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Abstract
Background To investigate the joint associations between various body fat distribution parameters and high blood 
pressure (HBP) using the Bayesian Kernel Machine Regression (BKMR) model in school-aged children.

Methods A diverse sample of 7 ∼ 17 years old (N = 1423; 50.25% boys) was recruited for this study. Fat distribution 
parameters for multiple body parts, including trunk, legs, android region, and gynoid region fat percentage were 
measured. HBP was defined as either systolic or diastolic blood pressure exceeded age-, sex- and height-specific 95th 
percentiles. The chi-square test was utilized to compare differences between groups. The BKMR model was employed 
to analyze the joint effects of body fat indicators on HBP while accounting for potential confounders. Weighted 
Quantile Sum (WQS) model was used to characterize the relative weights of each body fat distribution parameter for 
HBP. Additionally, stratified analyses were performed by sexes and overweight/non overweight groups.

Results HBP prevalence was 46.86% and 35.10% for overweight and obese (OB) boys and girls, and was 17.96% 
and 17.28% for non-overweight and obese (non-OB) boys and girls, respectively. Increased fat percentages of trunk, 
android, and gynoid parts are associated with a higher risk of HBP, while increased fat percentage of the leg was 
associated with lower HBP risk. Android fat percentage contributed the most HBP risk in OB boys (weight = 0.34), OB 
girls (weight = 0.39), and non-OB girls (weight = 0.56). Leg fat percentage had significant protective effect on HBP 
for non-OB boys (weight=-0.22) and OB boys (weight=-0.44), while gynoid fat percentage had significant protective 
effect for OB girls (weight=-0.27).

Conclusions Fat distribution of various body parts have inconsistent roles and directions in their association with 
HBP risk in children of different sex and weight status. We recommend that children of different sexes and weight 
statuses be provided with body-part-specific exercise recommendations for optimal chronic disease prevention and 
control benefits.
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Introduction
Body fat distribution, such as the hips, trunks, and legs, 
plays a crucial and fundamental role in influencing the 
overall metabolic and cardiovascular health of individu-
als [1, 2]. By recognizing the importance of body fat 
distribution and its impact on cardiovascular health, 
individuals can make informed decisions about their 
lifestyle choices, to optimize their overall well-being 
and reduce the risk of associated health complications 
[3]. While body mass index (BMI) has conventionally 
served as a surrogate measure of overall adiposity [4], 
depending solely on it to establish weight deviation lim-
its can be restrictive, as it does not differentiate between 
excess body weight and fat deposits [5]. However, recent 
research has emphasized the importance of considering 
specific measures of different parts of body fat percent-
age, as they provide insights into the regional deposition 
of fat and its associated health implications [6, 7]. Among 
the various techniques employed for analyzing body 
composition, dual-energy X-ray absorptiometry (DXA) 
stands out as an accurate tool with excellent applicability, 
particularly in pediatric patients [8].

In recent years, there has been growing concern 
regarding the impact of body fat distribution on the 
development of high blood pressure (HBP) in children 
and adolescents [9, 10]. HBP is a prevalent cardiovas-
cular risk factor among the younger population, with 
significant implications for long-term health outcomes. 
Particularly in Asian countries, the findings indicate that 
the prevalence of HBP in children and adolescents has 
escalated from 4.3% at the age of 6 to 7.9% at the age of 
14 [11]. Based on previous national survey data in China 
[12], it was found that the prevalence of overweight stu-
dents showed a significant rise from 4.3% in 1995 to 
18.4% in 2014. On the other hand, the prevalence of HBP 
exhibited fluctuations within the range of 4.4–6.4% dur-
ing the same period. These findings highlight a concern-
ing trend of increasing overweight cases over time, while 
the prevalence of HBP remained relatively stable albeit 
with slight variations.

Existing studies examining the connection between 
body fat distribution and HBP have predominantly 
focused on the impact of individual variables on out-
comes [10, 13, 14]. The absence of evidence concerning 
the joint associations and relative contributions of mul-
tiple body fat distribution parameters to HBP would 
limit further insights into the underlying mechanisms 
and aid in the development of targeted interventions. To 
investigate the complex interplay between body fat dis-
tribution parameters in multiple body parts and HBP in 

children and adolescents, advanced statistical model-
ing approaches are required. Bayesian Kernel Machine 
Regression (BKMR) has emerged as a powerful and flex-
ible modeling technique for assessing the joint associa-
tions of multiple predictors with an outcome of interest 
[15]. The BKMR model allows for the incorporation of 
non-linear and interactive effects [16], which would be 
beneficial for examining both the individual and joint 
associations between body fat distribution parameters 
and HBP. The weighted quantile sum (WQS) model, a 
statistical approach commonly used in epidemiological 
research, offers a novel and comprehensive way to evalu-
ate the combined effects of multiple exposures on a par-
ticular outcome [17]. By assigning weights to each body 
fat distribution parameter, determined by their respective 
associations with blood pressure levels, the WQS model 
facilitates the quantification of their relative contribu-
tions. This approach provides a more comprehensive 
understanding of how body fat distribution affects blood 
pressure under real physiological conditions.

