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Abstract 

Background Cerebrospinal fluid (CSF) β2-microglobulin (β2M) has been demonstrated as an important factor 
in β-amyloid (Aβ) neurotoxicity and a potential target for Alzheimer’s disease (AD). However, more investigation 
is required to ascertain the relationship between β2M and glial activities in AD pathogenesis.

Methods In this study, 211 participants from the Alzheimer’s disease Neuroimaging Initiative (ADNI) with CSF 
and Plasma β2M, CSF glial fibrillary acidic protein (GFAP), soluble triggering receptor expressed on myeloid cells 2 
(sTREM2), Aβ42, phosphorylated-tau (P-tau) and total tau (T-tau) were divided into four groups, stage 0, 1, 2, and sus-
pected non-AD pathology (SNAP) based on the National Institute on Aging- Alzheimer’s Association (NIA-AA) criteria. 
Multiple linear regression, linear mixed effects models, and causal mediation analyses bootstrapped 10,000 iterations 
were used to investigate the underlying associations among β2M and CSF biomarkers at baseline and during a longi-
tudinal visit.

Results CSF β2M concentration decreased with amyloid in stage 1 compared with stage 0 and increased with tau 
pathology and neurodegeneration in stage 2 and SNAP compared with stage 1. Moreover, CSF β2M level was posi-
tively correlated with the Aβ42 (β = 0.230), P-tau (β = 0.564), T-tau (β = 0.603), GFAP (β = 0.552), and sTREM2 (β = 0.641) 
(all P < 0.001). CSF β2M was only longitudinally correlated with T-tau change. The correlation of CSF β2M with P-tau 
(proportion = 25.4%, P < 0.001) and T-tau (proportion = 26.7%, P < 0.001) was partially mediated by GFAP in total 
participants, reproduced in late-life individuals. Furthermore, the astrocyte cascade also partially mediated the patho-
logical relationship between CSF β2M and tau pathology (β2M → GFAP → YKL-40 → P-tau/T-tau, IE: 0.424—0.435, all 
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P < 0.001). Nevertheless, the mediation effects of sTREM2 were not significant. Additionally, there was no association 
between plasma β2M and CSF biomarkers.

Conclusions CSF β2M is dynamic in AD pathology and associated with neuroinflammation. CSF GFAP might mediate 
the association between β2M and tau pathology, complementing the existing research on the effect of β2M in AD 
pathology and providing a new perspective on treatment.

Keywords Alzheimer’s disease, β2-Microglobulin, Tau, Microglia, Astrocyte

Background
In 2024, approximately 50 million people worldwide may 
be affected by dementias, notably an estimated 6.9 mil-
lion Americans aged 65 and older who will have Alzhei-
mer’s disease (AD) [1]. The predominant pathological 
features of AD are β-amyloid (Aβ) plaques and tangles of 
microtubule-associated tau protein [2], while there are 
currently more studies exploring the impact of biomark-
ers on the underlying pathophysiology.

Recently, higher soluble β2M has been found in the 
cerebral spinal fluid (CSF) of patients with AD than in 
healthy controls [3]. Moreover, another study shows the 
connection between AD development and plasma β2M 
[4]. As a component of the major histocompatibility com-
plex class I (MHC-I) molecule, β2M can be involved in 
the regulation of brain development, synaptic plasticity, 
and neurobehavior [5–7]. Notably, β2M has been dem-
onstrated to play a significant role in Aβ-induced neuro-
toxicity and represents a promising target for AD therapy 
[8].

Meanwhile, the levels of CSF β2M have been suggested 
as a dependable indicator for various inflammatory or 
autoimmune disorders of the central nervous system 
(CNS) [9, 10]. In AD and neuroinflammation, microglia 
can contribute to synapse loss by engulfing synapses, 
worsening tau pathology, and releasing inflammatory 
factors that damage neurons or activate neurotoxic 
astrocytes [11, 12]. The triggering receptor expressed on 
myeloid cell 2 (TREM2) as a specific microglial surface 
receptor [13, 14], can be cleaved by metalloproteinases to 
release ectodomain via soluble TREM2 (sTREM2). CSF 
sTREM2 is also a promising microglia activity biomarker 
in AD and is associated with neuronal damage indicators 
[15]. Astrocytes may also exacerbate neurodegeneration 
when dysfunctional, resulting in cognitive decline in AD 
[16]. Exploring the correlation between β2M and micro-
glia–astrocyte communication in AD would be of sig-
nificant interest. First, CSF β2M is predominantly found 
in activated microglia [8], also involved in astrocyte 
response to inflammatory signaling such as interleukin, 
interferon, and tumor necrosis factor related pathways 
[17, 18]. Moreover, β2M may work itself or constitute 
inflammatory factors to participate in this interaction. 
Further, β2M was reported as a component of the glial 

