experience, as well as an artificial intelligence system, as single-choice questions.

Results  The diagnostic accuracy of the cytopathologists correlated with their years of practice and hospital setting. 
The AI model demonstrated proficiency comparable to the humans. Importantly, all combinations of AI assistance 
and human cytopathologist increased diagnostic efficiency to varying degrees.

Conclusions  This deep learning model shows promising capability as an aid for on-site diagnosis of respiratory 
cytology samples. However, human expertise remains essential to the diagnostic process.

Keywords  Artificial Intelligence (AI), Lung Cancer, Computer-aided diagnosis, ResNet-18, Rapid on-site evaluation 
(ROSE)
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Background
Lung cancer currently has the second highest incidence 
rate and the highest cancer-related death rate globally. In 
China, it ranks first for both. In 2020 alone, there were 
820,000 new lung cancer cases and 720,000 lung cancer-
related deaths in China. Thus, lung cancer poses the 
greatest threat to human health and life, while also impos-
ing an immense economic burden on patients [1, 2]. The 
diagnosis and staging of lung cancer increasingly rely on 
minimally invasive interventional procedures, including 
imaging-guided lung mass biopsies, bronchoscopic brush 
biopsies, bronchial biopsies, and lung peripheral nodule 
sampling biopsies under magnetic levitation navigation. 
Given the rapid development of personalized lung can-
cer treatments, pathologic typing and molecular pathol-
ogy results are essential to guide therapeutic decisions. 
Consequently, obtaining adequate and representative 
specimens on-site is of utmost clinical importance, as it 
can reduce unnecessary repeat procedures and expenses, 
thereby conserving medical resources.

Currently, on-site judgments primarily utilize Diff-
Quik staining. Compared to traditional Hematoxylin 
and Eosin (HE) staining and Papanicolaou staining, the 
Diff-Quik process significantly shortens staining time but 
provides less nuclear detail. Most domestic pathologists 
are unfamiliar with this technique and require special-
ized training to gain proficiency. Additionally, full-time 
cytologists, whether domestic or international, typically 
have high workloads, and there is a shortage of qualified 
personnel [3–5]. As a result, at least 30 min is required 
for an expert to provide on-site judgment of a single case, 
which is both inefficient and costly. Some hospitals resort 
to quick training programs to enable interventional clini-
cians to screen films on-site or employ remote cytology 
consultations via the internet after scanning films [6–8]. 
However, the former leads to lower diagnostic accuracy, 
while the latter necessitates significant capital investment 
and consumes valuable time and resources from supe-
rior hospitals. With advancements in digital imaging and 
machine learning, artificial intelligence-assisted cytology 
shows promise for rapid on-site diagnoses while reducing 
human subjectivity and increasing repeatability.

ResNet-18 is a convolutional neural network with an 
18-layer architecture, comprising 17 convolutional lay-
ers and one fully connected layer. It can be trained by 
inputting pre-processed images and then used to classify 
new, unknown images. ResNet-18 has been successfully 
applied in medical imaging diagnostics, including radiol-
ogy, histopathology, and cytopathology [9–12], though it 
has not yet been used for on-site cytopathology of respi-
ratory specimens. This study aimed to assess the perfor-
mance of an improved ResNet-18 classification model as 
an aid in on-site determinations of respiratory cytopa-
thology samples.

Materials and methods
Sample information
A total of 739 respiratory specimens with on-site diag-
noses were collected at our hospital from January 2022 
to March 2023. Positive cases included those with biopsy 
or cell block confirmation and immunohistochemical 
verification of diagnosis. The sample comprised 96 squa-
mous cell carcinoma cases, 64 adenocarcinoma cases, 
6 non-small cell carcinoma cases (which could not be 
definitively categorized as squamous cell carcinoma, 
adenocarcinoma, or small cell carcinoma by morphol-
ogy and immunohistochemistry), 50 small cell carcinoma 
cases, 1 carcinoid case, and 20 normal cytology cases, 
where biopsy, clinical data, and imaging showed no 
malignancy. A MAGSCANNER KF-PRO-005 digital 
pathology slide scanner (Zhejiang Ningbo Jiangfeng Bio-
information Technology Co., Ltd.) scanned Diff-Quik 
stained slides at 200X magnification to generate whole 
slide images (WSIs), automatically focusing on the 
smears. Two senior cytologists then captured 400X mag-
nification images with a 2048 × 1024 pixel resolution. In 
cases of disagreement, another chief physician arbitrated 
and selected consensus images. Generally, 3–20 + images 
were captured per case. Images were de-identified before 
model testing.

