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ABSTRACT 

Quantifying emergence and modeling emergent dynamics in a data-driven manner for complex dynamical 
systems is challenging due to the fact that emergent behaviors cannot be directly captured by micro-level 
observational data. Thus, it is crucial to develop a framework to identify emergent phenomena and capture 
emergent dynamics at the macro-level using available data. Inspired by the theory of causal emergence (CE), 
this paper introduces a machine learning framework to learn macro-dynamics in an emergent latent space 
and quantify the degree of CE. The framework maximizes effective information, resulting in a 
macro-dynamics model with enhanced causal effects. Experimental results on simulated and real data 
demonstrate the effectiveness of the proposed framework. It quantifies degrees of CE effectively under 
various conditions and reveals distinct influences of different noise types. It can learn a one-dimensional 
coarse-grained macro-state from functional magnetic resonance imaging data to represent complex neural 
activities during movie clip viewing. Furthermore, improved generalization to different test environments is 
observed across all simulation data. 

Keywords: causal emergence, dynamics learning, effective information, coarse graining, invertible neural 
network 
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Emergence, as a distinctive feature of complex 
systems [11 ], has historically been challenging to 
quantify and describe in quantitative terms [12 ,13 ]. 
Most conventional measures or methods either rely 
on pre-defined macro-variables (e.g. [14 –16 ]) or are 
tailored to specific scenarios in engineered systems 
(e.g. [17 ,18 ]). However, there is a need for a unified 
method to quantify emergence across different 
contexts. The theory of causal emergence (CE) 
[19 ,20 ] offers a framework to tackle this challenge. 
Hoel et al. [19 ] aimed to understand emergence 
through the lens of causality. The connection be- 
tween emergence and causality is implied in the 
descriptive definition of emergence, as stated in the 
work of Fromm [21 ]. According to this definition, a 
macro-level property, such as patterns or dynamical 
behaviors, is considered emergent if it cannot be 
explained or directly attributed to the individuals 
in the system. The theory of causal emergence 
formalizes this concept within the framework of 
discrete Markov dynamical systems. As shown in 
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NTRODUCTION 

he climate system, ecosystems, bird flocks, ant
olonies, cells, brains and many other complex sys-
ems are composed of numerous elements and ex-
ibit a wide range of complex behaviors [1 ,2 ]. In the
ast few decades, the research topic of data-driven
odeling in complex systems has gained significant
ttention, driven by the increasing availability and
ccumulation of data from real dynamical systems
3 –5 ]. However, complex systems always exhibit
mergent behaviors [1 ]. That means some interest-
ng emergent patterns or dynamical behaviors such
s waves [6 ], periodic osci l lations [7 ] and solitons
8 ] can hardly be directly observed and identified
rom the micro-level behavioral data. Therefore, the
dentification and measure of emergence and the
apture of emergent dynamical patterns solely from
bservational raw data have become crucial chal-
enges in complex system research [9 ,10 ]. But, in or-
er to address these problems, it is necessary to first

evelop a quantitative understanding of emergence. 
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Figure 1. (a) An illustration of the fundamental concept of causal emergence (CE) in 
[19 ]. The effective information (EI) is denoted as J in this paper. (b) A case demon- 
strating CE in a discrete Markov chain. The micro-dynamics consists of eight micro- 
states. During the coarse-graining process, the first seven states are grouped together 
as one macro-state, while the eighth micro-state corresponds to the second macro- 
state. As a result, a transition probability matrix is formed at the macro-scale, where 
the effective information J (fM ) = 1 (calculated using Equation S1), which is greater 
than J (fm ) = 0 . 55 . This difference, �J = 0 . 45 , indicates the occurrence of CE, as 
�J > 0 . 
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ig. 1 a, Hoel et al. [19 ] stated that if a system exhibits
tronger causal effects after a specific coarse-graining
ransformation compared to the original system then
E has occurred. In [19 ], the degree of causal effect
n a dynamical system is quantified using effective
nformation (EI) [22 ]. EI can be understood as an
ntervention-based version of mutual information
etween two successive states in a dynamical system
ver time. It is a measure that solely depends on the
ystem’s dynamics. If a dynamical system is more
eterministic and non-degenerate, meaning that the
emporal adjacent states can be inferred from each
ther in both directions of the time arrow, then it
i l l have a larger EI [19 ]. This measure has been
hown to be compatible with other well-known
easures of causal effects [23 ]. Figure 1 b gives an
xample of CE for the simple Markov chain. 
While causal emergence theory has successfully

uantified emergence using EI and has found ap-
lications in various fields [24 –26 ], there are some
rawbacks. Firstly, the Markov transition matrix of
he micro-dynamics should be given rather than con-
tructed from data. Secondly, a pre-defined coarse-
raining strategy must be provided or optimized
hrough maximizing EI, but this optimization pro-
ess is computationally complex [24 ,27 ]. Although
osas et al. [9 ] proposed a new framework for CE
ased on partial information decomposition theory
28 ], which does not require a pre-defined coarse-
raining strategy, it sti l l involves iterating through
ll variable combinations on the information lattice
o compare synergistic information, resulting in
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significant computational complexity. Rosas et al. 
[9 ] also proposed an approximate method to mit- 
igate the complexity, but it requires a pre-defined 
macro-variable. Further details regarding the frame- 
work are available in Section S1.2. In addition, 
Barnett and Seth [29 ] introduced a novel framework 
for quantifying emergence based on the concept 
of dynamical independence. If the micro-dynamics 
are unrelated to the prediction of macro-dynamics, 
the complex system is considered to exhibit emer- 
gent macroscopic processes. They utilized transfer 
entropy to measure the correlation between macro- 
dynamics and micro-dynamics, thereby eliminating 
the need to obtain the Markov transition matrix. It 
also offers a method for identifying macro-variables. 
However, this framework has only been applied to 
linear systems to date, and it remains a challenge to 
extend the methods to more complex scenarios. 