fibrillary acidic protein (GFAP) [18], a signature protein 
of reactive astrocytes, impacting neuroinflammation, 
and is associated with AD pathology in the brain [19, 20]. 
Excitingly, in the 2023 Alzheimer’s Association Interna-
tional Conference (AAIC), fluid GFAP is currently the 
sole biomarker of inflammatory (I) that has been intro-
duced for AD prediction and staging [21, 22]. Although 
the above findings provide a possibility for studying the 
role of β2M in the microglia–astrocyte communication, 
it remains unclear whether CSF β2M triggers alterations 
in microglial activity or astrocyte function and pheno-
type in the human brain [8, 23]. The underlying mecha-
nism among CSF β2M, GFAP and sTREM2 also remains 
to be studied.

To determine the intricate function of β2M in the 
pathogenesis development of AD and its unique rela-
tionship with glial cell activity, we intended to explore 
the relationship of CSF and plasma β2M levels with glial 
activation and AD biomarkers and ascertain their inter-
relationships. Therefore, we propose the hypothesis that 
CSF β2M may be associated with CSF GFAP or sTREM2, 
involved in the progression of AD pathology.

Materials and methods
Study participants
All data were from the ADNI database (https:// adni. loni. 
usc. edu). The goal of the ADNI project is to identify bio-
chemical, genetic, imaging, and clinical biomarkers that 
may be used to predict the early beginning of AD. Partici-
pants have been recruited from more than 50 sites in the 
US and Canada [24].

We included 211 individuals providing clinical con-
ditions, CSF and plasma β2M, CSF GFAP, sTREM2, 
and AD biomarkers. All participants provided written 
informed consent according to the declaration of Hel-
sinki before study enrollment. The institutional review 
boards of all participating institutions in ADNI approved 
the data used for this study.

Measurements of biomarkers
In the ADNI database, the CSF β2M (two peptides: VEHS-
DLSFSK, VNHVTLSQPK) GFAP and Chitinase-3-like 
protein 1 (YKL-40, three peptides: ILGQQVPYATK, 

https://adni.loni.usc.edu
https://adni.loni.usc.edu
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SFTLASSETGVGAPISGPGIPGR, VTIDSSYDIAK) data 
were analyzed by mass spectrometry with multiple reac-
tion monitoring (MRM) and then normalized [25]. CSF 
sTREM2 data was from “CSF soluble triggering receptor 
expressed on myeloid cells 2 (sTREM2) and progranulin 
(PGRN)” of ADNI file, which was tested by MSD platform-
based assay [26]. CSF Aβ42, P-tau, and T-tau quantified by 
automated Roche Elecsys and cobas 601 immunoassay 
analyzer systems were obtained from the “ADNIMERGE-
key ADNI tables merged into one table” [27]. Each CSF 
biomarker assay was duplicated and averaged. Build-
ing upon the previous study, we employed thresholds of 
Aβ42 < 976.6 pg/mL, P-tau > 21.8 pg/mL, and T-tau > 245 
pg/mL in CSF to define abnormal levels [28].

The plasma β2M data were from “Biomarkers Consor-
tium Plasma Proteomics Project RBM Multiplex Data and 
Primer”. Information on the biological preparation of ADNI 
samples and the analysis of the RBM Human Discovery 
MAP panel could be accessed on the ADNI websites (http:// 
adni. loni. usc. edu/ data- sampl es/ biosp ecimen- data/) [29].

Group classification
According to the National Institute on Aging- Alzhei-
mer’s Association (NIA-AA) criteria [30], participants 
with normal Aβ42, P-tau, and T-tau levels (A-T-N-) were 
classified as stage 0. Subsequent stages include stage 1 
(A + TN-), stage 2 (A + TN +), and suspected non-AD 
pathology (SNAP) (A-TN +). Additional classifications 
were based on APOE ε4 allele statuses (non-carrier or 
carrier), mid-life (< 65 years) or late life (≥ 65 years), male 
or female, and education level (well-educated ≥ 7 years or 
ill-educated < 7 years).