In this cross-sectional survey, by utilizing BKMR and 
WQS models, we aim to fill a critical knowledge gap 
in the field by providing valuable insights into the joint 
associations between multiple body fat distribution 
parameters and HBP over 7–17 years in Beijing, China. 
Our primary hypotheses centered around the predomi-
nant body fat distribution parameters with greater con-
tributions to HBP among children and adolescents, with 
considerations on overweight or obesity and biological 
sex differences.

Methods
Study design and population
The data utilized in this study were obtained from a cross-
sectional survey conducted in 2021 in Beijing among 
children and adolescents. A comprehensive description 
of the sampling procedure has been previously published 
[18]. In summary, we conducted a comprehensive pre-
survey of all participants from four elementary and junior 
high schools, which was meticulously designed to guar-
antee a representative sample that encompassed a diverse 
range of age groups, both sexes, and different nutritional 
statuses, including normal weight, overweight, and obe-
sity. This approach enabled a more robust analysis of the 
potential influences of age, sex, and body composition on 
the risk of HBP across a broad pediatric population.

All eligible participants in our study underwent a com-
prehensive medical examination prior to data collec-
tion. Those who met any of the following criteria were 
excluded from the study: (1) a history of severe vital organ 
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diseases such as liver and kidney failure, or the presence 
of tumors; (2) recent surgical procedures, physical devel-
opmental defects, or the presence of medical devices 
containing metal in their bodies; (3) disagreement to par-
ticipate in the study from either the participant or their 
guardians. In our study, we initially recruited a total of 
1597 participants. However, we excluded 174 participants 
(including 58 without basic information, 45 without body 
fat distribution data, 15 outliers of body fat and blood 
pressure levels (within the range of Mean ± 3SD), and 56 
not meeting the inclusion and exclusion criteria), which 
were essential for our analyses. This represents approxi-
mately 10.9% of the overall sample. Eventually, a total of 
1423 children and adolescents with complete individual 
information met the inclusion criteria and were included 
in the final analysis.

Ethical approval for this study was obtained from the 
Medical Research Ethics Committee of Peking University 
Health Science Center (IRB00001052-20024), and writ-
ten informed consent was obtained from both the par-
ticipating students and their parents or guardians.

Measurements and classifications
Body fat distribution
Measurements of the whole body and regional fat dis-
tribution were performed by skilled medical personnel 
using the GE Healthcare Lunar iDXA dual-energy X-ray 
bone densitometer. The device we employed is calibrated 
regularly according to the manufacturer’s specifications 
to maintain its accuracy. The precision error for the 
DEXA scanner is typically less than 1% for body fat mea-
surements, which is considered excellent in the field of 
body composition analysis [19] The measurements were 
carried out in accordance with the instruction manual 
and program guidelines, with each participant’s assess-
ment taking approximately 5 to 7 min. Participants were 
asked to wear lightweight, comfortable clothing and to 
remove all metal objects or accessories, such as jewelry, 
zippers, and clasps, prior to the assessment. Body fat 
distribution data were analyzed using enCORE software 
(version 16).

Avoiding overeating or engaging in strenuous exercise 
before the examination. Not having any medical devices, 
such as pacemakers or cochlear implants. Ensuring that 
they had not undergone gastrointestinal or angiographic 
procedures within the previous week. Participants were 
then positioned according to the requirements outlined 
in the manual. Subsequently, whole-body and regional 
fat distribution indicators, including the fat mass and fat 
percentage of the trunk, legs, android region, and gynoid 
region, were analyzed for children and adolescents. Addi-
tionally, the formula of fat percentage as: Fat percent-
age = Total fat mass/ Total body mass*100%.

BMI
All participants underwent a comprehensive physical 
examination conducted by trained medical staff following 
a standardized protocol. Participants’ height was mea-
sured barefoot using a uniform and calibrated mechani-
cal stadiometer (model TZG, Jiangyin No. 2 Medical 
Equipment Factory, Jiangsu, China) with an accuracy of 
0.1 centimeters. Weight was measured while wearing 
light clothes using a uniform and calibrated electronic 
scale (model RGT-140, Shanghai Dachuan Electronic 
Weighing Apparatus Co. Ltd., Shanghai, China) with 
an accuracy of 0.1 kg. Each of the aforementioned mea-
surements was taken twice, and the average values were 
recorded for further analysis. The instruments used for 
measurements were calibrated and designed to ensure 
accuracy and consistency in data collection.