Image selection and representation
To illustrate the diversity and diagnostic challenges of 
the dataset, we included representative images from each 
diagnostic category. These images were selected based on 
their quality and the presence of characteristic features 
relevant to the diagnosis. The selected images represent 
carcinoid, normal cells, adenocarcinoma, squamous cell 
carcinoma, non-small cell carcinoma, and small cell car-
cinoma. Each image was annotated with its correspond-
ing diagnosis and used in the training and testing of the 
ResNet-18 classification model (Please refer to supple-
mentary Data – Sample Information file).

ResNet-18 classification model
The artificial intelligence ResNet-18 classification model 
used in this study was developed in collaboration with 
the Suzhou Research Institute of the Chinese Academy 
of Sciences and Lishui Municipal Central Hospital. The 
model employs a ResNet-18 network enhanced by convo-
lutional block attention modules (CBAM) [13].

Workflow for Rapid On-Site diagnosis
To visualize the process of rapid on-site diagnosis in 
respiratory cytology, we developed a comprehensive 
workflow that outlines the steps from sample collec-
tion to diagnostic conclusion, incorporating both AI 
and pathologist evaluations. The workflow integrates 
deep learning models to assist pathologists in making 
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real-time diagnostic decisions. The figure below presents 
the step-by-step procedure, demonstrating the clinical 
application of our diagnostic system (see Fig. 1).

Model testing
Images were randomly selected from six categories: 8 
images of carcinoid, 5 images of non-small cell carci-
noma, 16 images of small cell carcinoma, 33 normal 
images, 20 images of squamous cell carcinoma, and 34 
images of adenocarcinoma. These images were mixed 
and assigned random numbers. Three cytopathologists, 
each from a different hospital, along with an AI model, 
were tasked with diagnosing the individual images. The 
116 test images were presented in a multiple-choice for-
mat, with the following answer options: precancerous, 
non-small cell carcinoma, small cell carcinoma, normal, 
squamous cell carcinoma, and adenocarcinoma. In cases 
of disagreement between the diagnoses of the physicians 
and the AI model, the correct diagnosis was selected 
as the final joint diagnosis. The three diagnosticians 
included a deputy chief physician with 28 years of experi-
ence, an attending physician with 16 years of experience, 
and a senior resident with 9 years of experience, all from 
different hospitals. Each of the physicians was qualified in 
cytological diagnosis.

Combination of AI and cytopathologist diagnoses
In our study, we adopted a consensus approach to 
evaluate the combined diagnostic potential of AI and 
cytopathologists. Each of the 116 digital images was 
independently assessed by three cytopathologists and 
the AI model. Final diagnoses were determined based 
on consensus or specific criteria: a consensus diagnosis 
was recorded when all four entities agreed; if two or more 
cytopathologists agreed with the AI’s diagnosis, that was 
considered final; if the AI’s diagnosis aligned with the 
most experienced cytopathologist’s (deputy chief physi-
cian) diagnosis, it was deemed conclusive; and in cases of 
disagreement between the AI and cytopathologists, the 
diagnosis of the most experienced cytopathologist was 
selected to emphasize the value of human expertise in 
complex cases. This methodology is utilized for the com-
bined diagnostic accuracy data with the full dataset pro-
vided as a supplementary file.

Statistical methods
The following diagnostic performance metrics were cal-
culated for each physician and the AI model based on the 
test data:

 	• Sensitivity = TP / (TP + FN) × 100%.
 	• Specificity = TN / (TN + FP) × 100%.
 	• Positive Predictive Value (PPV) = TP / (TP + FP) × 

100%.

 	• Negative Predictive Value (NPV) = TN / (TN + FN) 
× 100%.

 	• Accuracy = (TP + TN) / (TP + FN + TN + FP) × 100%.

Where:

 	• TP = True Positive.
 	• TN = True Negative.
 	• FP = False Positive.
 	• FN = False Negative.