Statistical analyses
Excessive values of CSF β2M, GFAP, sTREM2, AD bio-
markers, and plasma β2M that fell outside of the 4 SD 
were not included. To attain or be near to a normal dis-
tribution, the values of each biomarker underwent log 
transformation and then standardized on the z-scale. 
One-way analysis of variance (ANOVA) or the Kruskal–
Wallis test for continuous data and chi-square tests for 
categorical variables were used to examine the differ-
ences between the four AD stage groups. Then we fur-
ther compared CSF β2M levels by one-way analysis of 
covariance (ANOCVA) while Fisher’s LSD was employed 
for the post hoc test. Covariates included age, sex, edu-
cation years, and Apolipoprotein E (APOE)  ε4 carrier 
status. Spearman partial correlation analyses and multi-
ple linear regression were used to examine the relation-
ship between CSF or plasma β2M, CSF GFAP, sTREM2, 
and AD core biomarkers, taking into account the same 
variables. We performed mediation analyses using the 

"mediate" package of R software (version 4.2.1) to inves-
tigate whether CSF GFAP or sTREM2 could mediate the 
relationship between CSF β2M and CSF AD biomarkers, 
following the approach created by Baron and Kenny [31]. 
In the models, each path was adjusted for age, sex, edu-
cation years, and APOE ε4 carrier status. In addition, we 
used interaction analysis to evaluate the effects of age, 
sex, education, and APOE ε4 status. Then we performed 
subgroup analyses according to the results of the interac-
tion analysis. Besides, we used a linear mixed model to 
explore the relation between the levels of baseline CSF 
β2M and changes in AD biomarkers across time (Supple-
mentary Table 1), while adjusting for follow-up duration, 
age, sex, education levels, and APOE ε4 status. Finally, 
the sensitivity analyses were conducted by (1) using CSF 
β2M-VEHSDLSFSK for main analyses then reproduced 
by CSF β2M-VNHVTLSQPK, (2) validating the relation-
ship between CSF β2M and AD core biomarkers as well 
as GFAP and sTREM2 after screening of participants 
with diseases that may affect β2M concentrations, (3) 
selecting YKL-40 both as the secreted astrocyte cascade 
biomarker after GFAP to reproduce the findings of glial 
activity.

A two-sided p-value < 0.05 was considered statistically 
significant. All statistical analyses and the creation of the 
diagrams were performed using the R Studio software, 
SPSS (version 26.0.0.0), and GraphPad Prism (version 
9.4.2).

Results
Characteristics of participants
Table  1 shows the demographic, clinical, and bio-
marker features of 211 individuals (37 stage 0, 28 stage 
1, 131 stage 2, and 15 SNAP). They had a mean age 
of 74.99 ± 7.16 years, an average education level of 
15.75 ± 2.90 years, 80 females around 37.9% of propor-
tion, and an APOE ε4 non-carrier proportion of 53.1%. 
In four groups, there were no differences in participants’ 
gender, educated years, and plasma β2M levels. The pro-
portion of APOE ε4 carriers and CSF biomarker levels 
(all P < 0.001) showed significant differences among the 
four stages. Using CSF β2M-VEHSDLSFSK for main 
analyses and age, sex, education years, and APOE ε4 sta-
tus as covariates, participants in stage 1 had lower CSF 
β2M levels compared to stage 0, stage 2, and SNAP; par-
ticipants in stage SNAP had higher CSF β2M levels com-
pared to stage 0 (all P < 0.001) (Fig. 1A). Meanwhile, the 
T + and N + groups (both P < 0.001) had higher CSF β2M 
levels, but there was no difference between the A + and 
A- groups (Fig.  1B-D). The inference suggests that CSF 
β2M concentration declines during the pathological stage 
of amyloidosis, and subsequently rises with tau pathology 

http://adni.loni.usc.edu/data-samples/biospecimen-data/
http://adni.loni.usc.edu/data-samples/biospecimen-data/
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during the downstream tau pathology and neurodegen-
eration even without considering amyloidosis. In com-
parative analysis between groups, it was also found that 
the levels of CSF β2M were significantly higher in the 
late-life (P = 0.047) (Fig. 1E), male (P < 0.001), Ill-educated 

(P = 0.009), T + (P < 0.001) and N + (P < 0.001) group, 
but not different based on APOE ε4 status classifica-
tion (Supplementary Table 2). As age is the key risk fac-
tor for neuroinflammation and AD [32], also showed 
differences among the 4 stages in this study (P = 0.038, 

Table 1 The demographic and clinical characteristics of participants

Categorical variables were reported as number and percentage; continuous variables were reported as means (SDs). P values were computed with the one-way 
ANOVA or kruskal–wallis test for continuous variables; with the χ2 test for categorical variables. Significant effects (P < 0.05) are shown in bold