BMI was determined by dividing weight (in kilograms) 
by the square of height (in meters). Subsequently, the 
BMI-z-score, a standardized score based on age and sex 
according to the WHO standard reference population 
(http:// www.who .int/ch ildg rowth/standards/en/) [20], 
was calculated for each person. Overweight or obesity 
was assessed using the BMI-z-score, with a value of ≤ 1 
indicating non-overweight and obesity (non-OB), and a 
value of ≥ 1 indicating overweight and obesity (OB) [20]. 
These calculations were performed using the “zanthro” 
module in STATA 14.0.

High blood pressure
BP was measured in the right arm using the guidelines 
of the National High Blood Pressure Education Pro-
gram (NHBPEP) Working Group in Children and Ado-
lescents [21]. The measurements were conducted using 
an electronic blood pressure monitor with an appropri-
ately sized cuff, mercury sphygmomanometers (model 
XJ11D, Shanghai Medical Instruments Co. Ltd., Shang-
hai, China), and stethoscopes (model TZ-1, Shanghai 
Medical Instruments Co. Ltd., Shanghai, China). Systolic 
blood pressure (SBP) was determined by the onset of 
the first Korotkoff sound, while diastolic blood pressure 
(DBP) was determined by the fifth Korotkoff sound. BP 
was measured twice with a 5-minute interval between 
measurements. The average values of SBP and DBP were 
calculated, respectively.

BP levels were evaluated based on the 2017 Guideline 
from the American Academy of Pediatrics (AAP) titled 
“Clinical Practice Guideline for Screening and Manage-
ment of High Blood Pressure in Children and Adoles-
cents” [22]. Normotensive individuals were identified as 
those with SBP and DBP values below the 95th percentile 
for their sex, age, and height. High systolic blood pres-
sure (HSBP) and high diastolic blood pressure (HDBP) 
were defined as SBP or DBP values equal to or exceed-
ing the 95th percentile for age, sex, and height among 
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children younger than 13 years, and as equal to or 
exceeding 130/80 mmHg for those aged 13 years or older. 
Participants meeting either the HSBP or HDBP criteria 
were categorized as having HBP.

Questionnaires data collection
The project team distributed questionnaires to the stu-
dents and parents through school doctors prior to the 
physical examination. To ensure accuracy, thorough 
preparations were made, including pre-investigation of all 
questionnaire questions. For participants in grades above 
third, the questionnaires were filled out in the classroom, 
with professional investigators available for any necessary 
explanations. For participants in third grade and below, 
the questionnaires were completed at home under the 
supervision of their primary guardian.

The children’s questionnaire encompassed sociodemo-
graphic variables, basic information, and lifestyle factors. 
This included gathering data such as date of birth, age, 
sex, monthly family income, as well as lifestyle behaviors 
such as sleeping time, smoking, and drinking. Dietary 
behaviors, including the consumption of fruits, vegeta-
bles, sugar-sweetened beverages, and physical activity 
time (Table 1). Detailly, our study employed a structured 
self-reported questionnaire to collect data on partici-
pants’ drinking and smoking behaviors. Sample questions 
included: (1) Do you smoke/drink now? (2) How much 
you smoked/drank alcohol per day in the past seven days?

The dietary intake was assessed using a structured self-
reported questionnaire to collect data on their consump-
tion of a comprehensive list of food and beverage items in 
the past week. The question pertaining to meat, vegeta-
bles, and fruits intake was phrased as follows: “In the past 
7 days, how many days have you eaten them?” Partici-
pants were provided with options ranging from “none” 
to “seven days” to capture a detailed profile of their diet 
consumption patterns. The questionnaire employed in 
this study has demonstrated strong reliability and valid-
ity, and it has been previously utilized in several pub-
lished studies [23].

