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ABSTRACT 

The long-term preservation of large volumes of infrequently accessed cold data poses challenges to the 
storage community. Deoxyribonucleic acid (DNA) is considered a promising solution due to its inherent 
physical stability and significant storage density. The information density and decoding sequence coverage 
are two important metrics that influence the efficiency of DNA data storage. In this study, we propose a 
novel coding scheme called the DNA palette code, which is suitable for cold data, especially time-series 
archival datasets. These datasets are not frequently accessed, but require reliable long-term storage for 
retrospective research. The DNA palette code employs unordered combinations of index-free 
oligonucleotides to represent binary information. It can achieve high net information density encoding and 
lossless decoding with low sequencing coverage. When sequencing reads are corrupted, it can sti l l effectively 
recover partial information, preventing the complete fai lure of file retrieval. The in vitro testing of clinical 
brain magnetic resonance imaging (MRI) data storage, as well as simulation validations using large-scale 
public MRI datasets (10 GB), planetary science datasets and meteorological datasets, demonstrates the 
advantages of our coding scheme, including high net information density, low decoding sequence coverage 
and wide applicability. 

Keywords: DNA data storage, synthetic biology, medical imaging, error-correcting codes 

I
D  

s  

d  

a  

c  

f  

l  

f  

t  

e  

s  

w  

r  

a  

s  

w  

e  

o  

fi  

s

content. In the context of this study, we refer to them 

as time-series archival datasets. 
Besides, strict scientific standards require high 

accuracy in the recovery of such data. However, 
due to the unpredictability of biochemical reactions 
during the synthesis, manipulation and sequencing 
processes, the DNA data storage process is error 
prone [9 ,10 ]. To enhance the reliability of DNA data 
storage, various concatenated codes have been pro- 
posed. In the process of inferring the order of dis- 
ordered and duplicate DNA sequencing reads, the 
outer code typically assigns a unique index to each 
encoded oligonucleotide (oligo), enabling the iden- 
tification of its location. Consequently, dropout er- 
rors can be treated as erasure errors. Erasure codes, 
such as the DNA fountain code [11 –13 ], indexed 
Reed–Solomon (RS) code [14 ,15 ] and Low-density 
Parity-check (LDPC) code [16 ], are proven effec- 
tive in restoring the missing information. We refer 
to them as index-added encoding strategies. Mean- 
while, several error-correcting codes, including the 

©The Author(s) 2024. Published
Commons Attribution License (h
work is properly cited. 
NTRODUCTION 

eoxyribonucleic acid (DNA) has recently received
ignificant attention as a promising candidate for
ata storage media owing to its extended lifespan
nd inherent storage density [1 –4 ], especially for
old data, which refers to data with low access
requency and reading speed requirements, but with
arge volumes that need to be stored and managed
or the long term [5 ]. Specifically, examples include
hree-dimensional medical imaging data [6 ], plan-
tary science data monitoring changes in planetary
tates [7 ] and meteorological data documenting
eather fluctuations [8 ]. These datasets typically
equire large-scale data volumes and persistent
rchiving for historical trend analysis and retro-
pective research, resulting in high storage costs
hen stored using conventional storage media. By
xamining the characteristics of such datasets, we
bserved that they commonly consist of multiple
les generated at different time points, sharing the

ame format, and containing inherent continuous 
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atermarker code [17 ], RS code [11 ,15 ], HEDGES
ode [14 ], DNA-Aeon code [13 ], Derrick code [18 ]
nd SPIDER-WEB code [19 ] are considered valid in-
er codes for checking and correcting nucleotide er-
ors. 
While numerous studies have proposed many

oding schemes for DNA data storage, there is sti l l
otential for designing an encoding method that bet-
er adapts to time-series archival datasets. Moreover,
ost studies compress the raw information before
ncoding, which can lead to complete failure of data
ecovery even with a minor error. This phenomenon
as been found in many studies [16 ,20 ,21 ]. Current
ompression algorithms are not tailored for DNA
ata storage and are not suitable for scenarios with
igh error rates. It inspires us not to use compression
lgorithms, but to focus on the characteristics of the
aw information itself, so as to design an adaptive en-
oding method to improve information density and
orrect errors. 
To achieve this goal, considering the characteris-