Abbreviations: SNAP suspected non-Alzheimer’s pathophysiology, SD standard deviation, APOE Apolipoprotein E, CSF cerebrospinal fluid, β2M β2-microglobulin, Aβ42 
amyloid-β1–42, P-tau phosphorylated-tau, T-tau total-tau, GFAP glial fibrillary acidic protein, sTREM2 soluble triggering receptor expressed on myeloid cells 2
a Data were missing for CSF sTREM2 (n = 37)

Characteristics Stage 0 Stage 1 Stage 2 SNAP P

Number 37 28 131 15 -

Age (years) 74.42 (6.67) 76.40 (4.98) 74.34 (7.36) 79.49 (8.54) 0.038
Female gender (N, %) 13 (35.1) 7 (25.0) 55 (42.0) 5 (33.3) 0.367

Education (years), 15.38 (2.88) 16.46 (2.71) 15.77 (2.93) 15.13 (2.92) 0.394

APOE ε4 carriers (N, %) 2 (5.4) 13 (46.4) 94 (71.8) 3 (20.0)  < 0.001
CSF β2M-VEHSDLSFSK 23.94 (0.41) 23.57 (0.27) 24.00 (0.46) 24.33 (0.43)  < 0.001
CSF β2M-VNHVTLSQPK 28.50 (0.29) 28.26 (0.20) 28.56 (0.35) 28.82 (0.34)  < 0.001
Plasma β2M (ug/mL) 0.32 (0.12) 0.31 (0.15) 0.29 (0.13) 0.36 (0.15) 0.212

CSF Aβ42 (pg/ml), 1417.84 (179.83) 623.38 (209.25) 590.22 (162.81) 1235.79 (225.41)  < 0.001
CSF P-tau (pg/ml), 16.52 (2.77) 15.90 (3.59) 37.52 (11.30) 34.48 (17.22)  < 0.001
CSF T-tau (pg/ml), 189.17 (28.43) 174.21 (34.09) 369.26 (100.69) 359.70 (147.78)  < 0.001
CSF GFAP (pg/ml), 10.89 (0.44) 10.92 (0.49) 11.25 (0.51) 11.39 (0.58)  < 0.001
aCSF sTREM2 (pg/ml), 4949.31 (2195.82) 2973.32 (1276.08) 4418.58 (1981.63) 5396.33 (2017.27)  < 0.001

Fig. 1 Transformed baseline CSF β2M in participants classified according to the NIA-AA criteria (A, B, C, D) and age (E). Levels of transformed CSF 
β2M were significantly lower in S1, T-, N- and mid-life group. Notes: CSF β2M fitted the normal distribution after log10 transformation and then 
standardized by z-scale. Transformed plasma β2M was computed with the One-way ANCOVA for comparison of means while Fisher’s LSD 
was employed for post hoc test. Models included age, gender, education, APOE ε4 status as covariates. Significant effects (P < 0.05) are shown 
in bold. Abbreviations: CSF, cerebrospinal fluid; β2M, β2-microglobulin; NIA-AA, National Institute on Aging- Alzheimer’s Association; S, stage; A, 
amyloidosis; T, tau pathology; N, neurodegeneration; SNAP, suspected non-Alzheimer’s pathophysiology; APOE, Apolipoprotein E
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Table 1), we questioned whether levels of β2M and CSF 
AD biomarkers are related to normal aging. As expected, 
levels of CSF (VEHSDLSFSK, β = 0.050; VNHVTLSQPK, 
β = 0.054) and plasma β2M (β = 0.051), GFAP (β = 0.057), 
sTREM2 (β = 0.040) (all P < 0.001) increased significantly 
with age (Supplementary Table 3).

Association of baseline β2M with CSF biomarkers
Supplementary Table  4 showed the results of multi-
ple linear regression of baseline plasma and CSF β2M 
with CSF AD core biomarkers, GFAP, and sTREM2. We 
found that the elevated level of CSF β2M was corre-
lated with the greater levels of Aβ42 (β = 0.230, P < 0.001), 
P-tau (β = 0.564, P < 0.001), and T-tau (β = 0.603, 
P < 0.001) (Fig.  2A-C). There was also a positive asso-
ciation between baseline CSF β2M and levels of GFAP 
(β = 0.552, P < 0.001) and sTREM2 (β = 0.641, P < 0.001) 
(Fig.  2D-E). Furthermore, CSF β2M was only longitudi-
nally correlated with T-tau levels (β = -0.025, P = 0.025) 

(Supplementary Table 5). Nevertheless, plasma β2M was 
neither cross-sectionally nor longitudinally correlated 
with CSF biomarkers (Supplementary Table 4, 5).