Statistical analysis
Continuous variables were presented as means and stan-
dard deviations, while categorical variables were reported 
as numbers and percentages. The T-test was used for 
continuous variables, and the Chi-square test was used 
for categorical variables. The BKMR model was used to 
assess the joint associations of the four body fat distri-
bution parameters (i.e., trunk, legs, android region, and 
gynoid region fat percentage) with BP levels. The BKMR 
model could address the deal with the complexity of 
multiple variables of interest with potentially correlated 
structures and interacting effects [15, 26]. The model 
could simulate the combined effect estimates of multi-
ple variables of interests using kernel functions through 
Markov Chain Monte Carlo (MCMC) methods [15, 26]. 
The formula used in this study could be expressed in sup-
plementary materials. MCMC methods with 5000 itera-
tions were adopted to generate stable parameters [15]. 
The results of the BKMR models in this study included 
the following aspects:

(a) Linear and non-linear exposure-response 
associations between one fat distribution parameter 
(e.g. android region percentage) of interest and the 
outcome (e.g. HBP) when the other fat distribution 
parameters (e.g. trunk, legs, and gynoid region fat 
percentage) were fixed at a particular quantile (e.g. 
median). In this study, the results were presented for 
one body fat percentage indicator when the other 
body fat percentage indicators were fixed at their 
50th percentiles [26, 27].

(b) The posterior inclusion probability (PIP) value of 
each body fat distribution parameter for each BP 
level. The PIP values of the BKMR model could 
demonstrate the relative importance of each fat 
distribution parameter, and a PIP value larger than 
0.5 is generally acknowledged as an important 
variable associated with BP levels [28].

Table 1 Definition of questionnaire information
Questionnaire information Variables Classification criteria
Basic Information Date of birth ID number

Sex Boys or Girls
Age (Examine date -Birth date)/365.25

Sociodemographic Monthly family income(yuan) < 8,000, 8,000–18,000, and ≥ 18,000 yuan
Lifestyle factors Sleeping time (PSQI) [24] (hour) Continuous variable

Smoking Yes or no
Drinking Yes or no
Fruits(days) (Days× (consumption in each of those days))/7)
Vegetables(days) (Days× (consumption in each of those days))/7)
Sugar-sweetened beverages(days) (Days× (consumption in each of those days))/7)
Physical activity time (IPAQ) [25] (days) Days× (time in each of those days)/7)
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WQS model was further used to characterize the rela-
tive contributions (weights) of each body fat distribution 
parameter as for each BP levels [29], and the formula used 
in this study could be expressed in supplementary mate-
rials. In brief, as the WQS model requires that all expo-
sure variables exhibit effects in the same direction [29], 
we adjusted for body fat indicators demonstrating inverse 
associations with BP (e.g., leg fat percentage showing a 
negative association with HBP) by utilizing their inverse 
values [30, 31]. This adjustment ensured compliance with 
the assumption of uniform effect direction.

The results of the WQS model in this study included 
the weights and directions of each body fat distribution 
parameter as for each BP level The weights derived from 
the WQS model were initially positive for all parameters. 
For indicators where inverse values were applied, a nega-
tive sign was assigned to indicate their opposite direction 
of effect. Accordingly, the absolute values of the weights 
indicated the relative importance of each body fat distri-
bution indicator, while the direction is reflected by the 
positive/negative signs.

All the statistical analyses were performed using Stata 
14.0 (College Station, TX, USA) and R software (ver-
sion 3.6.3, Comprehensive R Archive Network) incor-
porated with the packages “bkmr”, “gWQS”, and “wqspt” 
[15, 32]. A two-sided P < 0.05 was considered as statistical 
significance.

Sensitivity analysis
Furthermore, to ensure the generalizability of our find-
ings, we conducted sensitivity analyses on the entire pop-
ulation as well as subgroups stratified by nutrition status 
and sex in the BKMR models. First, we analyze the corre-
lations between whole-body fat percentage, trunk fat per-
centage, leg fat percentage, android fat percentage, and 
gynoid fat percentage among boys and girls in Figure S1. 
Second, we plotted the univariate exposure effect curves 
of the associations between four body fat percentage dis-
tribution parameters and BP levels stratified by nutri-
tion status and sex, to further characterize their potential 
non-linear associations in Figure S2-S5. Third, we plotted 
the bivariate cross-sections by investigating the exposure 
effect curves of one body fat percentage parameter where 
the other parameters were fixed at 5th, 25th, 50th, 75th, 
and 95th [32]in Figure S6-S8.

Results
Participant characteristics
Demographic characteristics of 1423 (715 boys versus 
708 girls) participants among overweight or obesity are 
presented in Table 2. The age of the participants ranged 
between 12.24 (SD = 2.90) and 12.68 (SD = 3.24) years. 
There were statistically significant differences in weight 
and BMI based on overweight or obesity observed in 

both boys and girls (P < 0.05). In boys, the prevalence of 
HBP was found to be 17.96% among non-OB individu-
als and 46.86% among those who were OB. However, the 
prevalence of HBP among girls was found to be 17.28% 
among non-OB participants and 35.10% among those 
classified as OB. Significant differences in different parts 
of body fat percentage were also identified between non-
OB and OB participants within the different sex groups 
(P < 0.05).