Therefore, the challenge of finding emergence in 
data, which involves determining whether CE has 
occurred within a system and to what extent based 
solely on observational data of its behavior, remains 
unresolved. The most daunting task is that all the 
elements, including the Markov dynamics at both 
the micro- and macro-levels, as well as the coarse- 
graining strategy to obtain macro-variables, need to 
be learned from raw data and cannot be pre-defined 
in advance [10 ]. Once the learning process is com- 
pleted, we can compare the strength of causal ef- 
fects (measured by EI) in dynamics at different scales 
to identify CE from the data. Therefore, the prob- 
lem of finding CE within [19 ] is essentially equiva- 
lent to the challenge of data-driven modeling within 
a coarse-grained space for complex systems [10 ]. 
Building models for complex systems at multiple 
coarse-grained levels within learned emergent spaces 
is of utmost importance for both identifying CE 

and conducting data-driven modeling in complex 
systems. 

Recently, several machine learning frameworks 
have emerged for learning and simulating the dy- 
namics of complex systems within coarse-grained la- 
tent or hidden spaces [3 0 –3 4 ]. While these learn-
ing systems can capture emergent dynamics, they 
may not directly address the fundamental nature of 
CE, which entails stronger causality. According to 
Judea Pearl’s hierarchy of causality, prediction-based 
learning is situated at the level of association and 
cannot address the challenges related to interven- 
tion and counterfactuals [35 ]. Empirically, dynam- 
ics learned solely based on predictions may be influ- 
enced by the distributions of the input data, which 
can be limited by data diversity and the problem of 
over fitting models [36 ]. However, what we truly de- 
sire is an invariant causal mechanism or dynamics 
that are independent of the input data. This allows 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae279#supplementary-data
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Figure 2. The architecture of our proposed framework, the neural information squeezer 
plus (NIS+), building upon our previous model, NIS [10 ,44 ]. It accepts a variety of time 
series as inputs and enables us to derive the degree of CE, the learned macro-dynamics, 
captured emergent patterns and the strategy for coarse graining. Within the framework, 
the boxes symbolize functions or neural networks, while the arrow pointing to a cross 
signifies the operation of information discarding. For further details regarding these 
mathematical symbols, see Section S2.2. 

t  

t  

t  

c  

t  

t  

t  

s
 

p  

m  

l  

m  

i  

c  

i  

f  

p  

o  

i  

s  

m  

a  

a  

r  

f  

s  

 

 

 

 

U  

 

 

 

 

he learned mechanism or dynamics to be adaptable
o broader domains, generalizable to areas beyond
he distribution of training data and capable of ac-
ommodating diverse interventions [37 –39 ]. Unfor-
unately, not many studies have explored the integra-
ion of causality and latent space dynamics to address
he challenges of data-driven modeling in complex
ystems [40 ]. 
Inspired by the theory of causal emergence, this

aper aims to address the challenge of learning causal
echanisms within a learned coarse-grained macro-

evel (latent) space. The approach involves maxi-
izing the EI of the emergent macro-level dynam-

cs, which is equivalent to maximizing the degree of
ausal effect in the learned coarse-grained dynam-
cs [23 ]. To achieve this, a novel machine learning
ramework called the neural information squeezer
lus (NIS+) is proposed. NIS+ extends the previ-
us framework (NIS) to solve the problem of max-
mizing EI under coarse-grained representations. As
hown in Fig. 2 , NIS+ not only learns emergent
acro-dynamics and coarse-grained strategies, but
lso quantifies the degree of CE from time series data
nd captures emergent patterns. Mathematical theo-
ems ensure the flexibility of our framework in dif-
erent application scenarios. Empirical tests under-
core the proficiency of NIS+ in seizing emergent
Page 3 of 13
patterns and detecting CE across diverse scenarios, 
such as the SIR (susceptible → infective → removed 
or died) model [41 ], collective bird movement [42 ]
and Conway’s Game of Life [43 ]. Moreover, NIS+ 

has been utilized to uncover emergent properties 
within actual neural data from 830 individuals en- 
gaged in a shared cinematic experience. These stud- 
ies further confirm that the dynamical model derived 
from NIS+ shows superior generalization capabili- 
ties in comparison to alternative approaches. 

FINDING CAUSAL EMERGENCE IN DATA 

Finding CE in time series data involves two sub- 
problems: emergent dynamics learning and causal 
emergence quantification . 