ics of time-series archival datasets, we proposed a
ovel coding method called the DNA palette code.
he main features of our coding scheme are that
t does not require indexing, and can achieve high
nformation density (i.e. the ratio of input bit in-
ormation to the number of synthetic DNA nu-
leotides, excluding primers and adapters [11 ]) and
 low decoding sequence coverage rate (i.e. the num-
er of reads required to recover 100 % information
ivided by the number of encoded oligos). In sce-
arios where sequencing coverage is very low, lead-
ng to high dropout rates and byte error rates, the
ecoder is sti l l capable of recovering partial infor-
ation. Our coding scheme is resilient to residual
yte errors, allowing it to recover partial informa-
ion to prevent complete data loss even in the pres-
nce of such errors. We verified the performance
f the DNA palette code by simulation and exper-
mental validation. In our in vitro test, we encoded
1.28 MB of clinical brain magnetic resonance imag-
ng (MRI) data into 255 248 oligos of 155-nt length
data payload only, no primers and adapters). The in-
ormation was successfully recovered with 100 % ac-
uracy at a median average coverage of 4.4 ×. When
he sequencing coverage is 2 ×, the recovered pixel
ata can also provide medical information. Further-
ore, we conducted simulations on a large public
RI dataset (10 GB) and two other applications
including observations of the Earth’s plasmasphere
y the extreme ultraviolet camera on the Chang’ E -3
oon lander and daily melt results on the surface
f the Greenland ice sheet). This i l lustrates the ro-
ustness and broad application of the DNA palette
ode. 
Page 2 of 9
RESULTS 

A brain MRI scan yields a significant volume of 
slice data, where each slice is stored as an indi- 
vidual digital imaging and communications in 
medicine (DICOM) file [22 ] (Fig. 1 a). Adhering 
to the DICOM format ( Fig. S1), we introduced a 
data pre-processing scheme based on dictionary 
transforms, called the DNA ladder code, which 
can utilize the structural information of the dataset 
to convert it into a form more conducive to the 
DNA palette code encoding (Fig. 1 b). Subsequently, 
we presented a ‘bit-to-oligo’ mapping approach 
grounded in combinatorial theory, termed the DNA 

palette code (Fig. 1 c). The decoder undertakes 
trace reconstruction and nucleotide error-correcting 
tasks, accommodating duplicate sequencing reads 
without the need for clustering or multiple align- 
ments (Fig. 1 d). The DNA palette code is the major
innovation, so we use it to refer to the coding scheme
proposed in this work. 

DNA palette code 

The fundamental idea of the DNA palette code is 
to establish a bijection between XN , the range of 
the raw information, and O, the family of oligo 
sets. Here, we use X = { 0 , 1 } to denote the bi-
nary alphabet and D = {A ,T ,G ,C } to represent 
four natural DNA nucleobases: adenine (A), cyto- 
sine (C), guanine (G) and thymine (T). The code- 
word corresponding to x ∈ X n is a subset of the 
oligo set. Metaphorically, the DNA palette code re- 
gards each oligo as a pigment, distinguishing dif- 
ferent binary strings by coloring them with distinct 
colors. It enables the mixing of different pigments 
to create new colors. Assuming that mixed colors 
are distinct, and pigments exhibit a total order re- 
lation, the resulting mixed colors wi l l possess a lex-
icographical order defined by this relation. Simi- 
larly, we have also defined a total order on the range
of the raw information. This allows us to estab- 
lish a one-to-one mapping between binary strings 
and colors through these two total order relations. 
Consequently, the input can be uniquely encoded 
as a color. Since pigments are mixed without re- 
gard to the order or quantity added, the number 
of pigments used for encoding binary strings is not 
fixed and no index needs to be inserted for each 
pigment. 