The correlation between CSF β2M and tau pathology 
was mediated by CSF GFAP
Except for CSF β2M, GFAP and sTREM2 exhibited a sub-
stantial association with P-tau and T-tau (Fig.  3). Then, 
we further explored whether the correlation between 
CSF β2M and AD pathology involved GFAP or sTREM2 
in CSF. The results showed that CSF GFAP partially 
mediated the correlation between CSF β2M and CSF 
P-tau (proportion = 25.4%, IE = 0.144, P < 0.001) (Fig. 4A) 
as well as T-tau (proportion = 26.7%, IE = 0.162, P < 0.001) 
(Fig. 4B) in total participants. In addition, the mediation 
effects of sTREM2 were not significant (Supplementary 
Table  6). These results offered crucial human evidence 
for unraveling the interplay between CSF β2M, micro-
glia-astrocyte communication, and AD pathogenesis, 

Fig. 2 Correlation between baseline CSF β2M and CSF biomarkers using multivariate linear regression analyses. CSF β2M level was positive 
correlated with the Aβ42 (A), P-tau (B) and T-tau (C), GFAP (D) and sTREM2 (E). There was no significant association between CSF and plasma 
β2M (F). Notes: The normalized regression coefficients (β) and P values computed by multiple linear regression after adjustment for age, gender, 
education, APOE ε4 status. Significant effects (P < 0.05) were shown in bold. Abbreviations: CSF, cerebrospinal fluid; β2M, β2-microglobulin; Aβ42, 
amyloid-β1–42; P-tau, phosphorylated-tau; T-tau, total-tau; GFAP, glial fibrillary acidic protein; sTREM2, soluble triggering receptor expressed 
on myeloid cells 2; APOE, Apolipoprotein E
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particularly in tau pathology. They supported our hypoth-
esis that β2M could exert a pivotal role in tau pathology 
and AD-related neurodegeneration through cross-talk 
among glial cells.

Interactions and stratified analyses
Interaction analyses revealed that the relationship 
of CSF β2M with Aβ42 (β = -0.018, P = 0.016), P-tau 
(β = 0.023, P = 0.001), T-tau (β = 0.022, P = 0.002), and 
GFAP (β = 0.015, P = 0.035) was affected by age (Sup-
plementary Table  7). Then we performed additional 
stratified analyses (Supplementary Table 8, 9) and dis-
covered that CSF β2M was only associated with CSF 
biomarkers in the late-life group. Besides, this connec-
tion was more substantial in APOE ε4 carriers, male, 
well-educated, A + , T + , and N + groups.

Performing further mediation analyses reproduced 
mediating effects in the late-life group that associations 
of CSF β2M with P-tau (proportion = 21.5%, IE = 0.133, 
P = 0.002) (Fig.  4C) and T-tau (proportion = 23.6%, 
IE = 0.155, P < 0.001) (Fig.  4D) were partially mediated 
by GFAP (Supplementary Table 10). There were similar 
results in A- (proportion: P-tau = 31.4%, T-tau = 33.9%), 

T + (proportion: T-tau = 17.1%), and N + (proportion: 
P-tau = 18.5%, T-tau = 22.1%) group, consistent with 
the findings of the previous group comparison (Supple-
mentary Table 11–13).

Sensitivity analyses
Firstly, we performed sensitivity analyses with another 
peptide of CSF β2M-VNHVTLSQPK and found the 
relationship of CSF β2M with core biomarkers of AD, 
GFAP, and sTREM2 (Supplementary Table  14). Consid-
ering CSF β2M-VNHVTLSQPK was significantly corre-
lated with CSF β2M-VEHSDLSFSK (β = 0.975, P < 0.001),  
CSF GFAP, and tau pathology (all P < 0.001), we repro-
duced the mediation analyses. CSF GFAP had simi-
lar mediation effects on the relationship between CSF 
β2M and tau pathology (proportion: P-tau = 24.4%, 
T-tau = 26.5%, both P < 0.001) (Supplementary Table 15). 
In addition, considering medical comorbidities, the  
correlation between CSF β2M-VEHSDLSFSK and AD 
core biomarkers, GFAP, and sTREM2 remained signifi-
cant after the exclusion of 4 participants with any of the 
following diseases including diffuse large B-cell lym-
phoma, non-Hodgkin-lymphoma, mantle cell lymphoma, 

