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Abstract
Background  Clinical and epidemiological analyses have found an association between coronavirus disease 2019 
(COVID-19) and knee osteoarthritis (KOA). Infection with COVID-19 may increase the risk of developing KOA.

Objectives  This study aimed to investigate the potential causal relationship between COVID-19 and KOA using 
Mendelian randomization (MR) and to explore the underlying mechanisms through a systematic bioinformatics 
approach.

Methods  Our investigation focused on exploring the potential causal relationship between COVID-19, acute upper 
respiratory tract infection (URTI) and KOA utilizing a bidirectional MR approach. Additionally, we conducted differential 
gene expression analysis using public datasets related to these three conditions. Subsequent analyses, including 
transcriptional regulation analysis, immune cell infiltration analysis, single-cell analysis, and druggability evaluation, 
were performed to explore potential mechanisms and prioritize therapeutic targets.

Results  The results indicate that COVID-19 has a one-way impact on KOA, while URTI does not play a causal role 
in this association. Ribosomal dysfunction may serve as an intermediate factor connecting COVID-19 with KOA. 
Specifically, COVID-19 has the potential to influence the metabolic processes of the extracellular matrix, potentially 
impacting the joint homeostasis. A specific group of genes (COL10A1, BGN, COL3A1, COMP, ACAN, THBS2, COL5A1, 
COL16A1, COL5A2) has been identified as a shared transcriptomic signature in response to KOA with COVID-19. 
Imatinib, Adiponectin, Myricetin, Tranexamic acid, and Chenodeoxycholic acid are potential drugs for the treatment of 
KOA patients with COVID-19.

Conclusions  This study uniquely combines Mendelian randomization and bioinformatics tools to explore the 
possibility of a causal relationship and genetic association between COVID-19 and KOA. These findings are expected 
to provide novel perspectives on the underlying biological mechanisms that link COVID-19 and KOA.
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Introduction
As the number of COVID-19 survivors increases, the 
significance of post-COVID-19 syndrome and its persis-
tent adverse symptoms becomes apparent. Osteoarthritis 
(OA), an age-related degenerative disease, affects approx-
imately 250 million individuals globally, results in the loss 
of joint function due to the limited capacity of cartilage 
regeneration [1]. Emerging evidence suggests a potential 
link between COVID-19 and knee osteoarthritis (KOA). 
Research has indicated a higher prevalence of KOA in 
patients with COVID-19 [2]. Patients with COVID-
19 often exhibit hypocalcaemia, vitamin D deficiency, 
and immobility due to the disease, contributing to bone 
demineralization [3]. Research also indicates the impact 
of the COVID-19 pandemic on the physical therapy and 
surgical treatment of patients with KOA, leading to an 
increased risk of thrombosis after surgery [4–7]. How-
ever, there is currently no scientific evidence establish-
ing a direct causal relationship between COVID-19 and 
KOA. Given the lack of pharmacological or cell-based 
therapies for OA, especially in the context of the COVID-
19 pandemic, it is crucial to comprehend the potential 
impact of COVID-19 on KOA.

Notably, COVID-19 shares similarities with acute 
upper respiratory tract infection (URTI). Both illnesses 
are caused by viruses that can be transmitted through 
various routes and can lead to severe respiratory symp-
toms, often requiring hospitalization. Notably, COVID-
19 has a longer incubation period than common influenza 
[8–10]. Thus, our study firstly explores the causal associa-
tions between COVID-19, URTI, and KOA by employing 
the Mendelian randomization (MR) method [11]. Further 
research is essential to gain a comprehensive understand-
ing of the relationship between COVID-19 and KOA, 
particularly concerning cellular and molecular mecha-
nisms. With recent advancements in genetic analysis 
techniques and bioinformatics, our study combines both 
methods to explore the genetic links between these dis-
eases. Additionally, we assessed the interaction among 
genes with potential crosstalk to gain deeper insights into 
the pathophysiological processes connecting KOA with 
COVID-19. Overall, this research provides new insights 
into the relationship between COVID-19 and KOA.

Methods
Preparation of GWAS data and bidirectional MR analysis
GWAS data for COVID-19, KOA, and URTI were 
sourced from the IEU OPEN GWAS PROJECT [12], 
with the following sample sizes: COVID-19 (38,984 cases 
and 1,644,784 controls), KOA (24,955 cases and 378,169 

controls ), and URTI (35,847 cases and 182,945 controls). 
The KOA data came from a meta-analysis primarily 
involving participants aged 40–69, both male and female, 
while the COVID-19 and URTI studies did not focus on 
specific age or gender groups. A GWAS explores geno-
typic variations, particularly single-nucleotide poly-
morphisms (SNPs), throughout the entire genome to 
establish the association between genes and traits. To 
preserve the independence of SNPs associated with expo-
sure, we implemented criteria of r2 > 0.001 and a clump 
window distance greater than 10,000 kb. Furthermore, a 
significance level of p-value < 5e-6 was established for the 
GWAS to ensure sufficient statistical power in the MR 
analysis. The effectiveness of the instrument was evalu-
ated using the F statistic, with a threshold of greater than 
10 for all SNPs incorporated in the analysis [13].

The primary analytical approach utilized in this study 
was the inverse variance weighted (IVW) method [14], 
where COVID-19 and URTI were examined as expo-
sures, while KOA as the outcome. It is crucial to acknowl-
edge that employing SNPs as IVs may introduce certain 
biases, such as horizontal pleiotropy and heterogeneity. 
To assess the presence of horizontal pleiotropy, we anal-
ysed the intercept of the MR Egger method, MR-PRESSO 
method and evaluated heterogeneity using both the IVW 
and MR Egger approaches. Additionally, we calculated 
the power statistic for the IVW estimates using an online 
tool, mRnd (https:/​/shiny.​cnsgeno​mics​.com/mRnd/) [15]. 
A statistical power of over 80% is recommended for suf-
ficient reliability. Figure 1 illustrates the study flow.