When considering oligos as pigments, the mix- 
ing process of pigments can be viewed as sampling 
without replacement within the set of oligos. Here 
is a straightforward example. Let ‘001’ be the raw 

information, and let O = {o 1 , o 2 , o 3 } be the preset 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae321#supplementary-data
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Figure 1. Overview of the DNA palette coding scheme. (a) Primary application: brain 
MRI scan. A brain MRI scan is a diagnostic test that produces clear images of the inter- 
nal structures of the brain, generating DICOM files across multiple slices. (b) Data pre- 
processing process: DNA ladder code. The DNA ladder code involves label alignment, 
differential encoding and RS encoding. (c) Exemplification of simplified DNA palette 
encoding. The DNA palette code converts a binary sequence into precisely one set of 
oligos with a quaternary Varshamov-Tenengolts (VT) structure. (d) Illustration of DNA 
palette decoding. A read is considered correct only if it adheres to the VT structure and 
constitutes the majority of accurate reads with the same labels. 
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ligos. The range of the raw information is X 3 =
 000 , 001 , 010 , 100 , 011 , 101 , 110 , 111 } , and the
amily of oligo sets is O3 = { O0 , O1 , . . . , O7 } ,
here O0 = ∅ , O1 = {o 1 } , O2 = {o 2 } and so on, up
o O7 = {o 1 , o 2 , o 3 } . We can define a map to encode
equences in X 3 to oligo sets in O3 , such as 000 �→
0 , 001 �→ O1 and so forth. The decoder can deter-
ine the raw information by identifying which oligo
as received. Notably, the number of encoded oli-
os is not fixed due to | O0 | � = | O1 | . This is a key
Page 3 of 9
feature of our encoding scheme, allowing fewer oli- 
gos/nucleotides than expected to represent the raw 

information. Specifically, using a typical transcod- 
ing method (e.g., 00 ↔ A, 01 ↔ T, 10 ↔ G , 11 ↔
C), ‘001’ would be encoded as ‘AT’. In contrast, our
method would encode ‘001’ into O1 = {o 1 } = {A } 
when O = {A, T, G } . 

For a longer binary information sequence 
(i.e. x ∈ XN ) and a preset oligo set O =
{o 1 , o 2 , . . . , o n } ⊆ Dm ( n > N), we designed a map 
f to encode this binary information into an oligo set. 
Firstly, the order ‘ < ’ of these preset oligos is defined
as follows: for any o 1 = (o1 1 , o

1 
2 , . . . , o

1 
m ) ∈ Dm 

and o 2 = (o2 1 , o
2 
2 , . . . , o

2 
m ) ∈ Dm , if there exists

i such that o1 1 = o2 1 , o
1 
2 = o2 2 , . . . , o

1 
i −1 = o2 i −1 

and o1 i < o2 i then o 1 < o 2 . The order of nu- 
cleotides is A < T < G < C . For example,
AAT < AAG < ATT . It can be easily proved 
that this order is transitive, antisymmetric and 
strongly connected, thus constituting a total or- 
der on Dm . Without loss of generality, we defined 
o 1 < o 2 < · · · < o n . Then we defined a total 
order on O, where O is the family of the sub-
sets of O : for A = {o A 1 , o A 2 , . . . , o A m } ⊆ O and 
B = {o B 1 , o B 2 , . . . , o B s } ⊆ O , (i) if there exists j such
that o A m = o B s , o A m −1 = o B s −1 ,..., o 

A 
m − j+1 = o B s − j+1 , 

o A m − j < o B s − j , then A < B ; (ii) otherwise, B < A .
Next, we defined a map f : XN → ON such that
f (x ) is the (

∑ N 
i =1 2

i −1 xi ) th set in O. Here, ON 

denotes the first 2N sets of O. It is easy to prove
that f is a bijection. According to the map f , the
raw binary information x wi l l be encoded into f (x ) .
The decoder can recover the raw information via 
f−1 , where f−1 is determined when given O and N. 