Fig. 3 CSF biomarker correlations. Red indicates positive correlation, and blue indicates negative correlation. Notes: The Spearman partial 
correlation coefficients (r) and P values are shown in each square after adjustment for age, gender, education, APOEε4 status. *P < 0.05; **P < 0.01; 
***P < 0.001. a: VEHSDLSFSK, b: VNHVTLSQPK. Abbreviations: CSF, cerebrospinal fluid; β2M, β2-microglobulin; Aβ42, amyloid-β1–42; P-tau, 
phosphorylated-tau; T-tau, total-tau; GFAP, glial fibrillary acidic protein; sTREM2, soluble triggering receptor expressed on myeloid cells 2; APOE, 
Apolipoprotein E
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multiple myeloma, inflammatory bowel disease, chronic 
renal insufficiency and renal failure disease [33–38] 
(Supplementary Table  16). There were no significant 
associations between CSF β2M-VNHVTLSQPK and 
plasma β2M, as well as no association of CSF β2M-
VNHVTLSQPK with longitudinal AD core biomarkers 
and sTREM2 (Supplementary Table  17). From the third 
perspective, another notable astrocyte cascade bio-
marker secreted after GFAP is YKL-40 [19], which has 
consistently been elevated in AD [39, 40]. The correla-
tion of CSF YKL-40 (ILGQQVPYATK, SFTLASSETG-
VGAPISGPGIPGR, and VTIDSSYDIAK, 211 samples) 
with CSF biomarkers and plasma β2M (all P < 0.001) 
had consistent trend and significance with GFAP (Sup-
plementary Table  18). As expected, CSF YKL-40 also 
mediated the association between CSF β2M and tau 
pathology (proportion: 16.5%—25.4%) (Supplementary 
Table 19–20). Given the strong correlation between YKL-
40 and GFAP (β: 0.452—0.483, all P < 0.001), and the 
research which indicates that YKL-40 plays a role in AD 
pathology later downstream GFAP, we further performed 

the mediation analyses using the most significant YKL-
40-VTIDSSYDIAK as the second mediator (Supplemen-
tary Fig. 1). The results showed that the astrocyte cascade 
mediated the pathological relationship between CSF 
β2M and tau pathology (β2M-VEHSDLSFSK → GFAP 
→ YKL-40 → P-tau/T-tau, IE = 0.424 / IE = 0.435; β2M- 
VNHV TLSQPK →  GFAP →  YKL-40 →  P- tau/T-
tauIE = 0.432 / IE = 0.433, all P < 0.001).

Discussion
This is the first study to systematically reveal that CSF 
β2M has a positive correlation with CSF Aβ42, P-tau, 
T-tau, GFAP, and sTREM2 (Fig.  5). First, β2M is a key 
co-aggregating factor with Aβ in amyloid pathology and 
is also associated with the exacerbation of tau pathology. 
Second, β2M modulates microglial activation, leading 
to the secretion of sTREM2. In addition, β2M facilitates 
communication between microglia and astrocytes, pro-
moting astrocyte reactivation and the secretion of GFAP. 
It is discovered that CSF GFAP rather than sTREM2 

Fig. 4 Mediation analysis of CSF β2M, GFAP, and tau pathology. The association of CSF β2M with CSF P-tau (A) and T-tau (B) was partially mediated 
by CSF GFAP in total population. The association of CSF β2M with CSF P-tau (C) and T-tau (D) was also partially mediated by CSF GFAP in the late-life 
group. Notes: Adjusted for age, gender, educational years, APOE ε4 carrier status. Significant effects (P < 0.05) were shown in bold. Mediation 
analyses with 10,000 bootstrapped iterations were used to examine the mediation effects. a: effect of CSF β2M on CSF GFAP level. b: effects of CSF 
GFAP on P-tau or T-tau level. c: effect of CSF β2 on P-tau or T-tau level without mediation. c’: effect of CSF β2M on P-tau or T-tau level considering 
mediation. Abbreviations: CSF, cerebrospinal fluid; β2M, β2-microglobulin; P-tau, phosphorylated-tau; T-tau, total-tau; GFAP, glial fibrillary acidic 
protein; APOE, Apolipoprotein E
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mediates the association of CSF β2M with P-tau and 
T-tau.