Identification of DEGs from transcriptome datasets
The series matrix file data for GSE180226, GSE197143 
and GSE206606 were obtained from the NCBI GEO 
public database. GSE180226 consists of 20 patients with 
COVID-19 and 3 control patients. E-MTAB-12,184 series 
matrix file data from the ArrayExpress database ​(​​​h​t​​t​p​s​​:​/​
/​w​​w​w​​.​e​b​i​.​a​c​.​u​k​/​b​i​o​s​t​u​d​i​e​s​/​a​r​r​a​y​e​x​p​r​e​s​s​​​​​)​, which includes 
12 transcriptome datasets for 6 healthy subjects and 6 
patients with KOA, was also downloaded. GSE197143 
and GSE206606 provide a list of DEGs related to URTI. 
Additional file: Table S1 contains more detailed informa-
tion. To analyse the datasets, the R software packages 
“limma” [16] and “DESeq2” [17] were utilized. The crite-
ria used to identify DEGs were |log FC| ≥ 1 and adjusted 
p-value < 0.05. Volcano plots were created to visualize dif-
ferential gene clusters.

Keywords  COVID-19, Knee osteoarthritis (KOA), Mendelian randomization (MR), Bioinformatics analysis, Acute upper 
respiratory tract infection (URTI)
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Gene set enrichment analysis of all genes
We utilized gene set enrichment analysis (GSEA) [18], 
which relies on predefined gene sets derived from func-
tional annotations or previous experimental results, to 
rank genes according to their differential expression 
between two sample types. This approach helps deter-
mine whether the predefined gene set is enriched at 

either the top or bottom of the ranking table. To con-
duct our analysis, we utilized the R package “clusterPro-
filer” [19] and investigated the gene expression profiles 
of GSE180226 and E-MTAB-12,184. We created a com-
prehensive list of genes and ranked them in descending 
order based on their fold change values. The reference 
gene set used was “c5.ontology.all.v2023.1.Hs.symbols.

Fig. 1  Work flow
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gmt” from the MSigDB database [20]. Statistical signifi-
cance was determined at an adjusted p-value < 0.05.

WGCNA for coexpression network construction and 
module identification
Weighted gene coexpression network analysis (WGCNA) 
is a bioinformatics method utilized to uncover patterns 
of gene association among various samples. It can iden-
tify genes closely related to the development of diseases 
through clustering and modularization. In this research, 
we utilized the R package “WGCNA” [21] to establish 
a gene coexpression network for COVID-19 and KOA 
individually.

GO and KEGG analyses of DEGs
The genes obtained from the intersection of the module 
genes identified by WGCNA and the DEGs were consid-
ered to have a significant impact on the pathogenesis of 
COVID-19 and KOA. Consequently, these genes were 
subjected to Gene Ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway enrich-
ment analyses [22] using the R package “clusterProfiler”. 
A p-value < 0.05 was used to quantify the top listed func-
tional terms and pathways of common DEGs.

Construction of the protein‒protein interaction network
The STRING database (https://string-db.org/) was ​u​t​i​l​i​z​
e​d to build a protein‒protein interaction (PPI) network. 
We employed Cytoscape software to visualize the results 
of coexpression network analysis. Furthermore, we uti-
lized the GeneMANIA online tool ​(​​​h​t​t​p​s​:​/​/​g​e​n​e​m​a​n​i​a​.​o​
r​g​/​​​​​) to perform gene coexpression network analysis and 
predict gene set functions.

Analysis of transcriptional regulatory networks involving 
core genes
Transcription factors (TFs) play a pivotal role in regulat-
ing gene expression. We utilized the KnockTF database 
(https:/​/bio.li​clab.ne​t/Kn​ockTF/index.php) to predict 
potential TFs that may regulate core genes. Further-
more, the mRNA‒miRNA coregulation network was 
established by utilizing pertinent data obtained from the 
miRDB database (https://mirdb.org/). Motif prediction 
was carried out using the “RcisTarget” package [23] in R. 
This package calculates the area under the curve (AUC) 
for each motif-motif pair and computes the normal-
ized enrichment score (NES) based on the distribution 
of AUC values. Motifs that exhibit higher NES scores 
are considered to be significantly associated with the 
research object.

Immune infiltration analysis
The CIBERSORT algorithm [24] was employed to esti-
mate the relative abundance of immune infiltrating cells 

within the microenvironment. This algorithm analyses 
the expression matrix of immune cell subtypes using 
support vector regression (SVM) and deconvolution 
techniques. We applied the CIBERSORT algorithm to 
the transcriptome data and utilized the results for Spear-
man correlation analysis between gene expression and 
immune cell content. To ensure robustness, we con-
ducted 1000 permutations. This analysis offers valuable 
insights into the contributions of various immune cell 
types to the development and progression of diseases.

Single-cell analysis associated with core genes
Single-cell data were preprocessed using the “Seurat” 
package [25]. Following manual quality control, we 
employed the “harmony” package [26] to mitigate batch 
effects. We utilized the UMAP method to identify spatial 
relationships between each pair of clusters. Subsequently, 
the clusters were annotated using the cellmarker2.0 data-
base (http://​bio-big​data.hr​bmu.​edu.cn/CellMarker) and 
manually curated data.

Potential therapeutic drugs
The SPIED3 tool ​(​​​h​t​​t​p​:​​/​/​w​w​​w​.​​s​p​i​e​d​.​o​r​g​.​u​k​/​c​g​i​-​b​i​n​/​h​g​
n​c​-​s​p​i​e​d​3​.​c​g​i​​​​​) was used to predict potential therapeutic 
drugs using the Connectivity Map 2.0 datasets [27]. This 
tool identifies small molecule drugs that exhibit negative 
correlations with the expression profiles of DEGs.

Results
Mendelian randomization (MR) analysis
The findings from the MR analysis revealed a negative 
genetic effect of COVID-19 on KOA, as indicated by an 
odds ratio (OR) of 1.11 (95% confidence interval [CI]: 
1.04–1.19, p-value = 0.003) (Fig.  2). In accordance with 
the Bonferroni correction, a p-value below 0.025 (0.05/2) 
is considered to indicate statistically significant evidence 
of a causal relationship. Therefore, our findings demon-
strate statistical significance. However, no statistically 
significant association was observed between URTI and 
KOA (p-value > 0.025). Additional analyses, including 
sensitivity analysis, heterogeneity testing, and horizon-
tal pleiotropy testing, were conducted to assess potential 
bias in the MR results. No significant bias was detected 
(Additional file: Table S2 and S3). Reverse MR analysis 
was also performed to examine the influence of KOA as 
an exposure on COVID-19 and URTI, but no statistically 
significant associations were found. By setting α at 5%, 
we achieved a significant statistical power of 0.95 (> 0.8). 
This indicates that the independent variables provided 
accurate estimates of causal effects, ensuring the reliabil-
ity of the results.