Associations of the four body fat distribution parameters 
with BP levels
Figure  1 shows the univariate exposure effect curves of 
the associations of four body fat percentage distributions 
on BP levels (the model was adjusted for age, sex, fam-
ily income, sleeping time, smoking, drinking, physical 
activity time, sugar, meat, vegetables, and fruits). Overall, 
higher percentage of android fat was associated with an 
increased risk of HBP, and there is a flat trend between 
trunk fat and gynoid fat with HBP. As the body fat per-
centage increases, the risk of HBP increases. However, 
the trend was reversed when it came to the percentage 
of leg fat. What’s more, the univariate exposure effect 
curves of the associations between four body fat per-
centage distribution parameters and BP levels stratified 
by nutrition status and sex, to further characterize their 
potential non-linear associations were shown in Supple-
mentary Figs. 1–4.

As shown in Fig. 2 and Table S1-S3, the effects of four 
body fat percentage distribution parameters were simi-
lar when compared to the associations between BP levels 
and a single body fat percentage. During this analysis, all 
other body fat percentages were fixed at their 50th per-
centile. In OB boys, HBP risk was significantly related 
to trunk fat percentage (estimate = 0.42, 95%CI: -0.05, 
0.90), android fat percentage (estimate = 0.56, 95%CI: 
0.26, 0.86), gynoid fat percentage (estimate = 0.64, 95%CI: 
-0.01, 1.29). Notably, the associations between leg fat per-
centage with HBP were significant, with an estimate value 
of -1.21 (95%CI: -1.81, -0.61). In non-OB boys, an inverse 
correlation was seen between trunk fat percentage and 
SBP levels. No significant relationship between HBP risk 
and four body fat percentage distribution parameters was 
found in girls while other body fat percentages were fixed 
at their 50th percentile.

The PIP values for the BKMR model were present 
in Fig.  3, the larger value indicated the higher relative 
importance of each fat distribution parameter. For HBP, 
SBP, and DBP of all participants, the android fat percent-
age had the highest PIP (1.00) compared to the other 
three parts of body fat percentage. In non-OB boys, trunk 
(PIP = 1.00), leg (PIP = 0.78) and android (PIP = 0.94) 
fat percentage had high PIPs in SBP. Leg fat percent-
age also had a high PIP of 0.82in DBP. In OB boys, leg 
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fat percentage had a high PIP in HBP (PIP = 0.99), SBP 
(PIP = 0.96), and DBP (PIP = 0.74); PIPs > 0.5 were also 
observed in android fat percentage with HBP (PIP = 0.94), 
SBP (0.95), and DBP (PIP = 0.58). Android fat percentage 
had a higher PIP in HBP (PIP = 0.60) in non-OB girls, but 
not in OB girls.

Characterization of the relative weights of each body fat 
distribution parameter for BP levels
We further performed the WQS regression model to 
analyze the joint effects of four body fat distribution 

parameters on the risk of BP levels. The covariates 
adjusted in this model were age, family income, sleep-
ing time, smoking, drinking, physical activity time, sugar, 
meat, vegetables, and fruits. Figure  4 depicts the distri-
bution of weights assigned to different body fat param-
eters concerning BP levels. The absolute values of the 
weights indicated the relative importance of each body 
fat distribution indicator, while the direction is reflected 
by the positive/negative signs. Overall, increased android 
fat percentage contributed the most to HBP risk with a 
relative weight of 0.52, while increased leg fat percentage 

Table 2 Characteristics of participants (N = 1423), stratified by sex among overweight or obesity
Variables Boys (N = 715) Girls (N = 708)