Errors were counted as incorrect tumor type predic-
tions or instances where a diagnosis could not be made. 
Multi-class classification metrics were calculated using 
the macro-average method, and multi-class ROC curves 
were generated in Python (Fig. 2).

Results
Table  1 presents the diagnostic ability evaluation of 
the test for the three human doctors and the AI model. 
The four multi-class ROC curves provide a direct com-
parison of their respective diagnostic capabilities. Due 
to the experimental design, evaluating the diagnostic 
performance of human-AI joint diagnoses is challeng-
ing. However, in an ideal scenario where human and AI 
diagnoses differ, selecting the correct diagnosis would 
improve accuracy by 4.44%, 13.51%, and 11.79% for each 
physician, respectively (see Table 2).

To further assess the agreement between the AI model 
and human experts, we computed Pearson correlation 
coefficients, which are visualized in the correlation heat-
map (Fig.  3). This heatmap illustrates the correlation 
between the diagnostic outcomes of the AI model and 
the three human experts, as well as the combined results 
of the AI model and each human expert. The color gradi-
ent ranges from blue (negative correlation) to red (posi-
tive correlation), with white indicating no correlation. 
The heatmap reveals strong positive correlations across 
all comparisons, indicating a high level of agreement 
between the AI model and human experts in their diag-
nostic assessments.

The labels in the heatmap correspond to the following 
diagnostic methods:

 	• Human 1, Human 2, Human 3: Independent 
diagnostic assessments by three different human 
experts.

 	• AI Result: Diagnostic outcome provided by the AI 
model.

 	• Combined Human 1, Combined Human 2, 
Combined Human 3: Combined diagnostic 
outcomes of the AI model with each respective 
human expert.
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Fig. 1  Workflow for Rapid On-Site Evaluation (ROSE) of respiratory cytology samples
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The diagonal line from the top left to the bottom right of 
the heatmap, colored red, indicates perfect correlation, as 
each method is compared with itself. This figure under-
scores the consistency and reliability of the AI model in 
emulating the diagnostic capabilities of human experts.

The heatmap further highlights the strong positive cor-
relations across all comparisons, suggesting a high level 

of diagnostic consistency between the AI model and the 
three physicians (P1, P2, P3). Combined results between 
the AI and each expert show particularly high agreement, 
underscoring the potential of joint diagnosis to improve 
overall accuracy. We observed that the AI’s diagnostic 
performance was comparable to that of human experts, 
with human accuracy being influenced by years of experi-
ence. Therefore, joint diagnosis proved to be significant.

(P1 is the deputy chief physician, P2 is the resident phy-
sician, and P3 is the attending physician).

Table 1  Statistical results of AI and human cytopathologist interpretation
Sensitivity Specificity Positive Predictive Value Negative Predictive Value Accuracy

P1% 70.27 92.80 69.84 92.98 88.36
P2% 19.63 86.04 29.72 85.27 77 0.01
P3% 38.21 88.85 40.45 89.18 82.04
AI% 59.95 89.89 52.90 89.40 84.05

Table 2  Improved accuracy of AI-assisted human diagnosis
Traditional Method Accuracy Traditional +

AI Accuracy
Difference

P1% 88.38 92.82 + 4.44
P2% 77.01 90.52 + 13.51
P3% 82.04 93.83 + 11.79

Fig. 2  Multi-class ROC curves (macro-average methods)
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Discussion
The accuracy of cytological diagnosis is heavily influ-
enced by the pathologist’s years of experience, accumu-
lated expertise, and working conditions. It also depends 
on the adequacy of lesional cell quantity and quality, as 
well as proper slide preparation. After considering these 
confounding factors, the cytopathologist makes a holis-
tic judgment based on background, cell arrangement, 
morphology, size, nuclear features (morphology, size, 
chromatin quality, nucleoli), nuclear membrane irregu-
larity, N/C ratio, and cytoplasmic characteristics. These 
principles also apply to rapid on-site cytological diagno-
sis of respiratory specimens. In clinical practice, cytopa-
thologists strive to differentiate tumor types, but poorly 
differentiated squamous cell carcinoma and adenocarci-
noma often exhibit overlapping morphological features, 
necessitating immunohistochemical confirmation for 

definitive categorization. As a result, misclassification 
between these two types may occur.