CSF β2M plays an important role in the glial cell cross-
talk. For microglia, β2M and sTREM2 are expressed 
mainly on microglia [8], and have similar positive associa-
tions with AD biomarkers in our study [32]. Interestingly, 
males have higher β2M levels, and β2M only interacts 
with gender on sTREM2. That may reflect the consist-
ency of β2M and microglia activities and the underlying 
sex differences [41]. Firstly, men generally have a slightly 
lower glomerular filtration rate (GFR) than women [42, 
43], contributing to less β2M clearance. Secondly, sex 
hormones also influence β2M regulation: estrogen in 
women protects kidney function, while testosterone in 
men may increase β2M production through immune 

and metabolic effects [44, 45]. Furthermore, chronic 
conditions like inflammation, metabolic syndrome, 
kidney disease, and cardiovascular diseases, which are 
more common in men, also elevate β2M levels [46, 47]. 
Lastly, β2M may be involved in transferrin-bound iron 
regulation, possibly influenced by Y chromosome-linked 
genetic factors [48, 49]. What needs more attention is 
microglial β2M may change astrocyte functions and phe-
notypes, further affecting preserving the blood–brain 
barrier (BBB), CNS immunological homeostasis, synap-
tic plasticity, and regular neuronal communication [50, 
51]. Reactive astrocytes overexpress GFAP which has 
also been discovered to have a role in the pathophysi-
ology of tau and amyloid proteins in the brain [52, 53]. 
The main finding of our investigation is that CSF GFAP 

Fig. 5 Schematic interlinking of the effect of β2M based microglia-astrocyte communication on AD pathology. CSF β2M is mainly derived 
from activated microglia (also secretes sTREM2) and peripheral β2M across the blood–brain barrier. β2M may be involved in Aβ aggregation. 
Findings in the present study suggest that CSF β2M also upregulates the secretion of GFAP by reactive astrocytes to promote the increase of P-tau 
and T-tau. Abbreviations: Alzheimer’s disease, AD; CSF, cerebrospinal fluid; β2M, β2-microglobulin; Aβ, amyloid-β; P-tau, phosphorylated-tau; T-tau, 
total-tau; GFAP, glial fibrillary acidic protein; sTREM2, soluble triggering receptor expressed on myeloid cells 2
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significantly mediates the relationship between CSF β2M 
and P-tau and T-tau, also found in the late-life popula-
tion based on the interaction between age and CSF β2M. 
Besides positively associated with GFAP, CSF β2M levels 
are also increasing with age, suggesting that β2M may be 
a pro-aging substance [7]. In addition, β2M is not only as 
a component of the GFAP [18]. When MHC-I are unsta-
ble, higher levels of β2M over-activate reactive astro-
cytes leading to astrocyte proliferation and increased 
GFAP levels, which can cause neuronal dysfunction and 
increased neurotoxicity, which can further affect tau 
pathology [54–56]. knocking down MHC-I expression 
reduces astrogliosis, and β2M silencing causes astrocyte 
atrophy by reducing the expression of GFAP [17]. Mean-
while, enhanced MHC-I expression in astrocytes, driven 
by the GFAP promoter, significantly impairs mice’s social 
behavior and recognition memory [57]. In our sensitiv-
ity analysis, we observed a high degree of consistency 
between YKL-40 and GFAP. Additionally, our mediation 
analysis revealed the pathway β2M → GFAP → YKL-
40 → P-tau/T-tau, further supporting the hypothesis that 
β2M influences tau pathology through astrocyte reacti-
vation. CSF YKL-40 concentrations and its pathological 
cascade after GFAP are primarily linked to tau pathology 
and associated neuronal injury, rather than Aβ [53, 58]. 
These findings provide additional clinical evidence for 
our proposed mechanism. Developing targeted therapeu-
tics for AD would be aided by a thorough understand-
ing of the mechanism behind the β2M-astrocyte-tau 
interaction.

Levels of CSF β2M alter dynamically in response to 
AD pathogenic processes. Although previous reports 
have shown the elevation of β2M in AD patients [3, 4, 
59]. Our research shows more details in the AD con-
tinuum according to the ATN categories defined by CSF 
biomarkers. Reduced CSF β2M is related to positive Aβ 
pathology in individuals with T- and N- status, whereas 
increased CSF β2M is linked to positive tau pathology 
or neurodegeneration even in the absence of A + sta-
tus [4]. In the early AD stages, two mechanisms might 
cause β2M to decrease. The formation process of amyloid 
plaques may consume CSF β2M to bind and local aggre-
gation [8], then typically accompanied by early microglial 
activation for clearance of amyloid and inflammatory fac-
tors like β2M [60]. In later stages, tau pathology and neu-
rodegeneration continue activating glial cells to secrete 
more β2M, damaging BBB and further increasing periph-
ery β2M in the brain [61].