Non-OB OB P value Non-OB OB P value
N (%) 412(57.62) 303(42.38) 463(65.40) 245(34.60)
Age (years) 12.68 ± 3.24 12.24 ± 2.90 0.063 12.53 ± 3.19 12.54 ± 2.92 0.956
Height (cm) 156.95 ± 17.91 156.24 ± 16.09 0.581 151.22 ± 13.98 152.29 ± 12.14 0.310
Weight (kg) 45.78 ± 15.27 61.57 ± 21.59 < 0.001 41.85 ± 11.98 58.91 ± 16.96 < 0.001
BMI (kg/m2) 17.93 ± 2.59 24.36 ± 4.53 < 0.001 17.84 ± 2.59 24.8 ± 4.21 < 0.001
Body fat mass (kg)
 Trunk fat mass 1.15 ± 0.38 2.38 ± 0.94 < 0.001 1.47 ± 0.56 2.62 ± 0.92 < 0.001
 Leg fat mass 3.78 ± 1.35 7.69 ± 3.16 < 0.001 4.91 ± 1.77 8.42 ± 2.91 < 0.001
 Android fat mass 0.47 ± 0.30 1.61 ± 0.95 < 0.001 0.63 ± 0.34 1.59 ± 0.71 < 0.001
 Gynoid fat mass 1.56 ± 0.64 3.37 ± 1.45 < 0.001 2.21 ± 0.93 3.87 ± 1.44 < 0.001
Body fat percentage (%)
 Trunk fat percentage 25.53 ± 8.36 37.75 ± 8.67 < 0.001 35.16 ± 5.87 43.90 ± 6.03 < 0.001
 Leg fat percentage 24.03 ± 7.20 34.36 ± 7.29 < 0.001 32.04 ± 4.90 38.82 ± 4.92 < 0.001
 Android fat percentage 17.18 ± 7.08 37.39 ± 8.85 < 0.001 24.21 ± 7.33 40.60 ± 6.91 < 0.001
 Gynoid fat percentage 23.47 ± 7.24 35.77 ± 6.85 < 0.001 32.82 ± 5.43 41.03 ± 4.39 < 0.001
Blood pressure level (mmHg)
 Systolic blood pressure 114.48 ± 12.48 122.33 ± 14.12 < 0.001 111.1 ± 10.82 118.79 ± 12.67 < 0.001
 Diastolic blood pressure 66.96 ± 7.35 69.14 ± 7.70 < 0.001 67.85 ± 7.49 70.63 ± 8.57 < 0.001
Blood pressure status (%)
 Normal blood pressure 338(82.04) 161(53.14) < 0.001 383(82.72) 159(64.90) < 0.001
 High blood pressure 74(17.96) 142(46.86) 80(17.28) 86(35.10)
Life behaviors
 Daily sleeping time (h) 8.00 ± 1.23 8.00 ± 1.17 0.624 8.00 ± 1.33 8.00 ± 1.22 0.325
 Daily middle and high physical activity (h) 1.00 ± 0.89 0.88 ± 0.81 0.063 0.76 ± 0.67 0.73 ± 0.65 0.675
 Daily fruit consumption (serving) 1.16 ± 0.90 1.18 ± 0.92 0.739 1.26 ± 0.99 1.31 ± 0.83 0.501
 Daily vegetable consumption (serving) 1.79 ± 1.30 1.83 ± 1.34 0.733 1.84 ± 1.27 1.94 ± 1.19 0.332
 Daily meat consumption (serving) 9.71 ± 7.58 10.02 ± 6.73 0.589 8.37 ± 5.65 8.65 ± 5.00 0.517
 Daily SSB consumption (serving) 2.67 ± 4.55 2.13 ± 3.30 0.088 1.90 ± 2.63 2.13 ± 3.22 0.305
Family income
 Below 8000 yuan 48(12.66) 46(16.14) 0.441 63(14.52) 38(16.31) 0.374
 8000–18,000 yuan 153(40.37) 109(38.25) 162(37.33) 96(41.20)
 Above 18,000 yuan 178(46.97) 130(45.61) 209(48.16) 99(42.49)
Smoking
 Yes 7(1.82) 5(1.74) 0.938 0(0.00) 0(0.00)
 No 377(98.18) 282(98.26) 441(100.00) 239(100.00)
Drinking
 Yes 14(3.65) 5(1.74) 0.141 5(1.13) 4(1.67) 0.556
 No 370(96.35) 282(98.26) 436(98.87) 235(98.33)
OB: overweight and obesity; BMI: body mass index

SSB: sugar-sweetened beverage; One serving of SSBs is approximately 250 mL. One serving of meat is approximately 50 g
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contributed to lowered HBP risk with the weight of 
-0.38. For OB boys, android (weight = 0.34), trunk 
(weight = 0.22) and leg (weight=-0.44) fat percentage con-
tributed to the highest harmfulness and protectiveness 
on HBP risk, respectively. For non-OB boys, the right 
amount of trunk fat percentage (weight=-0.38), as well 
as leg fat percentage (weight=-0.22) could be protective 
from HBP instead. Android fat percentage had the high-
est weight on HBP risk in both non-OB (weight = 0.56) 
and OB (weight = 0.39) girls, while leg (weight=-0.13 in 
non-OB girls and weight = 0.17 in OB girls) and gynoid 
(weight = 0.19 in non-OB girls and weight=-0.27 in OB 
girls) fat percentages played opposing roles in the two 
groups.