The above encoding scheme requires that both 
the encoder and decoder know the one-to-one map- 
ping alphabet. This may pose a challenge when stor-
ing large-scale datasets. We propose a nested map- 
ping method, as shown in Fig. 1 b and Fig. S2. This
method splits the large mapping into a cascade of 
two small mappings. The details of the nested en- 
coding scheme are shown in Section S1.1 within the 
online supplementary material. Besides, In practice, 
we adopted the nested mapping and presented the 
encoded oligos to satisfy the VT structure [23 –25 ].

The decoding algorithm of DNA palette code can 
be regarded as a trace reconstruction process aimed 
at recovering the correct set of oligos from duplicate 
sequencing reads (Fig. 1 d). Specifically, each read 
undergoes an initial check for compliance with the 
VT structure, encompassing error-correcting and 
verification processes. Subsequently, the reads are 
grouped and selected by the majority vote algorithm. 
Following these two steps, a substantial portion of 
the encoded oligos can be successfully restored. 
Notably, our decoder takes duplicate sequencing 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae321#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae321#supplementary-data
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eads as input, rather than using the central sequence
btained from clustering or multiple sequence align-
ent algorithms as input. The decoding complexity
f the majority vote algorithm scales linearly with
he number of sequencing reads. Additionally, in
dherence to the total order sorting rules, bits/oligos
an be directly placed in their respective positions
ithout necessitating the comparison and exchange
rocess. This results in linear encoding and decoding
omplexity relative to the number of bits/oligos. 
Upon recalling the encoding process of the DNA

alette code, it is noted that the number of en-
oded oligos is related to the Hamming weight
f the raw binary information. To this end, we
roposed a data pre-processing method called the
NA ladder code to convert the raw information
nto a new form containing a large number of ze-
os. This algorithm encompasses three stages: la-
el alignment, differential encoding and block RS
ncoding. The initial two stages modify the struc-
ure of the raw information without introducing re-
undancy, while the third stage incorporates parity-
heck bits to address errors. Specifically, residual er-
ors in the DNA palette decoder and the occurrence
f dropout oligos might lead to a partial loss of in-
ormation in the decoded binary string, which can
e recovered through the RS code. A comprehen-
ive description of the DNA ladder code is available
n Section S1.3. 

esting in vitro 
n the in vitro experiment, we stored the medical
maging data from two brain MRI examinations of
 patient with ischemic cerebrovascular disease con-
ucted in November 2021 and October 2023. Each
xamination produced 21 DICOM files ( Data S1).
he 42 DICOM files, totaling 11.28 MB, were en-
oded into 255 248 oligos, each with a length of
55 nt ( Fig. S3). The encoded oligos were synthe-
ized by Twist Bioscience. The DNA pool was ampli-
ed through polymerase chain reaction, followed by
 sequencing procedure on the Illumina sequencing
latform. The mean coverage (i.e. the total number
f reads divided by the number of encoded oligos)
as 256 reads (Fig. 2 a). 
During the decoding process, we randomly

ampled sequencing reads and gradually increased
he sampling coverage. The sampling command
s shown in Section S3.4. When the mean value
f sampling coverage is 5 ×, the dropout rate is
.63 % (Fig. 2 a). As the average sequence coverage
ncreases, the byte error rate (i.e. the byte error
ate in the decoded output) decreases significantly,
nd the decoding time increases linearly (Fig. 2 b).
he minimum average coverage rates of the two
Page 4 of 9
examination files are 4.2 × and 4.6 × with a median 
of 4.4 × (Table 1 ). The format of the elements is
the number of successful decoding times compared 
to the number of tests. The specific experimental 
results are shown in Tables S1–S4. Images generated 
from decoded pixel information at different cover- 
age rates are shown in Fig. 2 c. In the presence of byte
errors, mosaic artifacts may appear in the image; 
however, most of the information is sti l l discernible. 
This shows that our decoder can recover part of the 
original data when only a partial sequencing read 
is received. It differs from compression algorithms 
such as DEFLATE, where even minor fragment 
loss can render the compressed data completely 
unrecoverable [4 ,26 ]. The decoded data can be 
used for three-dimensional (3D) reconstruction 
of medical images, such as the maximum inten- 
sity projection image and 3D volume rendering 
image (Fig. 2 d). Besides, the number of encoded 
oligos for the first MRI examination is less than the 
index-added method (Fig. 2 e). Here, ‘without DNA 