Problem definition 

Suppose that the behavioral data of a complex dy- 
namical system are a time series {x t } with time steps
t = 1 , 2 , . . . , T and dimension p, and that they
form observable micro-states. The problem of emer- 
gent dynamics learning is to find three functions ac- 
cording to the data: a coarse-graining strategy φ : 
Rp → Rq , where q ≤ p is the dimension of macro- 
states that is given as a hyperparameter; a corre-
sponding anti-coarsening strategy φ† : Rp → Rq 

and a macro-level Markov dynamics fq , such that 
the EI of macro-dynamics fq is maximized under the 
constraint that the predicted ̂  x t+1 by φ, fq and φ† is 
closed to the real data of x t+1 : 

max 
φ, fq ,φ+ 

J ( fq ) 

such that 

{ ||ˆ x t+1 − x t+1 || < ε, 

ˆ x t+1 = φ† ( fq (φ(x t ))) . 
(1) 

Here ε is a given small constant and J is defined by 

J = I(Yt ; ˆ Yt+1 | do (Yt ∼ U (Y ))) , (2) 

where Yt = φ(Xt ) and ˆ Yt+1 = fq (Yt ) represent the 
input and output variables of the macroscopic 
dynamics fq , respectively. The notation do (Yt ∼
 (Y )) denotes the do operator [35 ], which inter-

venes on the system’s state at time t to force Yt to ad-
here to a uniform distribution across the value space 
Y of Yt . For further details, see Sections S1.1 and 
S3.1. 

The reason why we maximize EI in Equation ( 1 )
is to force the learned dynamics fq to have stronger 
causal effect. However, if we directly do this accord- 
ing to Fig. 1 , a trivial solution wi l l be obtained,
as pointed by Zhang and Liu [10 ]. An exemplified

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae279#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae279#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae279#supplementary-data
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rivial method involves mapping all micro-states to
 value identical to that of the macro-state, maxi-
izing macroscopic effective information ( φ(x ) =
onstant ). Yet, this results in mere identical map-
ing, lacking causal emergence as all information
s inherently lost. Therefore, we need to introduce
onstraints to avoid the problem. The constraints in
quation ( 1 ) imply that the macro-dynamics fq can
imulate the micro-dynamics implied in the data as
ccurately as possible (the prediction error is less
han a given threshold ε). 
By changing q we can obtain macro-dynamics in

arious dimensions. If q = p then fp becomes the
earnt micro-dynamics. Then we can compare Jq 
nd Jp for any q . The problem of causal emergence
uantification can be defined as the calculation of the
ifference 

�J ≡ J ( fq ) − J ( fp ) , (3)

here �J is defined as the degree of causal emer-
ence. If �J > 0 then we say that CE occurs within
he data. 

olution 

olving the optimization problem defined in Equa-
ion ( 1 ) directly is difficult because all the optimized
bjects are functions and the objective function J 

s the mutual information after intervention that
eserved a special process. 
A novel machine learning framework called NIS+

as been developed to address this problem. The
ramework consists of two main components, with
he details given in Fig. 2 . The upper part focuses on
ptimizing the macro-dynamics f to minimize pre-
iction errors at the micro-level, which satisfies the
onstraints described in Equation ( 1 ). This upper
art is the original version of NIS. The lower part is
pecifically designed to optimize a reversed macro-
ynamics g, which is crucial for optimizing mutual
nformation, as outlined in Theorem 2.1 in Section
2.2. 
The integration of these two parts forms NIS+,

hich simultaneously aims to optimize the forward
acro-dynamics f and the reversed macro-
ynamics g. Both parts share an encoder and a
ecoder, which model coarse-graining and anti-
oarse-graining strategies, respectively. To reduce
odel complexity and the number of parameters, an

nvertible neural network is employed and the pa-
ameters are shared by φ and φ† such that φ† ≈ φ−1 .
Furthermore, to ensure that the optimized objec-

ive function is EI, we employ the inverse probability
eweighting technique for yt . This technique allows us
o simulate an intervention that forces yt to follow a
Page 4 of 13
uniform (maximum entropy) distribution. The de- 
tails are given in the section Methods and Data. 

RESULTS 

We validate the effectiveness of the NIS+ frame- 
work through numerical experiments with data gen- 
erated by different artificial models (dynamical sys- 
tems, multi-agent systems and cellular automata). 
Additionally, we apply NIS+ to real functional mag- 
netic resonance imaging (fMRI) data from human 
subjects to uncover interesting macro-level variables 
and dynamics. In these experiments, we evaluate the 
models’ prediction and generalization abilities. We 
also assess their capability to identify CE and com- 
pare it with the � indicator proposed in [9 ], an al-
ternative measure for quantifying CE approximately. 

SIR 

The first experiment revolves around a basic epi- 
demiological dynamics model, the SIR model. In this 
experiment, the SIR dynamics serve as the ground 
truth for the macro-level dynamics, while the micro- 
level variables are generated by introducing noise to 
the macro-variables. The primary objective is to eval- 
uate our model’s ability to effectively remove noise, 
uncover meaningful macroscopic dynamics, identify 
CE and demonstrate generalization beyond the dis- 
tribution of the training dataset. 