Sensitivity analyses
In Figure S1, there was a strong correlation whole-body 
fat percentage, trunk fat percentage, leg fat percentage, 
android fat percentage, and gynoid fat percentage among 
boys and girls. The univariate exposure effect curves of 
the associations between four body fat percentage dis-
tribution parameters and BP levels stratified by nutri-
tion status and sex showed approximately linear trends 
(Figures S2-S5). Meanwhile, the bivariate cross-sections 
showed similar trends for exposure effect curves of one 
body fat percentage parameter when the other param-
eters were fixed at different percentiles, indicating that 
there might be no potential interactive effects between 
the multiple body fat percentage parameters (Figures 
S6-S8).

Fig. 1 Univariate exposure effect curves of the associations of four body fat percentage distributions on BP levels with all participants while all other 
body fat percentages were held at their median
Note: A, HBP; B, SBP; C, DBP; HBP, high blood pressure; SBP, systolic blood pressure; DBP, diastolic blood pressure; x-axis, four body fat percentage Z-score 
values; y-axis, exposure effect value estimated by the function, where a gaussian link function was used for SBP or DBP, and a binomial link function was 
utilized for HBP. The results were presented for one body fat percentage indicator when the other body fat percentage indicators were fixed at their 50th 
percentiles
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Discussion
The main focus of our study was to examine the joint 
associations between multiple body fat distribution 
parameters with HBP among children and adolescents 
in China. Our analysis indicates that there is an associa-
tion between elevated trunk fat, android fat, and gynoid 
fat percentages and a higher prevalence of HBP. Further-
more, the android fat might play a predominant role in 
the joint associations between multiple body fat distribu-
tion parameters with HBP. Meanwhile, when consider-
ing the percentage of leg fat, an intriguing reversal in the 
trend was observed. The stratified analyses highlighted 
the importance of closely monitoring the android fat dis-
tribution, especially in OB boys, as it was found to have a 
significant influence on the development of HBP.

Previous research exploring the relationship between 
body fat distribution and HBP has primarily concen-
trated on the effects of isolated factors on the results [10, 

13, 14]. Nevertheless, under actual physiological condi-
tions, the body fat distribution in different body parts 
may have complex interplay and simultaneously impact 
on BP levels. To our knowledge, our study for the first 
time investigated the joint associations between multi-
ple body fat distribution parameters with HBP as well as 
their relative importance by quantitatively estimating the 
weights. The results revealed that the android fat might 
play a predominant role in the joint associations between 
multiple body fat distribution parameters with HBP. 
Notably, there was an intriguing reversal in the observed 
trend when considering the percentage of leg fat. These 
findings provide valuable insights into comprehending 
the intricate relationship between body fat distribution 
and HBP and have the potential to provide a strong basis 
for the development of precise prevention and control 
strategies for HBP in children and adolescents. These 
results provide consistent and compelling evidence that 

Fig. 2 The effect estimates and 95%CI of four body fat percentage distribution parameters on BP levels of participants
Note: A, HBP; B, SBP; C, DBP; HBP, high blood pressure; SBP, systolic blood pressure; DBP, diastolic blood pressure; x-axis, four body fat percentage indicators; 
y-axis, changes in exposure effect value estimated by the function, where a gaussian link function was used for SBP or DBP, and a binomial link function 
was used for HBP. The results were presented as changes in exposure effect value when one body fat percentage indicator was at the 75th vs. 25th per-
centile, while the other body fat percentages were fixed at their 50th percentiles

 



Page 9 of 13Chen et al. BMC Public Health           (2025) 25:14 

postmenopausal women with normal BMI at 161 clinical 
centers in the United States revealed a significant associ-
ation between leg fat and a decreased risk of cardiovascu-
lar disease (HR = 0.62) [33]. On the other hand, according 
to a study conducted by Taksali [34], an increase in the 
proportion of visceral fat and a decrease in android fat 
were associated with higher levels of triglyceride, BP, 
and insulin resistance. Fat deposits in different areas of 
the body can have distinct effects on vascular function. 
One possible explanation was that android and visceral 

fat deposits are known risk factors for vascular function, 
whereas fat deposits in the legs and buttocks may con-
fer protective benefits for vascular function [35]. Another 
possible explanation was that higher abdominal fat asso-
ciated positively with HBP due to its link with insulin 
resistance, inflammation, and dyslipidemia, while higher 
leg fat may provide protection by scavenging circulating 
lipids and glucose, thereby mitigating HBP risk factors 
[36, 37].