palette encoding’ denotes the scenario where the 
raw information is sequentially encoded into oligos, 
and the oligo index is added. The redundancy of its 
error-correcting code is the same as that of the DNA 

palette code. This suggests that, for MRI data, the 
DNA palette code can encode information using 
fewer oligos. 

Simulation on large data scales and 

diverse data formats 
First, to evaluate the performance of our coding 
scheme under a large data scale, we collected 10-GB 

DICOM files from public MRI datasets [27 ]. Sim- 
ulations show that the DNA palette code has a sta- 
ble effect on reducing the number of encoded oli- 
gos (Fig. 3 a). When the coding redundancy is fixed, 
the number of encoded oligos can be reduced by ap- 
proximately 1 / 3 through DNA palette coding. We 
further conducted a series of simulations on ran- 
dom data with sizes ranging from 10 MB to 10 GB.
The encoding time and the decoding time of the 
DNA palette code are linear in the length of the in-
put (Fig. 3 b). This is consistent with the results of
the theoretical analysis. Our coding scheme also per- 
forms well in error handling across different DNA 

error rates and the number of duplicate sequencing 
reads (Fig. 3 c). Here, we assumed that the IDS er-
ror rates are equal, and the total error rate is pr =
pins + pdel + psub . The dropout rate pdrop = 5% and 
the duplication number M ranges in { 1 , 3 , 5 , 10 } .
We also tested the byte error rates when there were 
only substitution, dropout, deletion and insertion 
errors ( Figs S9–S11). Experimental data analysis 
based on Twist synthesis and Illumina sequencing 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae321#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae321#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae321#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae321#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae321#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae321#supplementary-data


Natl Sci Rev, 2025, Vol. 12, nwae321

By
te 

er
ro

r r
ate

100

10-1

10-2

10-3

Byte error rate Runtime

De
co

din
g r

un
tim

e (
s)

1100

1000

900

800

700

600

500

Average coverage
2.0x 3.0x 4.0x 5.0x

Coverage: 2.0x
Dropout rate: 15.17%
Byte error rate: 9.66%

Coverage: 3.0x
Dropout rate: 6.39%
Byte error rate: 3.00%

Coverage: 4.0x
Dropout rate: 3.01%
Byte error rate: 0.40%

Coverage: 5.0x
Dropout rate: 1.63%
Byte error rate: 0

40 000

35 000

30 000

25 000

20 000

15 000

10 000

5000

0

Nu
mb

er
 of

 re
fer

en
ce

s

4160

Sequencing coverage
0 5 1510 20

5x

256x1600
1400
1200
1000

800
600
400
200

0
0 100 200 300 400 500 600 700
51

(e)

(a) (b)

(d)

(c)

Ol
igo

 nu
mb

er

12 000

11 000

10 000

9000

8000

7000

6000

5000

MRI examination dataset for November 2021
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

With DNA palette encoding
Without DNA palette encoding

Figure 2. Experimental performance of our coding scheme. (a) Experimental results of the master pool with an average cover- 
age of 256 × and the dilution pool with an average coverage of 5 ×. (b) Byte error rate and decoding time at average coverage 
ranges of 2 ×, 3 ×, 4 × and 5 ×. At each coverage rate, 10 independent experiments were conducted. (c) Reconstructed im- 
age pixel data using our method. (d) Maximum intensity projection image and three-dimensional volume rendering image 
reconstructed from the decoded data. (e) The number of oligos encoded from 21 DICOM files obtained from the November 
2021 MRI examination, including results encoded by the DNA palette and indexed RS codes, is presented. The oligo count 
of the first file, which did not undergo differential encoding, showed a slight reduction. Other files exhibited a significant 
reduction in the number of encoded oligos. 