Formally, the macro-dynamics can be described 
as ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

d S 
d t 

= −βSI, 

d I 
d t 

= βSI − γ I, 

d R 

d t 
= γ I, 

(4) 

where S, I, R ∈ [0 , 1] represent the proportions of
healthy, infected and recovered or died individuals 
in a population, and β = 1 and γ = 0 . 5 are param-
eters for infection and recovery rates, respectively. 
Figure 3 a shows the phase space (S, I, R) of the SIR
dynamics. Because the model has only two degrees 
of freedom, as S , I and R satisfy S + I + R = 1 , all
macro-states are distributed on a triangular plane in 
three dimensions, and only S and I are used to form 

the macro-state variable y = (S, I) . 
We then expand y into a four-dimensional vector 

and introduce Gaussian noises to form a microscopic 
state: { 

S ′ = (S, S ) + ξ1 , 

I ′ = (I, I) + ξ2 . 
(5) 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae279#supplementary-data
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Figure 3. The experimental results of NIS+ and compared models on the SIR model with 
observational noise. (a) The phase space of the SIR model, along with four example tra- 
jectories with the same infection and recovery or death rates. The full dataset (entire 
triangular region) and the partial dataset (dotted area) used for training are also dis- 
played. (b) The change in dimension-averaged effective information ( J ) with training 
epochs in five repeated experiments. (c) A comparison is made among the vector fields 
of the SIR dynamics, the learned macro-dynamics of NIS+ and the macro-dynamics 
transformed by the Jacobian of the learned encoder. Each arrow represents a direc- 
tion, and the magnitude of the derivative of the dynamics at that coordinate point. For 
detailed procedures, see Section S5.3. (d) A comparison is conducted to evaluate the 
errors in multi-step predictions for different models trained on either partial datasets or 
complete datasets. The heights and the error bars respectively denote the mean error 
and the standard deviation derived from five repetitions of the experiments conducted 
on the test set. For details on the parameters of these models, see Section S5.4; for 
data details, see Section S5.1. (e) The variations in the measure of CE ( �J ) and EI 
for micro-dynamics ( J (fm ) ) and macro-dynamics ( J (fM ) ) are plotted as the standard 
deviation σ of observation noise changes. Following the definition in [9 ] and the calcu- 
lation method for CE (see Section S3.1), the changes in � are calculated. The vertical 
line represents the threshold for the normalized MAE equaling 0.3. (f) A comparison 
is made among the vector fields of the SIR dynamics, the learned macro-dynamics of 
NIS and the macro-dynamics transformed by the encoder Jacobian matrix of NIS, in 
comparison with (c). 

H  

s  

	  

a  

s  

t  

g  

s  

g
 

N  

(  

t  

v  

c  

h  

o  

r  

f  

t  

e  

r  

 

 

 

 

 

 

 

 

 

 

ere ξ1 , ξ2 ∼ N(0 , 	) are two-dimensional Gaus-
ian noises that are independent of each other, and
is the correlation matrix. In this way, we obtain

 micro-state sequence x t = (S ′ t , I 
′ 
t ) as the training

amples in the experiment. We randomly select ini-
ial conditions by sampling points within the trian-
ular region depicted in Fig. 3 a and generate time
eries data using the aforementioned process. These
enerated data are then utilized to train the models. 
We conduct a comparative analysis between
IS+ and other alternative models, including NIS
without EI maximization compared to NIS+),
he feed-forward neural network (NN) and the
ariational autoencoder (VAE). To make a fair
omparison, we ensure that all benchmark models
ave a roughly equal number of parameters. More-
ver, we employ the same techniques of probability
eweighting and inverse dynamics learning on the
eed-forward neural network (NN+) and varia-
ional autoencoder (VAE+) as utilized in NIS+. We
valuate the performances of all candidate models by
equiring them to predict future states for multiple
Page 5 of 13
time steps (10 steps) on a separate test dataset. The
results show that NIS+ and NIS outperform other 
competitors on multi-step prediction, as shown in 
Fig. 3 d, no matter if they use techniques like prob-
ability reweighting to maximize EI, which indicates 
that an invertible neural network as an encoder and 
decoder is necessary (for details, see Section S5.4). 

Furthermore, to assess the model’s generalization 
ability beyond the region of the training dataset, in 
addition to the regular training and testing, we also 
conduct experiments where the model was trained 
on a subset of the data and tested on the complete
dataset. The training samples in this experiment are 
shown within the dotted area in Fig. 3 a (the area with
S ≤ 1 

3 is missing), and the test samples are shown 
within the triangle. As shown by the red bars in
Fig. 3 d, the performances of the out-of-distribution 
generalization of NIS+ are better than other bench- 
marks, although the test region is beyond the trained 
region. Also, the differences among different models 
are larger on the partial dataset. 

To further test whether the models successfully 
learn the ground-truth macro-dynamics, we conduct 
a comparison between the vector fields of the real 
SIR dynamics, represented by dy / d t , and the learned 
emergent dynamics d(h1 , h2 ) / d t . This comparison 
is i l lustrated in Fig. 3 c for NIS+ and Fig. 3 f for NIS.
In both sub-figures, the learned vectors align with the 
ground-truth (real) dynamics and match the theoret- 
ical predictions based on the Jacobian of the encoder 
(for more details, see Section S5.3). However, it is ev-
ident that NIS+ outperforms NIS in accurately cap- 
turing the underlying dynamics, especially in periph- 
eral areas with limited training samples. 