Fig. 3 PIP value from BKMR model for four body fat distribution parameters
Note: A, Total; B, Boys-non-OB; C, Boys-OB; D, Girls-non-OB; E, Girls-OB; HBP, high blood pressure; SBP, systolic blood pressure; DBP, diastolic blood pressure
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Our study emphasizes the significance of paying spe-
cial attention to fat distribution patterns, particularly in 
OB boys. While obesity is known to be associated with 
increased BP, the distribution of body fat can further 
influence this relationship [38, 39]. These findings sug-
gest that interventions targeting fat distribution patterns 
may be particularly beneficial for OB boys in reducing 
the risk of HBP, not non-OB boys. Among the potential 
mechanisms are changes in metabolic profiles, hormonal 
influences, genetic predispositions and lifestyle factors 

that contribute to differences in outcomes between the 
two groups [40]. Further research is warranted to explore 
the underlying mechanisms driving this specific asso-
ciation and to develop tailored strategies for managing 
fat distribution in this vulnerable population [41, 42]. 
The mechanisms by which fat distribution affects HBP 
can differ in children and adolescents of different sexes 
[13, 43]. Previous studies have provided evidence-based 
hormonal variations, such as sex hormones and growth 
factors, which play a crucial role in the regulation of fat 

Fig. 4 Characterization of the relative weights of each body fat distribution parameter for BP levels using WQS
Note: A, Total; B, Boys-non-OB; C, Boys-OB; D, Girls-non-OB; E, Girls-OB HBP, high blood pressure; SBP, systolic blood pressure; DBP, diastolic blood pressure
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distribution and BP regulation. Estrogen can promote 
adipose tissue deposition either directly or by activating 
its receptors in adipocytes and adipose tissue [44–46]. 
On the other hand, androgens can influence the number 
of adipocytes and the distribution of adipose tissue [47]. 
Additionally, differences in body composition, physical 
activity levels, and dietary habits between different sexes 
may further influence the relationship between fat distri-
bution and HBP [48, 49]. Moreover, emerging evidence 
suggests that genetic and epigenetic factors may interact 
with fat distribution to modulate the risk of high BP dif-
ferently in boys and girls. Future studies should aim to 
elucidate the underlying pathways involved and investi-
gate potential sex-specific interventions targeting fat dis-
tribution to manage hypertension effectively in children 
and adolescents.

This study possessed several noteworthy strengths that 
merit acknowledgment. Firstly, the utilization of DXA 
to comprehensively scan the entire body of participants 
served as the gold standard for body composition mea-
surement. This approach surpassed the limitations of 
relying solely on BMI and offered more accurate predic-
tions of body size dissatisfaction in children and adoles-
cents. Secondly, our study for the first time investigated 
the joint associations between multiple body fat distribu-
tion parameters with HBP as well as their relative impor-
tance by quantitatively estimating the weights using the 
BKMR and WQS models. These algorithms excel in pro-
viding detailed and interpretable results and facilitating 
joint effect analyses. Significantly, these strengths estab-
lish a robust foundation for the development of precise 
prevention and control strategies for HBP in children 
and adolescents, underscoring the critical importance of 
considering body composition measures in such endeav-
ors. However, it is important to acknowledge several 
limitations in this study that should be taken into con-
sideration. Firstly, due to the cross-sectional nature of 
the study, it is unable to establish a causal relationship 
between the variables investigated. Secondly, the mea-
surement of BP was performed as a one-time single-
point assessment, which may lead to an overestimation of 
HBP when making judgments. Thirdly, our study did not 
assess the pubertal developmental stage of participants at 
the time of data collection and was unable to detail sex 
differences in body fat distribution in children and ado-
lescents at the pubertal stage. Consequently, the utility 
of body composition indicators for predictive purposes 
remains uncertain within the context of this study. Fur-
thermore, the adjustment for confounding factors was 
constrained by the limited inclusion of lifestyle factors, 
and the dietary questionnaire employed was relatively 
simplistic, lacking more objective and accurate dietary 
indicators such as nutrient content.

Conclusions
In summary, our findings revealed an increased risk 
of HBP associated with higher percentages of trunk 
fat, android fat, and gynoid fat percentages, where the 
android fat might play a predominant role in the joint 
associations between multiple body fat distribution 
parameters with HBP. Given the fact that these fat indi-
cators from various body parts have inconsistent roles 
in the association with HBP risk, we recommend that it 
might be beneficial to offer children body-part-specific 
exercise guidance to promote more effective HBP pre-
vention strategies. These findings could contribute to 
evidence-based interventions and public health policies 
to mitigate the burden of cardiovascular diseases in later 
life.
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