The workflow outlined in this study was specifically 
designed for the rapid on-site diagnosis of lung cancer, 
focusing on subtypes such as squamous cell carcinoma, 
adenocarcinoma, and small cell carcinoma. However, 
we acknowledge that the principles behind this work-
flow—such as integrating AI-assisted cytological analy-
sis, real-time diagnostics, and human expertise—could 
potentially be applied to other lung diseases, including 
interstitial lung diseases (ILD) and idiopathic pulmonary 
fibrosis (IPF). While these conditions are distinct from 
lung cancer, they present unique diagnostic challenges 
that could benefit from AI support.

It is important to note that the cytological features of 
ILD and IPF differ significantly from those of malignant 
lung tumors, requiring potential adaptations in the work-
flow for accurate diagnosis. At present, the workflow 

Fig. 3  Pearson correlation heatmap of diagnoses
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has not been validated for these diseases, and further 
research is needed to assess its applicability and diagnos-
tic accuracy in non-cancerous conditions. Future studies 
could explore how the workflow might be adjusted for 
diseases like ILD or IPF, incorporating disease-specific 
features while maintaining the diagnostic efficiency of AI 
and human collaboration.

The suboptimal human diagnosis results in this study 
can primarily be attributed to the use of Diff-Quik stain-
ing for on-site diagnoses. This technique is unfamiliar to 
most cytopathologists in China, with few pathology labs 
routinely employing it. Compared to HE or Pap staining, 
Diff-Quik stains exhibit less nuclear detail and poorer 
cell cluster contrast, even with microscope adjustments. 
Thus, improving human on-site diagnosis requires spe-
cialized training and experience with this methodology. 
Additionally, the test provided only one image per ques-
tion with six answer choices, a setup that differs from 
real-world conditions. The relatively low physician per-
formance may not accurately reflect their capabilities in 
routine practice, as pathologists typically examine mul-
tiple slides and adjust focus when analyzing suspicious 
areas. Therefore, single-image testing cannot fully repli-
cate physicians’ true diagnostic proficiency.

ResNet is a deep convolutional neural network archi-
tecture originally designed for image classification, and 
it has been applied to histopathology and cytopathol-
ogy. Its use for on-site diagnosis of respiratory cytol-
ogy samples is novel. The improved ResNet-18 model 
performed exceptionally well in this study. As shown in 
Table  1, its diagnostic capability on images reached the 

level of human experts. Compared to human physicians, 
the AI model has the advantage of faster processing, tak-
ing only about 0.3 s to diagnose each image. Additionally, 
the AI’s performance is more objective and repeatable. A 
well-trained AI can detect subtle morphological changes 
that cytopathologists might overlook, given the consid-
erable subjectivity and poorer reproducibility in human 
diagnoses (both intra- and inter-observer). For instance, 
in Fig. 4, an adenocarcinoma case was missed by all three 
pathologists because, without control cells as a back-
ground, they could not assess the size and shape of the 
cells properly, potentially overlooking enlarged nucleoli 
and thickened nuclear membranes. However, the AI 
identified the case as squamous cell carcinoma, which 
was closest to the gold standard. In Fig.  5, the AI cor-
rectly identified small cell carcinoma, while the human 
pathologists either erred or could not provide a definitive 
diagnosis. Retrospective analysis revealed normal bron-
chial epithelium in the upper left and a near-naked tumor 
cell in the lower right, which resembled normal bron-
chial cells and was easily overlooked by humans. More-
over, while humans can adjust the microscope focus to 
discern differences in morphology and arrangement, AI 
faces difficulties in diagnosing complex, high-density cell 
groups and accurately interpreting cellular arrangements. 
Advanced algorithms are needed to address these limita-
tions [4, 14, 15].

Currently, AI algorithms in cytopathology are still 
in early development and cannot fully replace human 
expertise. They may make mistakes or overlook criti-
cal cytological features. For example, in Fig. 6, both the 

Fig. 4  Adenocarcinoma, x400 magnification, Diff-Quik stain
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AI and one pathologist called the case normal, while the 
senior pathologist diagnosed it as non-small cell carci-
noma. This discrepancy likely occurred because the cells 
resembled reactive epithelium, though their nuclear fea-
tures differed from those of normal cells.