Next, we test NIS+ and other comparison models 
on EI maximization and CE quantification; the re- 
sults are shown in panels (b) and (e) of Fig. 3 . First,
to ensure that EI is maximized by NIS+, panel (b)
i l lustrates the evolution of EI (dimension averaged) 
J over training epochs. It is evident that the curves 
of NIS+, NIS and VAE+ exhibit upward trends, but 
NIS+ demonstrates a faster rate of increase. This in- 
dicates that NIS+ can efficiently maximize J to a 
greater extent than other models. Notably, NIS also 
exhibits a natural increase in EI as it strives to mini-
mize prediction errors. 

Second, to examine NIS+’s ability to detect and 
quantify CE, we compute the �J and compare 
them with � indicators as the noise level σ in micro- 
states increases (see Section S5.2 for details). We 
utilize the learned macro-states from NIS+ as the 
prerequisite variable V to implement the method in 
[9 ]. The results are depicted in Fig. 3 e. 

Both indicators exhibit a slight increase with 
σ and �J > 0 always holds when it is less than 
0.01, but � > 0 after σ = 10−3 . Therefore, NIS+ 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae279#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae279#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae279#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae279#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae279#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae279#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae279#supplementary-data
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ndicates that CE consistently occurs at low noise
evels, whereas the method in [9 ] does not. NIS+’s
esult is more reasonable since it can extract macro-
ynamics similar to the ground truth from noisy
ata, and this deterministic dynamics should have
 larger EI than the noisy micro-dynamics. We also
lot the curves J( fM 

) and J( fm ) for macro- and
icro-dynamics, respectively. These curves decrease
s σ increases, but J( fm ) decreases at a faster rate,
eading to the observed occurrence of CE. However,
hen � < 0 , we cannot make a definitive judgment
s � can only provide a sufficient condition for CE.
oth indicators reach their peak at σ = 10−2 , which
orresponds to the magnitude of the time step ( dt =
 . 01 ) used in our simulations and reflects the level of
hange in micro-states. 
On the other hand, if the noise becomes too large,

he limited observational data make it challenging
or NIS+ to accurately identify the correct macro-
ynamics from the data. Consequently, the degree
f CE �J decreases to zero. Although NIS+ de-
ermines that there is no CE when σ > 10 , this re-
ult is not reliable since the normalized prediction
rrors have exceeded the selected threshold 0.3 after
= 10−2 (the vertical dash–dot line). 
These experiments indicate that, by maximiz-

ng EI and learning an independent causal mecha-
ism, NIS+ can effectively disregard noise within the
ata and accurately learn the ground-truth macro-
ynamics, as well as generalize to unobservable data.
dditionally, NIS+ demonstrates superior perfor-
ance in quantifying CE. More details regarding the
xperimental settings are given in Section S5. 

oids 
he second experiment is on the boids model, which
s a famous multi-agent model to simulate the col-
ective behaviors of birds [45 ,46 ]. In this experi-
ent, we test the ability of NIS+ to capture emergent
ollective behaviors and CE quantification on differ-
nt environments with intrinsic and extrinsic noises.
o increase the explainability of the trained coarse-
raining strategy, we also try to give an explicit
orrespondence between the learned macro-states
nd the micro-states. 
We simulated the boids model according to the
ethodology of Reynolds [45 ] with N = 16 boids
n a 300 × 300 canvas to generate training data. The
etailed dynamical rules of the boids model can be
ound in Section S6. 
To evaluate the capability of NIS+ in discovering
eaningful macro-states, we divided the boids into
wo groups and introduced distinct constant turning
orces for each group. This modification ensured that
Page 6 of 13
the two groups followed separate trajectories with 
different turning angles, as shown in Fig. 4 a. 

We conducted simulations to generate training 
and test data for our machine learning model. The 
micro-state is generated as 4 N-dimensional vectors 
at each time step t as 

Xt =
(
xt 1 , y

t 
1 , v

t 
x, 1 , v

t 
y, 1 , . . . , x

t 
N , y

t 
N , v

t 
x,N , v

t 
y,N 

)
, 

(6) 

where (xt i , y
t 
i ) is the position and (v

t 
x,i , v

t 
y,i ) is the

velocity at time t , i = 1 , 2 , . . . , 16 . 
As depicted by the triangles in Fig. 4 a, the pre-

dicted emergent collective flying behaviors for 50 
steps closely follow the ground-truth trajectories 
of the two groups, particularly at the initial stages. 
These predicted trajectories are generated by decod- 
ing the predicted macro-states into the correspond- 
ing micro-states, and the two solid lines represent 
their averages. The hyperparameter q = 8 , which is 
the dimension of macro variables, is chosen for this 
experiment based on the observation that the CE 

consistently reaches its highest value when q = 8 , as
indicated in Fig. 4 c. 