Moreover, we conducted additional validation, which 
further supports our view that COVID-19 infection 
may have negative effects on the knee joint (Additional 

https://string-db.org/
https://genemania.org/
https://genemania.org/
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https://mirdb.org/
http://bio-bigdata.hrbmu.edu.cn/CellMarker
http://www.spied.org.uk/cgi-bin/hgnc-spied3.cgi
http://www.spied.org.uk/cgi-bin/hgnc-spied3.cgi


Page 5 of 17Zheng et al. BMC Medical Genomics            (2025) 18:2 

file: Table S4). After excluding outliers using Radial-MR 
method (Additional file: Figure S1), the next MR analy-
sis passed the outlier test. The IVW method showed a 
P-value of 0.0002.

It was also hypothesized that COVID-19 could influ-
ence the risk of KOA through a KOA risk factor. To 
investigate this further, additional MR analysis was con-
ducted using genome-wide association studies (GWAS) 
of potential KOA risk factors as outcomes. These risk fac-
tors included body mass index (BMI), osteoporosis, pain 
in joints, muscle or soft tissue injuries, and metabolic dis-
orders such as type 1 and type 2 diabetes. Among these 
factors, only BMI showed MR evidence indicating that 
COVID-19 could potentially lead to higher BMI (IVW: 
PFDR =0.006; Additional file: Table S5).

In conclusion, these findings suggest that COVID-
19 may have a negative impact on the development of 
osteoarthritis.

Differential gene expression analysis
For the transcriptome analysis of COVID-19, we per-
formed differential gene expression analysis by compar-
ing 19 disease cohorts with 3 control cohorts (one disease 
sample was excluded to ensure data integrity and preci-
sion). The analysis revealed a total of 3644 DEGs, with 
1874 upregulated and 1770 downregulated (Additional 
file: Figure S2A). For the transcriptomic analysis of KOA, 
we obtained the E-MTAB-12,184 series matrix data file 
from ArrayExpress in BioStudies. We analysed a total 
of 12 transcriptome datasets, encompassing 6 datasets 
from healthy subjects and 6 datasets from patients with 
KOA. This analysis led to the identification of 912 DEGs 
(Additional file: Figure S2B), with 437 genes exhibit-
ing increased expression and 475 genes with decreased 
expression. Additionally, we selected 411 upregulated 
DEGs and 150 downregulated DEGs based on the same 
control standards utilized for URTI from GSE206606. We 
also identified 89 upregulated DEGs and 1 downregulated 
DEG from GSE197143 (Additional file: Figure S2C and 

S2D). Subsequently, we conducted a search to identify 
common DEGs between COVID-19 and KOA, excluding 
DEGs associated with URTI. This effort resulted in the 
identification of 91 DEGs (Fig. 3A and B; Additional file: 
Table S6).

Gene set enrichment analysis of all genes
Due to the limited information obtained from GO and 
KEGG enrichment analyses, we employed GSEA, a 
method capable of examining enrichment signals, to 
perform a more comprehensive analysis [18]. The GSEA 
results revealed that 572 items from E-MTAB-12,184 
and 341 items from GSE180226 were enriched in the 
hallmark gene set. Subsequently, we examined the inter-
section of pathways and functions shared between these 
datasets, which led to the identification of 16 commonly 
inhibited items and 23 commonly activated items in the 
disease group compared to the healthy group (Additional 
file: Figure S3). These results demonstrated negative 
enrichment primarily in ribosome- and mRNA-related 
biological processes, while positive enrichment was 
observed in signalling receptors and extracellular matrix-
related biological processes. These findings provide 
valuable insights into the potential interaction between 
COVID-19 and KOA, warranting further investigation.

GO and KEGG analyses of DEGs
We conducted functional enrichment analysis on 91 dif-
ferentially expressed genes (DEGs) identified from two 
separate datasets. This analysis covered four main cate-
gories: biological process (BP), cellular component (CC), 
molecular function (MF), and KEGG pathways.

In BP analysis, the results highlighted the processes 
related to ossification, connective tissue development, 
extracellular matrix organization, and the organization 
of extracellular and external encapsulating structures, 
indicating their importance in bone development. CC 
analysis revealed significant enrichment of components 
such as the collagen-containing extracellular matrix, 

Fig. 2  Potential causal associations of COVID-19, URTI and KOA in MR analyses
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endoplasmic reticulum lumen, and collagen trimers. 
MF analysis emphasized functions related to extracel-
lular matrix structural constituents, glycosaminoglycan 
binding, and sulfur compound binding (Fig. 3C). KEGG 
pathway analysis identified the top 7 enriched pathways, 
including the PI3K/AKT signalling pathway, ECM-recep-
tor interaction, protein digestion and absorption, focal 
adhesion, and human papillomavirus infection. These 
findings suggest their potential relevance in the context 
of these DEGs (Additional file: Figure S4).

WGCNA construction and hub module identification
WGCNA is a bioinformatics approach that focuses on 
the connection between clinical features and coexpres-
sion modules, yielding comprehensive, reliable, and bio-
logically significant study results [28]. Genes within the 

same module are believed to be functionally intercon-
nected, allowing for the identification of biologically sig-
nificant modules and hub genes that may be shared by 
COVID-19 and KOA. In our analysis of the expression 
profile data of COVID-19, we conducted WGCNA with 
a threshold parameter β set to 5 (Additional file: Figure 
S5A). This analysis led to the identification of eight dis-
tinct gene modules. Notably, the brown module showed 
the strongest positive correlation with the disease state, 
with a correlation coefficient of 0.79 (p-value = 1e-5), as 
depicted in Additional file: Figure S5B. This module con-
tains 691 genes. Expanding our analysis to encompass the 
expression spectrum of KOA, we identified twelve gene 
modules using a threshold β value of 9 (Additional file: 
Figure S5C). Among these, the blue module exhibited the 
highest positive association with the disease state, with 

Fig. 3  Identification of common DEGs. A-B Venn diagram identifies coupregulated and codownregulated DEGs of KOA, COVID-19, and URTI. C GO en-
richment analysis of 91 DEGs
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a correlation coefficient of 0.92 (p-value = 2e-5), as illus-
trated in Additional file: Figure S5D. This module encom-
passes 1622 genes.

We extended our analysis by conducting an intersec-
tion analysis, comparing the brown module of COVID-
19 with the blue module of KOA. This analysis revealed 
106 intersecting genes. When cross-referencing this gene 
set with the 91 previously identified common DEGs of 
COVID-19 and KOA, we ultimately identified a group of 
17 common genes, as shown in Fig. 4A.