Meanwhile, β2M itself exacerbates AD pathology, 
but the mechanism between it and Aβ or tau pathology 
is complex and completely different. Significant cor-
relation and uniformity between CSF β2M and CSF Aβ 
concentrations observed in our study further support 

the idea that the coaggregation of β2M with Aβ is a key 
factor in amyloid pathology toxicity, reported independ-
ent of MHC-I [8]. However, based on the results of our 
research, CSF β2M had a more significant association 
with tau pathology, supported by previous discovery that 
β2M knockdown notably mitigated tau pathologies in 
primary mouse neurons and the tau-P301S overexpres-
sion mouse model [62]. Moreover, there are two possi-
ble underlying mechanisms. Firstly, the reduction of tau 
pathology due to β2M deletion was found to be depend-
ent on MHC expression [62]. Inhibiting the activation 
of antigen processing and presentation by MHC-I effec-
tively ameliorates tau protein phosphorylation [41]. It has 
also been found that the APOE-MHC-I connection is the 
beginning of a causal chain driving tau pathology [63]. 
Secondly, another explanation is that soluble β2M-HFE 
mono chain (sHFE) forms a complex with β2M and asso-
ciates with the transferrin receptor (TfR), disrupting the 
modulation of iron-regulated proteins and thereby affect-
ing iron metabolism [64]. Iron accumulation, which is a 
well-documented consequence of aging and inflamma-
tion and a key factor in AD pathogenesis [65], has been 
linked to plaque, tangle pathology and activated micro-
glia in the brain [32, 66]. CSF β2M possibly further influ-
ences AD pathology by affecting iron metabolism leading 
to microglia-astrocyte activation and phagocytosis dys-
function [67].

Moreover, β2M expressed in peripheral tissues [7], 
which persistently separates from MHC-I, enters the 
bloodstream and traverses the BBB. Finally reabsorbed 
and metabolized in the kidney [42], elevated levels of 
circulating β2M play a crucial part in the risk of AD and 
cognitive impairment associated with kidney disease and 
chronic hemodialysis [4, 68]. No significant associations 
between plasma β2M and CSF biomarkers have been 
found in our study. The small sample size may be one 
explanation, or although β2M can cross the BBB, there 
may be changes in concentration or structure [61] that 
contribute to different effects of CSF and blood β2M in 
neuroinflammation and neurodegeneration. In addition, 
CSF β2M promotes astrocytic inflammation, worsen-
ing tau pathology and compromising the BBB [69]. This 
disruption may allow peripheral β2M to enter the brain 
[70], creating a positive feedback loop that could accel-
erate AD pathology and neurodegeneration. Anti-β2M 
antibodies may be useful in reducing the harmful conse-
quences of neuroinflammation on BBB while improving 
AD-associated neuropathology [8].

This study has several interesting strengths. It is the 
first to systematically examine the association of β2M 
with CSF GFAP, sTREM2, and AD core biomarkers 
by utilizing human population-based data. To further 
ensure the high caliber of the investigation, we have used 
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AD diagnosis criteria to classify AD biomarkers from 
the NIA-AA study. The analyses of two β2M peptides, 
consideration of the concentration of β2M in comor-
bidity and validation of YKL-40 made our results more 
stable. Nonetheless, several considerations should be 
taken when interpreting the current findings. Firstly, this 
study is planned to be exploratory, to generate hypoth-
eses and models. The cross-sectional results are not sup-
posed to infer causality in lack of the longitudinal data of 
β2M. Experiments on animals and cells are required to 
validate the proposed hypothesis. Secondly, AD pathol-
ogy in cerebrospinal fluid in our study has been used but 
not brain imaging data because of the small amount of 
β2M data, and more data are needed to harmonize with 
the brain imaging data to make the results more reliable. 
Thus, subsequent investigations need to corroborate our 
findings with extensive cohorts and highly sensitive CSF 
and plasma β2M assays. Besides, more secreted astro-
cytes reactive markers, especially in term of AD are also 
needed. Thirdly, the discussion of AD risk and cognition 
in the different fields requires further study.

Conclusion
There is a substantial association of CSF β2M with acti-
vated neuroinflammation and AD biomarkers. CSF β2M 
increases with age and changes dynamically at different 
AD stages. CSF β2M affects tau pathology through reac-
tive astrocytes. β2M as a potential biomarker, warrants 
further investigation into its mechanisms in AD.
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