To enhance the interpretability of the learned 
macro-states and coarse-graining function in NIS+, 
we utilize the integrated gradient (IG) method [47 ] 
(see Section S3.3) to identify the most significant 
micro-states for each learned emergent macro-state 
dimension. We normalized the calculated IG and 
enhanced the maximum gradient of the micro-state 
in each macro-state and disregarded the velocity di- 
mensions of each boid due to their lower correlations 
with macro-states. The matrix diagram of the nor- 
malized IG is given in Fig. 4 d. As depicted by Fig. 4 d,
the first, second, fifth and sixth dimensions in macro- 
states correspond to the boids in the first group 
(with ID < 8 ), while the third, fourth, seventh and 
eighth dimensions correspond to the second group 
(with ID ≥ 8 ). Thus, the learned coarse-graining 
strategy uses two positional coordinates to represent 
all other information to form one dimension of the 
macro-state. For macroscopic states, we need to note 
that, for a group of birds, two coordinate-related di- 
mensions and two velocity-related dimensions are 
needed to describe their motion state. So, two groups 
of birds require eight dimensions. We can speculate 
that there is one bird as a representative of the group
of birds, and observing the situation of that bird can 
predict the overall movement trend of the group. 
Then we utilize a doubled number of positional di- 
mensions to make predictions. Aside from the two 
dimensions representing position, velocity can be 
derived from the difference in position between two 
consecutive moments in time. However, only the 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae279#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae279#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae279#supplementary-data
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Figure 4. The experimental results of NIS+ on learning the collective flocking behaviors of the boids model. Panels (a) and (e) present real and predicted 
data on boid trajectories. Concretely, they present the comparison results for multi-step predictions under the condition of two separating groups, and 
random deflection angles. Panel (b) showcases the escalation of MAE for multi-step predictions as the radius r , which represents the range of initial 
positions of boids in (a), extends beyond the limits of the training data. Panel (c) depicts the trend of �J changes with training epochs of NIS+ using 
different hyperparameters of q, which represents the scales of different macro-states. Panel (d) presents the saliency map, which visually depicts the 
association between each macroscopic dimension and the spatial coordinates of each boid. The interpretation can be found in Section S6.2. Panels (f) 
and (g) show the changes in �J and normalized MAE under different noise levels for (f) the extrinsic noise ( δmax ) and (g) intrinsic noise ( α). In both (f) 
and (g), the horizontal lines represent the threshold 0.3 for the violation of the constraint of error in Equation ( 1 ). 
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nformation from a single moment can be input at a
ime, necessitating additional degrees of freedom to
xpress velocity. Consequently, we sti l l require eight
egrees of freedom to describe the macroscopic state
f two groups of birds. 
To compare the learning and prediction effects of
IS+ and NIS, we assess their generalization abili-
ies by testing their performances on initial condi-
ions that differed from the training dataset. During
he simulation for generating training data, the po-
itions of all boids are constrained within a circle
ith a radius of r, as depicted in Fig. 4 a. However, we
ssess the prediction abilities of both models when
he initial positions are located on the larger circles.
igure 4 b shows the MAEs of NIS+ and NIS, which
ncrease with the radius r, where smaller predic-
ion errors indicate better generalization. The results
learly demonstrate NIS+’s superior generalization
cross all tested radii r compared to NIS. 
Furthermore, to examine the impact of intrinsic

nd observational perturbations on CE, two types
Page 7 of 13
of noise are introduced. Intrinsic noise is incorpo- 
rated into the rule by adding random turning angles 
to each boid at each time step. These angles are uni-
formly distributed within the interval α · [ −π, π] , 
where α ∈ [0 , 1] is a parameter controlling the mag- 
nitude of the intrinsic noise. On the other hand, ex-
trinsic noise is assumed to affect the observational 
micro-states. In this case, we assume that the micro- 
states of each boid cannot be directly observed, but, 
instead, noisy data are obtained. The extrinsic or ob- 
servational noise δ ∼ N (0 , δmax ) is added to the
micro-states, and δmax is the parameter determining 
the level of this noise. 

The results are shown in panels (f) and (g) 
of Fig. 4 , where the normalized MAE increases in
both cases, indicating more challenging prediction 
tasks with increasing intrinsic and extrinsic noises. 
However, the differences between these two types 
of noise can be observed by examining the de- 
grees of CE ( �J ). Figure 4 f demonstrates that �J 

increases with the level of extrinsic noise ( δmax ), 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae279#supplementary-data
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uggesting that coarse graining can mitigate noise
ithin a certain range and enhance causal effects.
hen δmax < 0 . 1 , the normalized MAE is smaller

han 0.3 (dashed horizontal line), satisfying the con-
traint in Equation ( 1 ). In this case, the degree of CE
ncreases with δmax . However, when the threshold of
.3 is exceeded, and even though �J decreases, we
annot draw any meaningful conclusion because the
iolation of the constraint in Equation ( 1 ) under-
ines the reliability of the results. 
On the other hand, Fig. 4 g demonstrates that �J 

ecreases as the level of intrinsic noise ( α) increases.
his can be attributed to the fact that the macro-
evel dynamics learner attempts to capture the flock-
ng behaviors of each group during this stage. How-
ver, as the intrinsic noise increases, the flocking be-
aviors gradually diminish, leading to a decrease in
E. We have not included cases where α > 0 . 6 be-
ause the normalized MAE exceeds the threshold
f 0.3; the constraints in Equation ( 1 ) are violated.
igure 4 e i l lustrates real trajectories and predictions
or random deflection angle noise with α = 0 . 4 . It
an be observed that in the early stage, the straight-
ine trend can be predicted, but, as the noise-induced
eviation gradually increases, the error also grows,
hich intuitively reflects the reduction in CE. To
ompare, we also test the same curves for �; the re-
ults are shown in Section S6 because all the values
re negative with large magnitudes. 
These experiments demonstrate the ability of
IS+ to identify emergent collective behaviors, and
ow the degree of CE is affected by noise. 