Protein‒protein interaction network construction
PPI analysis plays a vital role in uncovering potential 
interactions and functional associations among shared 
target genes. In our study, we integrated the 17 shared 
target genes into a PPI network using the online search 
tool STRING. This network consists of 9 nodes and 
54 edges, with a PPI interaction score exceeding 0.4 
(Fig.  4B). Notably, the nine nodes corresponding to 
the upregulated DEGs exhibited network interactions, 
whereas the downregulated DEGs did not. This suggests 
that the upregulated DEGs may have greater biologi-
cal significance and play crucial roles in the pathological 
process of KOA in relation to COVID-19.

Furthermore, we used GeneMANIA to perform bio-
logical function analysis to identify genes that share 
properties and functions with the nine core genes (Addi-
tional file: Figure S6A). This analysis revealed 20 closely 
associated genes, demonstrating coexpression, physi-
cal interactions, shared protein domains, pathways, and 

colocalization that underlie their functional associations. 
The primary functions of these genes involve extracellu-
lar matrix structural constituents, collagen trimers, col-
lagen-containing extracellular matrix, and growth factor 
binding.

To further investigate the molecular mechanisms link-
ing the association between KOA and COVID-19, we 
conducted an analysis of GO and KEGG pathway anno-
tations for the nine shared core genes. As anticipated, 
all nine genes displayed significant enrichment for the 
ontology terms “extracellular matrix” and “protein diges-
tion and absorption” (Additional file: Figure S6B-E). 
Overall, these nine genes (COL10A1, BGN, COL3A1, 
COMP, ACAN, THBS2, COL5A1, COL16A1, COL5A2) 
were identified as the core genes for further investigation 
in our study.

Immune infiltration analysis
The immune microenvironment plays a pivotal role in the 
development of COVID-19 and KOA and has significant 
implications for the diagnosis, prognosis, and treatment 
response of patients. In this study, we investigated the 
relationship between the nine aforementioned genes and 
immune cell infiltration across two datasets. Our objec-
tive was to discern differences in immune cell presence 
and gene correlation between disease and healthy control 
groups.

We employed the CIBERSORT algorithm to analyse 
the DEGs associated with COVID-19 and DEGs asso-
ciated with KOA separately. In the COVID-19 dataset 

Fig. 4  A Venn diagrams identify the intersection of genes between WGCNA module genes and common DEGs. B Visualization of the protein‒protein 
interaction (PPI) network of the 17 genes. Red indicates upregulated DEGs and blue downregulated genes in COVID-19 and KOA
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(GSE180226), we quantified the fractions of twenty-two 
distinct types of immune cells, which were visually rep-
resented using a box plot (Fig.  5A). Similarly, we illus-
trated the distribution of these immune cells using the 
DEGs obtained from the KOA dataset (E-MTAB-12184), 

and the results are presented in Fig. 5B. Additionally, we 
visually presented correlations between these 22 immune 
cell types and the nine core genes in the two datasets, as 
depicted in Fig. 5C and D.

Fig. 5  Analysis of immune infiltration associated with COVID-19 and KOA. A-B Box plot showing the distribution of immune cells in the COVID-19 and 
KOA samples, A for COVID-19 and B for KOA. The round dots indicate the outliners. C-D The correlation between the nine core genes and immune cells, 
C for COVID-19 and D for KOA. The symbol * (A-D) represents p-value < 0.05, **p-value < 0.01, ***p-value < 0.001, **** p-value < 0.0001
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We noted substantial disparities in the distribution and 
proportions of various immune cell types between the 
COVID-19 and healthy control groups. The case group 
had higher infiltration fractions for naive B cells, plasma 
cells, monocytes, M2 macrophages, and activated mast 
cells, while the infiltration fractions of activated NK cells, 
resting dendritic cells, and resting mast cells were lower 
compared to the control group. Similarly, when com-
paring KOA patients to healthy controls, we observed 
an increased infiltration fraction of naive B cells, resting 
memory CD4 T cells, resting gamma delta T cells, rest-
ing NK cells, activated NK cells, and M0 macrophages. 
In contrast, there was a decreased infiltration fraction of 
plasma cells, activated memory CD4 T cells, regulatory 
T cells (Tregs), activated dendritic cells, and neutrophils 
within the cartilage of KOA patients. Interestingly, naive 
B cells exhibited a significant increase in infiltration in 
both COVID-19 and KOA samples.

Correlation analysis between the 22 immune cell types 
and the nine identified core genes revealed significant 
positive correlations of the core genes with naive B cells, 
resting memory CD4 T cells, and M2 macrophages in the 
COVID-19 dataset. However, negative correlations were 
observed with memory B cells, M0 macrophages, and 
eosinophils. The gene COMP displayed a significant posi-
tive correlation with activated mast cells, while show-
ing a negative correlation with activated dendritic cells 
and resting mast cells. Furthermore, in the KOA data-
set, the same set of genes exhibited positive correlations 
with naive B cells, gamma delta T cells, resting NK cells, 
activated NK cells, resting memory CD4 T cells, and fol-
licular helper T cells, while displaying a negative corre-
lation with plasma cells, activated memory CD4 T cells, 
activated dendritic cells, and neutrophils. Additionally, 
the correlation analysis between immune cells and core 
genes demonstrated positive correlations for naive B cells 
and resting memory CD4 T cells in both COVID-19 and 
KOA samples. However, eosinophils exhibited a nega-
tive correlation with these genes in both sets of samples. 
These findings provide further evidence for the crucial 
role played by immune cells in the pathogenic processes 
of COVID-19 and KOA.

Transcriptional regulation analysis
Analysis of transcriptional regulation is a critical aspect 
in understanding the complex interactions among inte-
grative TFs, miRNAs, and hub genes. It provides valuable 
insights into the underlying biological processes involved 
in disease pathogenesis [29–31]. In this study, we uti-
lized the KnockTF database to identify 223 TFs for the 
nine core genes. The TF-gene relationship pairs resulting 
from the analysis are visualized in Fig. 6A. Among these 
TFs, TP63 and MYC exhibited the highest degree of con-
nectivity, with 20 and 16 connections, respectively. This 

suggests their potential major roles in different cell types. 
TP63 was found to inhibit the expression of the genes 
BGN, COL10A1, COL16A1, COL5A1, and COMP while 
promoting that of THBS2. In contrast, MYC was found 
to inhibit the expression of the ACAN, BGN, COL16A1, 
COL3A1, COL5A1 and COMP genes but promote that 
of THBS2.