t  

d  
echnology shows that the raw error rate of the DNA
ata storage system is less than 1% [4 ,9 ,11 ]. Simu-
Page 5 of 9
lations indicate that our coding scheme can achieve 
error-free decoding at such an error rate. 
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Table 1. Minimum coverage rates for decoding. 
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Figure 3. Simulations on large arge data scales and diverse data formats. (a) Number 
of encoded oligos (150 nt) in public brain MRI datasets with or without DNA palette 
encoding. (b) Encoding and decoding runtimes of our code on random data. Results are 
presented as mean values from 10 independent simulations. (c) Byte error rate of our 
method with IDS error rate pr = psub + pdel + pins , where psub : pdel : pins = 1 : 1 : 1 . 
Results are expressed as the average of 10 independent simulations (1-GB random 

data). The standard deviation values are too small to be clearly visualized. (d) Compar- 
ison of net information density among the encoding results of the DNA palette code, 
the same coding redundancy without the DNA palette code and the DNA fountain code 
in three data formats (MRI format, PDS format, NetCDF format). (e) Decoded pixel in- 
formation of part of example PDS format files (Earth’s plasmasphere observed by the 
extreme ultraviolet camera on the Chang’E-3 Moon lander). (f) Decoded pixel informa- 
tion of part of example NetCDF format files (daily melt results for days 1, 100, 200 and 
300 on the Greenland ice sheet surface in 1985). 
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We further tested our coding scheme on many 
different data formats. The first is the Planetary Data 
System (PDS) data format, which is a standard- 
ized form used for the archiving and distribution of 
planetary science data. Files in Table 2 record the 
Earth’s plasmasphere observations acquired by the 
extreme ultraviolet camera onboard the Chang’ E -3 
lander ( Data S2) [28 ]. The second is the NetCDF 
Network Common Data Form (NetCDF), which 
is a software library and self-describing machine- 
independent data format that supports the creation, 
access and sharing of array-oriented scientific data. 
Files in Table 3 are based on the threshold method 
of the microwave radiometer’s day and winter bright- 
ness temperature difference to extract the Green- 
land ice sheet surface melt from the downscaling 
results, and obtain the 0 . 05◦ daily melt results of 
the Greenland ice sheet surface in 1985, 20 0 0 and 
2015 ( Data S3) [29 –34 ]. Encoding results show that 
our coding scheme works well for such time-series 
archival datasets. Compared with the DNA fountain 
code, our code can effectively reduce the number of 
encoded nucleotides (Fig. 3 d). Here, ‘ r(b/n ) ’ refers
to the ratio of the number of bits in the binary form
of the file divided by the number of encoded nu- 
cleotides. Simulations show that our coding scheme 
is capable of error-free decoding in a wide range of 
data formats (panels (e) and (f) of Fig. 3 ). 

DISCUSSION 

In the DNA data storage system, short DNA strands 
are stored in a spatially disordered structure within a 
three-dimensional space. Decoders typically require 
additional information to determine the order of the 
DNA strands to restore the original bitstream. The 
DNA palette code is designed to accommodate this 
feature. It is based on a sampling without replace- 
ment method, using unordered combinations of oli- 
gos to indicate binary information. The encoded 
oligos do not contain indexes and are not fixed in 
number when encoding different binary strings of 
the same length. When the DNA palette code is 
combined with contextual transformation methods 
(such as our proposed DNA ladder code), we can 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae321#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae321#supplementary-data
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Table 2. Encoding results for PDS files. 

PDS files 

1 2 3 4 5 6 7 8 9 10 Total 

Data size (KB) 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 492.2 
r(b/n )a 

With the DNA palette code 2.15 2.40 2.40 2.41 2.41 2.39 2.40 2.42 2.41 2.41 2.38 
Without the DNA palette code 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 

a Here r(b/n ) is the number of bits in the binary form of the file divided by the number of encoding nucleotides. 

Table 3. Encoding results for NetCDF files. 