eal fMRI time series data for brains 
e test our models on real fMRI time series data of

he brains of 830 subjects, called AOMIC ID10 0 0
48 ]. The fMRI scanning data are collected when
he subjects watch the same movie clip. Thus, simi-
ar experiences of subjects under similar natural stim-
li are expected, which corresponds to time series
f the same dynamics with different initial condi-
ions. The sampling rate (time to repeat) is 2.2 s for
D10 0 0 and 2 s for PIOP2. We pre-process the raw
ata through the Schaefer atlas method [49 ] to re-
uce the dimensionality of the time series for each
ubject from roughly 140 0 0 0 (it varies among sub-
ects) to 100 such that NIS+ can operate and obtain
ore clear results. Then, the first 800 time series data
re selected for training and the remaining 30 time
eries are for testing. We also compare our results
ith another fMRI dataset AOMIC PIOP2 [48 ] for
0 subjects in the resting state. A further description
f the dataset can be found in Section S8. 
To demonstrate the predictive capability of NIS+

or micro-states, Fig. 5 a i l lustrates the changes in
Page 8 of 13
normalized MAE with the prediction steps of the 
micro-dynamics on test data for different hyperpa- 
rameters q . It is evident that NIS+ performs better 
in predictions when q = 27 and q = 1 . Specifically,
the curve for q = 27 exhibits a slower rate of increase
compared to the curve for q = 1 as the prediction 
steps increase. This suggests that selecting the hyper- 
parameter q as 27 may be more suitable than 1. 

However, Fig. 5 b suggests a different outcome. 
When comparing the degree of CE ( �J ) for differ-
ent hyperparameters q the highest �J is observed 
when q = 1 . Conversely, a negative �J value is
obtained when q = 27 . This indicates that the im-
proved prediction results may be attributed to over- 
fitting when q = 27 . Thus, q = 1 outperforms other
values of q in terms of �J . This finding is sup-
ported by the NIS framework, despite observing 
a larger standard deviation in �J when q = 1 .
Furthermore, we also compare the results of CE with
resting data and observe that peaks are reached at 
q = 7 , which is just the number of sub-systems in
the Schaefer atlas, for both NIS and NIS+. There- 
fore, we can conclude that, when subjects watch 
movies, the activities in different brain areas can 
be represented by a single real number at each 
time step. More analysis for the resting data is 
given in Section S8.1. The result is also distinct 
when applying an alternative framework for iden- 
tifying causal emergence, as introduced by Rosas 
et al. [9 ]. For further details, see Sections S1.2
and S8.4. This approach yields exclusively negative 
values in this experiment, failing to identify causal 
emergence. 

To investigate how NIS+ coarse grains the input 
data into a single-dimensional macro-state, we also 
utilize the IG method to identify the most significant 
dimensions of the micro-state [47 ]. The results are 
depicted in panels (c) and (d) of Fig. 5 . We observe
that the visual (VIS) sub-networks exhibit the high- 
est attribution (Fig. 5 c). These visual sub-networks 
represent the functional system that subjects utilize 
while watching movie clips. Furthermore, we can 
visualize the active areas in finer detail on the brain 
map (Fig. 5 d), where darker colors indicate greater 
attribution to the single macro-state. Therefore, the 
regions exhibiting similar darkest colors identified 
by NIS+, which correspond to the deep visual 
processing brain region, could potentially repre- 
sent the ‘synergistic core’ [50 ] when the brain is 
actively engaged in watching movies. The numeric 
neurons in these areas may collaborate and function 
collectively. However, this conclusion should be 
further confirmed and quantified by decomposing 
the mutual information between micro-states and 
macro-states into synergistic, redundant and unique 
information [9 ,28 ]. 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae279#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae279#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae279#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae279#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae279#supplementary-data
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In conclusion, NIS+ demonstrates its capabil-
ty to learn and coarse grain the intricate fMRI
ignals from the brain, allowing for the simulation
f complex dynamics using a single macro-state.
he robustness of our findings is fur ther suppor ted
y comparable results obtained through alternative
ethods for data pre-processing, as demonstrated in
ection S8. 
One more experiment is carried out on the clas-

ic cellular automata the ‘Game of Life’ that can best
xhibit the conception of ‘emergence’. However, due
o length constraints, the results are presented in
ection S7. 