MicroRNAs (miRNAs) are short noncoding RNA mol-
ecules that play a crucial role in gene regulation by bind-
ing to mRNA molecules, inhibiting translation, or causing 
mRNA degradation of target genes [32, 33]. In our study, 
we further investigated whether miRNAs associated with 
the hub genes regulate the transcription or degrada-
tion of specific risk genes. miRNAs associated with the 
nine shared core genes were obtained from the miRDB 
database, and the miRNA-gene network was visualized 
using Cytoscape software. The resulting network com-
prises 617 nodes and 751 edges. Only nodes with degrees 
greater than 3 are displayed (Fig.  6B). Remarkably, hsa-
miR-5692a (target mRNA: THBS2, COL10A1, COL3A1, 
COL5A2), hsa-miR-29b-3p (target mRNA: COL3A1, 
COL5A1, COL5A2, THBS2), hsa-miR-29c-3p (target 
mRNA: COL3A1, COL5A1, COL5A2, THBS2), hsa-miR-
29a-3p (target mRNA: COL3A1, COL5A1, COL5A2, 
THBS2), and hsa-miR-3120-3p (target mRNA: THBS2, 
COL3A1, COL10A1, COL16A1) were identified as the 
most connected miRNAs, suggesting their potential 
interactive role in the two diseases.

Additionally, we performed motif TF annotation and 
key gene screening. The motif transfac_pro_M01583 had 
the highest normalized enrichment score (NES) of 6.99. 
Genes BGN, COL10A1, and COL3A1 were found to be 
enriched in this motif. The enriched motifs and their cor-
responding TFs are visually represented in Additional 
file: Figure S7.

Core gene expression in single cells
We conducted single-cell analysis using the GSE220243 
dataset. The dataset was processed using the “Seurat” R 
package, employing the UMAP algorithm to cluster all 
cells into thirteen distinct classes. To accurately classify 
the cells, we utilized annotation data from CellMarker 
2.0 and curated data from relevant research papers. The 
comprehensive classification of cells includes prehyper-
trophic chondrocyte (preHTC), prefibrocartilage chon-
drocyte (preFC), effector chondrocyte (EC), regulatory 
chondrocyte (RegC), fibrocartilage chondrocyte (FC), 
hypertrophic chondrocyte (HTC), homeostatic chondro-
cyte (HomC), proliferative chondrocyte (ProC), patho-
genic chondrocyte (pathogenic), cartilage progenitor cell 
(CPC), and two additional unidentified categories.

To gain further insights into the intricacies of these 
cell types, we examined the expression levels of the nine 
genes across these cell types. This analysis, as depicted in 
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Fig. 6C, provided critical information about the specific 
gene expression patterns within the different chondro-
cyte subtypes. Notably, the genes COL10A1 and THBS2 
were found to be specifically expressed in HTC and FC. 
However, COL3A1, COL5A1 and COL5A2 showed 
higher expression in FC, pathogenic, preFC and preHTC. 
BGN, COMP, and ACAN were found to be highly 
expressed in almost all cell subtypes.

Small molecule drug prediction
In the final phase of our study, we conducted further 
investigations into potential drugs based on the nine core 
genes. Initially, we utilized the SPIED3 tool to predict tar-
get drugs (Fig. 6D). The input for this analysis consisted 
of the core genes and their corresponding LogFC values 
obtained from the differential gene expression analysis 
of the KOA dataset. The results indicated that the com-
pound “imatinib” had the lowest score of “-2.89”, suggest-
ing its potential effectiveness in inhibiting the expression 

of three genes: COL10A1 (-0.98), THBS2 (-0.96), and 
COL3A1 (-0.95). These findings provide valuable insights 
for preventing and treating KOA in the aftermath of the 
COVID-19 pandemic.

Discussion
In the wake of the COVID-19 pandemic, there has been 
a dedicated research effort to understand its underly-
ing complications and consequences [34, 35]. KOA, 
characterized by articular cartilage abrasion, is an age-
related degenerative disease that affects millions of peo-
ple worldwide. Although KOA itself does not directly 
threaten patients’ lives, its chronic and progressive nature 
can significantly impact their quality of life and even 
increase mortality rates [3, 36]. Increasingly, studies are 
confirming the link between COVID-19 and KOA. Over-
all, how the impact of COVID-19 on KOA and the most 
effective treatment approaches remain unclear, and the 
relationship between COVID-19 and KOA is not fully 

Fig. 6  A TF networks of core genes, the yellow line denotes promotion and the grey line inhibition. Only the nodes with degrees exceeding 10 are pre-
sented by their names. B mRNA‒miRNA networks of hub genes, with red indicating mRNA and blue miRNA. C Expression profiles of the nine core genes 
in different cellular subtypes of cartilage tissue. D Potential therapeutics for KOA patients with COVID-19
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understood. Therefore, investigating the mechanism of 
how COVID-19 affects KOA has crucial clinical signifi-
cance for early recognition and intervention.

COVID-19 can impact KOA in one direction, but URTI does 
not play a causal role
In this study, bidirectional MR analysis was initially 
employed to explore potential causal links among three 
conditions: COVID-19, KOA, and URTI. The results 
indicated a significant association between KOA and 
COVID-19. However, we did not observe a significant 
association between URTI and KOA. Notably, despite the 
considerable similarities between COVID-19 and URTI, 
such as their viral origins and modes of transmission 
through droplets, airborne aerosols, or direct contact, as 
well as the presence of common clinical symptoms such 
as fever, cough, and respiratory distress, our MR analy-
sis yielded distinct findings. These differences in causal-
ity between COVID-19 and URTI may be attributed to 
subtle genetic variations between the two conditions. 
Further investigation is essential to gain a comprehensive 
understanding of the underlying factors regarding how 
COVID-19 affects KOA.