NetCDF files 

1 2 3 Total 

Data size (MB) 76.3 91.4 86.4 254.1 
r(b/n ) 

With the DNA palette code 2.19 2.11 2.10 2.12 
Without the DNA palette code 1.52 1.52 1.52 1.52 

Table 4. Comparison of DNA data storage experimental results and key achievements. 

Input data Oligo Number of Average 
Parameter size (MB) a length a oligos a r(b/n ) coverage a 

Church et al. [1 ] 0.65 115 54 898 0.83 30 0 0 ×
Goldman et al. [2 ] 0.63 153 117 0.29 51 ×
Erlich and Zielinski [11 ] 2.15 152 72 0 0 0 1.57 10.5 ×
Organick et al. [4 ] 200.2 150–154 134 0 0 0 0 0 0 1.10 5 ×
Ping et al. [26 ] 0.24 160 8087 1.56 10 0 0 ×
Song et al. [12 ] 6.8 164 210 0 0 0 1.58 N/A 
This work 11.28 155 255 248 2.39 4.4 ×
a The information presented is derived from the original data provided in the references. These references employed different original designs, including 
input files, parameter designs and experimental setups. This table is intended to provide a general comparative overview. ‘N/A’ indicates that the corre- 
sponding data are not available in the references. 
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ncode time-series archival data with fewer oligos
han expected. 
Additionally, rather than employing a compres-

ion algorithm, we developed a direct transcod-
ng method that converts raw information bits to
ucleotides. Our coding scheme demonstrates re-
ilience in recovering information even in scenarios
haracterized by high dropout rates and byte error
ates. Specifically, even when the received sequenc-
ng data are significantly insufficient and the error
ate is high, such as when the dropout rate exceeds
5% and the byte error rate exceeds 9% (Fig. 2 c),
ur code can recover part of the raw information. In
ddition, our method can achieve a net information
ensity of more than 2 bits/nt when encoding time-
eries archival data, which has the effect of a com-
ression algorithm, while avoiding the problem of
eing unable to recover information when there are a
mall amount of residual errors in the decoded data
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due to the use of a compression algorithm (such as
the DEFLATE algorithm). 

We verified the effectiveness of our code in DNA 

data storage systems through wet and dry experi- 
ments. In our wet experiment, we encoded 11.28-MB 

MRI data into 255 248 oligos with a length of 155 nt,
whereas the expected oligo number is 397 972. As 
shown in Table 4 , compared with other studies, our
wet experiment stored an average of 2.39 bits in one
nucleotide and achieved 100 % data recovery at a me- 
dian decoding coverage of 4.4 ×. In simulations, the 
reliability of our method has been verified on large 
data scales and diverse data formats. 

The decoding results from wet experiments 
clearly reveal the presence of an acute cerebral in- 
farction in the right frontal lobe of the patient in the
medical images from November 2021 ( Fig. S5). In 
the medical images from October 2023, this cerebral 
infarction has evolved into a liquefied lesion, and a 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae321#supplementary-data
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ew acute cerebral infarction has appeared in the left
erebellar hemisphere ( Fig. S6). This highlights the
ignificance of our scheme in storing medical images
or disease screening and tracking. 
The DNA palette code aligns with the spatial

isorder of oligos, using unordered combinations of
ligos as codewords. For binary input strings of the
ame length, the number of encoded oligos varies
nd does not require additional indexing. It per-
orms well in both in vitro and in silico experiments
nd shows the potential to increase the information
ensity and reduce decoding sequence coverage.
he DNA palette code has the potential to expand
ew application scope for DNA data storage, offer-
ng robust support for historical trend analysis and
etrospective studies. However, achieving the same
igh compression ratio as mature compression algo-
ithms, such as the DEFLATE algorithm, presents
 challenge for our encoder. This is an important
irection for our next research. 
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he raw sequencing data are deposited in the
gsha re database under the following DOI link:
ttps://doi.org/10.6084/m9.figshare.25131071. 
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NA-Palette-code.git. 
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