AI-assisted diagnosis, where the correct diagnosis is 
selected when human and AI diagnoses differ, has been 
shown to improve accuracy, as reflected in the literature 
[16]. However, human judgment remains essential in 
clinical practice. When discrepancies arise, professional 
knowledge and experience are required to assess whether 

Fig. 6  Non-small cell carcinoma, x400 magnification, Diff-Quik stain

 

Fig. 5  Small cell carcinoma, x400 magnification, Diff-Quik stain
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the AI’s conclusion is correct and whether it should be 
adopted. Ultimately, humans must make the final cyto-
logical interpretation [17]. Fully relying on AI also intro-
duces ethical, legal, and governance issues regarding its 
future application. Nonetheless, AI’s role in cytopatho-
logical diagnosis is likely to grow as machine learning and 
algorithms continue to evolve. Study limitations include 
using images from only one hospital. To evaluate real-
world AI performance, multi-center participation and 
model training/validation on more cases are necessary 
to ensure the accuracy and reliability of the models. The 
ultimate goal is for AI to provide an integrative interpre-
tation of entire digital slides, achieving diagnostic capa-
bilities comparable to cytopathologists.

In our study, we used minimally invasive techniques 
such as fiber optic bronchoscopy, magnetic naviga-
tion bronchoscopy, and CT-guided transthoracic needle 
aspiration to obtain respiratory cytology samples. These 
methods are effective in providing diagnostic value while 
minimizing patient trauma. However, sampling bias, 
influenced by factors such as lesion location, heteroge-
neity, and operator experience, may impact the results. 
While efforts were made to ensure sample diversity and 
representativeness, the potential for bias remains a con-
cern. Additionally, the morphological differences in 
tumor samples—such as the distinction between central 
necrotic areas and peripheral atypical squamous cells in 
squamous cell carcinoma or the comparison between 
marginally invasive cells and central mature tumor cells 
in adenocarcinoma—are significant but beyond the scope 
of this study. Furthermore, varying case exposure among 
cytopathologists at different hospital levels directly 
affects their diagnostic experience, with younger doctors 
more likely to consider preliminary diagnoses and more 
experienced doctors considering a wider range of dif-
ferential diagnoses. Our deep learning model, based on 
ResNet-18, addresses this experience gap by assisting in 
diagnostic accuracy, demonstrating its potential to serve 
doctors across various hospital levels. Moving forward, 
we plan to expand our research to include a broader 
range of respiratory diseases, conduct multi-center stud-
ies, explore tumor heterogeneity, and optimize the model 
for better clinical application, ultimately enhancing AI’s 
role in cytological diagnosis and improving diagnostic 
services for patients.

While this study focuses on the Chinese context, par-
ticularly with the use of Diff-Quik staining, the findings 
have global relevance. In many resource-constrained set-
tings, including both developing and developed coun-
tries, Diff-Quik staining offers a fast, cost-effective, and 
accessible alternative to more complex staining meth-
ods like HE or Pap. In regions where specialized train-
ing and advanced diagnostic tools are limited, this simple 
yet effective staining method can support timely and 

accurate on-site cytological diagnoses. Moreover, AI-
assisted cytology, as demonstrated in this study, holds 
promise worldwide. While developed countries may have 
the infrastructure to adopt these technologies, AI can 
also be instrumental in improving diagnostic capabilities 
in developing countries, where access to trained patholo-
gists may be limited. The integration of AI into cytopa-
thology could reduce diagnostic variability and enhance 
the accuracy of diagnoses in diverse healthcare settings. 
As AI and staining techniques become more acces-
sible globally, these methods could significantly improve 
diagnostic outcomes, particularly in areas with limited 
healthcare resources.

Conclusion
In essence, AI and human cytopathologists form 
a dynamic partnership that amplifies each other’s 
strengths. By collaborating, they unlock the potential for 
improved diagnostic outcomes. AI lightens the workload 
and boosts diagnostic precision, while human expertise 
provides critical, high-level judgment, ensuring diagno-
ses of unmatched accuracy and reliability.
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