Ribosomal dysfunction could play a mediating role in 
connecting COVID-19 with KOA
GSEA results revealed predominantly negative enrich-
ment in ribosome- and mRNA-related biological pro-
cesses. Ribosomes, which function as protein synthesis 
factories in cells, play a crucial role in infection and the 
human antiviral response. Studies have demonstrated 
that viral nonstructural proteins (NSPs) interact with 
various ribosomal states, disrupting mRNA translation. 
Notably, SARS-CoV-2 interferes with ribosome mRNA 
translation and employs multiple strategies, includ-
ing degrading host mRNA and blocking host mRNA 
export, in addition to inhibiting host mRNA translation 
[3]. There is a growing body of experimental evidence 
suggesting that molecular mechanisms associated with 
ribosome biogenesis and activity are dysregulated in OA 
[37–39]. These ribosome abnormalities occur at various 
stages of ribosome biogenesis, from early development 
to maturation, resulting in preferential translation in OA 
[40]. Although traditional explanations for OA have cen-
tred around an imbalance between the anabolism and 
catabolism of joint tissue, Van and colleagues have pro-
posed an alternative perspective. They consider OA as 
an acquired ribosomopathy and suggest that targeting 
ribosomes offers a novel approach for developing dis-
ease-modifying treatments for OA [41]. Overall, further 
research is warranted to explore the effects of ribosomes 
on KOA.

COVID-19 may influence the metabolic processes of the 
extracellular matrix, potentially impacting the normal 
development of joints
Identifying significant gene ontology and molecular path-
ways has enhanced our understanding of how COVID-
19 increases the risk of morbidity in KOA. Our findings 
indicated that the 91 common DEGs exhibit strong asso-
ciations with the ECM. Additionally, the GO and KEGG 
pathway annotations of the nine core genes shared 
among the DEGs support this conclusion. This suggests 
that the nine core genes play a crucial role in the con-
struction and degradation of the ECM, as well as other 
essential biological processes.

The knee joint is a complex structure consisting of 
various tissues, including articular cartilage, the syno-
vial membrane, the joint capsule, menisci, subchondral 
bone, infrapatellar and suprapatellar fat pads, and tensile 
connective tissues such as tendons and ligaments [42]. 
Articular cartilage comprises a dense ECM with sparsely 
distributed chondrocytes displaying varying morphology 
and potentially diverse functions [43]. The ECM consti-
tutes a complex network of proteoglycans, collagens, 
water, minerals, and fibrous proteins, imparting biome-
chanical properties to the articular cartilage [44]. Under 
normal conditions, chondrocytes maintain homeosta-
sis of articular cartilage by regulating the synthesis and 
degradation of ECM [45]. However, this balance is dis-
rupted by injury, inflammation, or other stimuli, leading 
to chondrocyte stress, ECM degradation, and abnormal 
accumulation of damaged proteins. Organelles such as 
the endoplasmic reticulum and mitochondria may also 
become dysfunctional. These events culminate in the 
degradation of cartilage, apoptosis of chondrocytes, and 
dysfunction of the subchondral bone, ultimately result-
ing in KOA [7]. Moreover, COVID-19 induces a systemic 
inflammatory response and abnormal expression of ECM 
components [46, 47]. The ECM is regulated by SARS-
CoV-2 infection and plays a crucial role in the pathogen-
esis of the infection. An overactive ECM can exacerbate 
the progression of disease and its regulation can help 
alleviate symptoms [48].

Additionally, several studies have reported the involve-
ment of inflammatory signalling pathways, including the 
PI3K/AKT, IL-17, TNF, NF-κB, and MAPK signalling 
pathways, in the osteoarthritic process [49–52]. It has 
been observed that activation of the PI3K/AKT pathway 
inhibits chondrocyte apoptosis and promotes chondro-
cyte proliferation [53, 54]. Moreover, the ECM-receptor 
interaction pathway is a critical signalling and metabolic 
pathway in progression of KOA [55]. The PI3K/AKT 
signalling pathway plays a pivotal role in regulating cell 
proliferation and maintaining the biological characteris-
tics of malignant cells [56]. Overall, there is a strong con-
nection between the PI3K/AKT signalling pathway and 
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the ECM. Research has indicated that regulation of the 
PI3K/AKT signalling pathway can influence degradation 
of the cytoplasmic matrix [57]. Thus, investigating altera-
tions in the ECM during the pathological mechanisms of 
COVID-19 and KOA may contribute to a better under-
standing and more effective management of KOA after 
COVID-19.

The nine fundamental genes exhibit a robust correlation 
with the occurrence of knee osteoarthritis
A specific set of genes (COL10A1, BGN, COL3A1, 
COMP, ACAN, THBS2, COL5A1, COL16A1, COL5A2) 
was identified as the common transcriptomic signature 
in response to KOA with COVID-19. COL10A1 is specif-
ically expressed by HTC. It plays a vital role in the depo-
sition of other matrix molecules within the hypertrophic 
zone, creating an environment essential for haematopoie-
sis, mineralization, and modelling in endochondral ossifi-
cation [58]. BGN is a small proteoglycan highly expressed 
in the growing skeleton and human skin, specifically in 
differentiating keratinocytes [59]. It belongs to the small 
leucine-rich proteoglycan (SLRP) family of proteins. 
BGN is involved in bone growth, muscle development 
and regeneration, and collagen fibril assembly across var-
ious tissues. Additionally, it may play a role in regulating 
inflammation and innate immunity. COL3A1 is found in 
most soft connective tissues, along with type I collagen 
and plays a role in regulating cortical development. Gene 
expression analysis has confirmed increased fibrogenesis 
in COVID-19 patients, as evidenced by the overexpres-
sion of genes related to collagen biosynthesis and ECM 
biosynthesis and degradation, including COL3A1 and 
COL5A1. Notably, COL3A1 is overexpressed in both 
COVID-19 and cases of usual interstitial pneumonia/
idiopathic pulmonary fibrosis (UIP/IPF) [60]. COL3A1 
is also a potential diagnostic biomarker for OA [61]. In 
the lungs of COVID-19 patients, there was a significant 
increase in key collagen and matricellular transcripts, 
particularly type III procollagen (COL3A1). This increase 
was observed to be higher than the levels seen in patients 
with influenza A or interstitial lung disease (ILD) [62]. 
COMP is a noncollagenous ECM protein that plays a 
structural role in cartilage by interacting with other ECM 
proteins, including collagens and fibronectin. It also 
mediates the interaction of chondrocytes with the carti-
lage ECM through cell surface integrin receptors [63, 64]. 
ACAN is a major proteoglycan in the ECM of cartilagi-
nous tissues and plays a primary role in providing resis-
tance to compression in cartilage. Studies have shown an 
increased expression of the Nos2 gene and a decreased 
expression of the Acan gene in cartilage tissue from rats 
with experimental OA compared to control animals. This 
indicates the activation of inflammatory and destructive 
processes in the tissue [65]. Various ACAN gene variants 

have also been linked to skeletal disorders [66]. THBS2 
is an adhesive glycoprotein that mediates cell-to-cell 
and cell-to-matrix interactions. It may serve as a novel 
biomarker in end-stage OA and plays a role in ECM-
receptor interactions [67–70]. As members of the colla-
gen family of proteins, COL5A1 and COL5A2 are minor 
connective tissue components that are widely distributed 
throughout the body. They bind to various molecules and 
play an essential role in regulating the assembly of tissue-
specific matrices [71–73]. COL16A1 is a member of the 
collagen family associated with fibril-forming collagens, 
such as type I and II collagens. It helps to maintain the 
integrity of the ECM and is highly expressed in fibro-
blasts, keratinocytes, smooth muscle, and the amnion 
[74].

Interestingly, these genes were upregulated and inter-
acted with each other, while the remaining genes were 
downregulated and did not exhibit any distinct connec-
tions. These nine core genes, which have similar func-
tions, may have significant implications in the onset and 
progression of KOA with COVID-19 when their expres-
sion is increased. They could serve as potential targets for 
therapeutic intervention.

The miR-29 family may participate in the regulatory 
process of the pathogenesis and development of KOA with 
COVID-19
In recent years, miRNAs have gained increasing atten-
tion. These small noncoding RNAs, typically 21–25 
nucleotides long, consist of sequences that complement 
the 3′ UTR of their target mRNAs, leading to mRNA deg-
radation or inhibition of mRNA translation [75]. miRNA 
subsets have clinical relevance as biomarkers, offering 
insights into the occurrence, progression, genetic links, 
and stages of diseases. The field of miRNA therapeutics 
has rapidly advanced due to the use of bioinformatic 
approaches to identify miRNA-binding sites, understand 
their associated biological pathways in target genes, and 
the availability of in vitro and in vivo preclinical research 
models [76].

In our study, we constructed an mRNA‒miRNA regu-
latory network, with hsa-miR-5692a, hsa-miR-29b-3p, 
hsa-miR-29c-3p, hsa-miR-29a-3p, and hsa-miR-3120-3p 
exhibiting the highest average connectivity among the 
nine core genes. These miRNAs are closely related to key 
genes, as indicated by bioinformatics analysis, suggest-
ing their potential pivotal roles in the pathogenesis of 
OA. Studies have shown that the miR-29 family, a group 
of microRNAs, plays an early role in the development of 
OA. Their expression is also regulated in cartilage dur-
ing the progression of OA [77]. Notably, there are mul-
tiple binding sites for miR-29a-3p and miR-29b-3p on 
the SARS-CoV-2 genome, and they target DEGs involved 
in the immune response. This suggests their potential 
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utility as biomarkers and therapeutic agents [78, 79]. 
Studies have demonstrated that hsa-miR-29b-3p regu-
lates mRNA targets involved in endothelial dysfunction 
and the inflammatory response in SARS-CoV-2 infection, 
contributing to severe lung injury and immunothrombo-
sis [80]. Additionally, miR-29b-3p is upregulated in carti-
lage tissue from patients with OA and is associated with 
altered expression and secretion of molecules related to 
cartilaginous degeneration. This upregulation facilitates 
chondrocyte apoptosis and contributes to the progres-
sion of OA [81]. Furthermore, miR-29b-3p has been 
shown to directly bind to the 3′-UTR of COL1A1 and 
COL3A1 mRNAs, leading to their degradation or pre-
venting translation [82]. Soluble factors derived from OA 
cartilage can promote the expression of miR-29b-3p in 
cocultured BMSCs and inhibit the expression and secre-
tion of COL1A1 and COL3A1 genes and proteins [83]. 
Collectively, these studies underscore the crucial role of 
miRNAs in the onset and development of COVID-19 and 
KOA.

Naive B cells, along with the nine core genes, offer valuable 
entry points to explore the relationship between the two 
diseases
The onset and progression of COVID-19 are closely 
linked to immunological inflammation, which can lead 
to immune irregularities such as imbalanced responses, 
cytokine storms, and heightened neutrophil activation. 
This, in turn, results in the release of proinflammatory 
cytokines such as interleukin-1β and tumour necro-
sis factor-α [84–86]. Simultaneously, immune dysfunc-
tion plays a significant role in the development of KOA. 
Although KOA has traditionally been considered a con-
dition affecting joint cartilage, emerging evidence sug-
gests the involvement of the immune system. Factors 
such as genetics, metabolism, or mechanical stress can 
initially damage cartilage, leading to the release of spe-
cific autoantigens that trigger an immune response. The 
immune system preserves ECM health and repairs dam-
age after injury. Disruptions in this balance are associ-
ated with various diseases [87]. Immune cells, including 
neutrophils, monocytes, and macrophages, remodel the 
ECM by producing enzymes such as serine proteases 
and matrix metalloproteinases (MMPs). These enzymes 
degrade ECM components like collagen and fibronectin, 
creating breakdown products that may act as autoim-
munogens [88–90], worsening conditions like KOA. This 
immune response involves the infiltration of joint tissues 
by T cells, B cells, and macrophages, which leads to the 
release of cytokines and chemokines, as well as the acti-
vation of the complement system. This cascade results in 
the release of cartilage-degrading factors, such as MMPs 
and prostaglandin E2 (PGE2), which further exacerbate 
cartilage damage [91].

The findings of our study indicate a higher presence of 
naive B cells in the disease group compared to the con-
trol group. Naive B cells play a dual role in the context 
of COVID-19. They form the foundation for generating 
antibodies to combat SARS-CoV-2. However, in severe 
COVID-19 cases, naive B cells are implicated in the 
development of autoreactivity, possibly influenced by 
the inflammatory environment characteristic of the dis-
ease [92, 93]. In OA, stromal cells derived from synovitis 
play a crucial role in supporting the survival of B-cells. 
However, B-cells in OA show changes in their ability to 
proliferate and differentiate, although they still main-
tain antibody production, particularly in the synovium 
[94]. In summary, naive B cells appear to be involved in 
the development of autoreactivity, potentially due to the 
inflammatory environment. Their role may have implica-
tions for understanding the immunological consequences 
of diseases.

In summary, the role of immunity in the development 
of KOA is of great significance. Thorough analysis of the 
infiltration pattern of immune cells in KOA is crucial for 
enhancing patient prognosis. Our research identified 
eosinophils, macrophages, and naive B cells, along with 
nine core genes, as potential avenues for investigating the 
relationship between these two diseases and exploring 
their potential as novel therapeutic targets. However, it is 
important to note that the immune responses triggered 
by COVID-19 may exacerbate KOA to some extent. 
Nonetheless, additional experimental validation is neces-
sary to confirm the correlation between specific subtypes 
of immune cells and their impact on KOA.

Differential expression of the nine core genes in subcellular 
cartilage tissue
Subsequently, we acquired a dataset consisting of single-
cell samples of KOA from the GEO database, specifically 
for the purpose of conducting single-cell annotation 
analysis. Single-cell analysis is a powerful tool for detect-
ing cellular heterogeneity and uncovering underlying 
mechanisms [95]. By elucidating the molecular and func-
tional profiles of different chondrocyte subtypes and 
understanding their interactions with other cell types in 
the joint, we can significantly enhance our understanding 
of joint biology and OA pathology.

Among the ten subchondrocytes that have been anno-
tated, HTC have been identified as crucial regulatory 
cells for bone growth. These cells are associated with 
blood vessel invasion and are surrounded by a calcified 
extracellular matrix that supports endochondral ossifica-
tion [58]. Previous research has shown that COL10A1 is 
a reliable marker for HTC cells in articular cartilage [96], 
which is consistent with our analysis results.

FC is primarily found in the late stages of OA and they 
express a high ratio of genes associated with unfavourable 
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OA outcomes. They also have the capacity for vascular-
ization, implying their role in promoting OA progression 
[38]. THBS2 showed the highest average expression level 
and the largest percentage expression level among FC, 
indicating its potential as a biomarker for FC (Additional 
file: Figure S8).

Promising therapeutics
OA is a complex, systemic disease with multifactorial 
triggers. Current treatments, such as nonsteroidal anti-
inflammatory drugs and glucocorticoids, have limita-
tions in terms of moderate effectiveness and potential 
side effects with long-term use [97, 98]. Currently, pain 
management and joint replacement surgery are the pri-
mary approaches for severe cases of pain and joint issues. 
However, these methods have limitations and associated 
risks, especially for elderly patients. Given the complex-
ity of OA onset, there are currently no definitive treat-
ments [99]. This is particularly important in the context 
of COVID-19, and studying potential drug targets may 
offer benefits to patients with both conditions.

This study identified potential therapeutic drugs for the 
nine core genes through screening using the SPIE3 web 
tool, providing valuable support for future research on 
treatment and therapeutic interventions. We conducted 
a search for relevant reports on several of the anticipated 
medications. Imatinib (Imatinib mesylate) is a protein 
tyrosine kinase inhibitor that has been shown to prevent 
and treat rheumatoid arthritis (RA) induced by type II 
collagen antibody in mice [100]. Treatment with ima-
tinib reduced the number of synovial mast cells express-
ing tryptase in mouse knees and attenuated murine OA 
[101]. Adiponectin, a circulating adipokine, has been 
strongly associated with various forms and stages of OA 
[102]. Myricetin has been demonstrated to be a potent 
protective molecule against OA. It reduces the synthesis 
of inflammatory cytokines and attenuates the progression 
of OA, partially by suppressing the activation of IL-1β/
MAPK pathway [103]. Activation of the Nrf2/HO-1 sig-
nalling pathway with myricetin has also shown promise 
in attenuating ECM degradation in human chondrocytes 
and ameliorating murine OA [104]. Tranexamic acid 
has been suggested as an effective and cost-effective 
drug for reducing blood loss in cemented primary hip 
arthroplasty for OA [105]. It significantly reduced carti-
lage-destructive lesions and increased cartilage hyper-
trophy [106]. Chenodeoxycholic acid (CDCA) is another 
potential therapeutic agent for OA. CDCA significantly 
decreased cartilage degradation on the surface of the 
femoral condyles and mitigated pathological changes in 
articular cartilage and the synovial membrane. It also sig-
nificantly reduced the release of matrix metalloprotein-
ase-1 (MMP-1), matrix metalloproteinase-3 (MMP-3), 
interleukin-1β (IL-1β), and prostaglandin E2 (PGE2) in 

synovial fluid [107]. In the external prediction results, 
various drugs demonstrate a positive effect on KOA. 
However, experimental verification is necessary for many 
of them. Development of these drugs can help prevent 
and treat KOA after COVID-19.

Conclusions
Understanding the precise pathophysiological mecha-
nism of the relationship between COVID-19 and KOA is 
of paramount importance. This understanding can pave 
the way for the development of precise and reliable bio-
markers and modern therapeutic agents. Such advance-
ments would have a significant impact on reducing the 
economic burden associated with joint replacement sur-
geries and lowering the morbidity rates of degenerative 
conditions.

Our study, which combines MR and bioinformat-
ics tools, provides evidence supporting a causal effect 
of COVID-19 on the risk of KOA. This finding is par-
ticularly noteworthy because COVID-19, despite being 
classified as a respiratory infection, differs from other 
respiratory infections in this aspect.

We conducted a comprehensive analysis of transcrip-
tome data for patients with COVID-19 and to identify 
DEGs and hub genes that are common to both diseases. 
Subsequent analyses, including functional enrich-
ment, WGCNA, transcriptional regulation, and single-
cell sequencing, revealed the potential copathogenesis 
between COVID-19 and KOA, mediated by hub genes 
such as COL10A1, BGN, COL3A1, COMP, ACAN, 
THBS2, COL5A1, COL16A1, and COL5A2.

It is important to acknowledge the limitations of this 
study that arise from the use of a computational biology 
approach. First, computational biology approaches inher-
ently introduce bias as they rely on existing datasets, 
algorithms, and models. This bias can affect the ability 
to accurately capture and reproduce underlying genetic 
links. Second, the availability of standard-compliant data-
sets for KOA may be limited, which can impact the com-
prehensiveness of the analysis. Additionally, challenges in 
sample collection can result in a lack of experimental val-
idation for the pathogenic role of the identified signature 
key genes, TFs, miRNAs, and other factors within a lim-
ited time period. Further research through randomized 
controlled double-blind prospective studies is necessary.

In summary, our study represents the first attempt to 
integrate MR and bioinformatics approaches to investi-
gate the intricate relationship between COVID-19 and 
KOA. This study provides a solid theoretical founda-
tion for future research in the field of KOA and COVID-
19. This work opens up new avenues for exploring the 
molecular mechanisms underlying these two complex 
conditions and offers hope for the development of more 
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effective prevention and treatment strategies in the 
future.
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