ONCLUDING REMARKS 

nspired by the theory of causal emergence, this pa-
er introduces a novel machine learning framework
alled NIS+ to learn emergent macro-dynamics, and
uitable coarse-graining methods directly from data.
dditionally, it aims to quantify the degree of CE un-
er various conditions. 
Page 9 of 13
The distinguishing feature of our framework, 
compared to other machine learning frameworks, 
is its focus on maximizing the EI of the learned
macro-dynamics while maintaining effectiveness 
constraints. This enables the learned emergent 
macro-dynamics to capture the invariant causal 
mechanism that is as independent as possible from 

the distribution of input data. This feature not only 
enables NIS+ to identify CE in data across different 
environments, but also enhances its ability for gener- 
alization on the environments that are distinct from 

training data. By incorporating the error constraint 
in Equation ( 1 ), we enhance the robustness of the
EI maximization framework, addressing the com- 
mutativity concerns of renormalization and time 
evolution operators raised by Eberhardt and Lee 
[51 ]. Our framework ensures that micro-dynamics 
evolution matches the macro-dynamics encoded. As 
the decoder is the encoder’s inverse, this consistency 
between evolving micro-states and macro-encoding 
confirms that the learned dynamics and coarse- 
graining methods are commutative. As a result, 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae279#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae279#supplementary-data
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IS+ extends the theory of CE in Hoel et al. [19 ]
o be applicable to both discrete and continuous
ynamical systems, as well as real data. 
Three experiments were conducted to evaluate

he capabilities of NIS+ in learning and generaliza-
ion, and quantifying CE directly from data. Further-
ore, we applied this framework to the domain of
he Game of Life (see Section S7). These experi-
ents encompassed three simulation scenarios and
ne real fMRI dataset for 830 human subjects while
atching the same movie clips. 
The experiments indicate that, by maximizing

I, NIS+ outperforms other machine learning mod-
ls in tasks such as multi-step predictions and pat-
ern capturing, even in environments that were not
ncountered during the training process. Conse-
uently, NIS+ enables the acquisition of a more ro-
ust macro-dynamics in the latent space. 
Furthermore, the experiments show that NIS+

an quantify CE in a more reasonable way than the
indicator.With this framework,wecandistinguish
ifferent scenarios in the data and identify which set-
ings contain more regular patterns, as demonstrated
n the experiment conducted on the Game of Life.
he experiment on the boid model also provides in-
ights into how two types of noise can impact the de-
rees of CE. The conclusion is that extrinsic noise
ay increase CE, while intrinsic noise may decrease

t. This indicates that extrinsic noise, arising from
bservational uncertainty, can be mitigated by the
earned coarse-graining strategy. On the other hand,
ntrinsic noise, stemming from inherent uncertainty
n the dynamical rules, cannot be eliminated. 
NIS+ holds potential for various applications in

ata-driven modeling of real complex systems, such
s climate systems, collective behaviors, fluid dynam-
cs, brain activities and traffic flows. By learning more
obust macro-dynamics, the predictive capabilities
f these systems can be enhanced. For instance, El
iño, which arises from the intricate interplay of
ceanic and atmospheric conditions, exemplifies the
mergence of a major climatic pattern from under-
ying factors. Understanding these emergent macro-
ynamics can be instrumental in modeling and pre-
icting El Niño events. By leveraging NIS+ to cap-
ure and quantify the CE in such complex systems,
e can gain valuable insights and improve our ability
o forecast their behavior. 
Another interesting merit of NIS+ is its poten-

ial contribution to emergence theory by reconcil-
ng the debate on whether emergence is an objec-
ive concept or an epistemic notion dependent on
he observer. By designing a machine to maximize
I, we can extract objective emergent features and
ynamics. The machine serves as an observer, but
n objective one. Therefore, if the machine observer
Page 10 of 13
detects interesting patterns in the data, emergence 
occurs. 

However, there are several limitations in this pa- 
per that should be addressed in future studies. Firstly, 
the requirement of a large amount of training data 
for NIS+ to learn the macro-dynamics and coarse- 
graining strategy may not be feasible in many real- 
world cases. If the training is insufficient, it may lead 
to incorrect identification of CE. Therefore, it is nec- 
essary to incorporate other numeric methods, such 
as ID [9 ], to make accurate judgments. One advan- 
tage of NIS+ is its ability to identify coarse-grained 
macro-states, which can then be used as input for the 
method in [9 ]. Secondly, the interpretability of neu- 
ral networks, particularly for the macro-dynamics 
learner, remains a challenge. Enhancing the inter- 
pretability of the learned models can provide valu- 
able insights into the underlying mechanisms and 
improve the trustworthiness of the results. Thirdly, 
our work is an extension of the studies presented in 
[19 ,20 ], which assume that the dynamics are Marko- 
vian. However, when the dynamics exhibit strong 
non-Markovian characteristics, alternative frame- 
works for quantifying emergence, such as those pre- 
sented in [9 ,29 ], may offer superior advantages. 

Addressing these limitations and exploring these 
avenues for improvement wi l l contribute to the ad- 
vancement of the field and enable the application of 
NIS+ to a wider range of complex systems. 

METHODS AND DATA 

In order to provide a comprehensive understanding 
of our framework, we introduce why the framework 
of NIS+ can solve the optimization problem defined 
in Equation ( 1 ). After that, the details of the fMRI
time series data are given. 

The model 
Solving the optimization problem defined in Equa- 
tion ( 1 ) directly is difficult because the objective 
function J is the mutual information after interven- 
tion that deserved special process. 

To address this challenge, we transform the issue 
as delineated in Equation ( 1 ) into a new optimiza-
tion problem without constraints, that is, 

min 
f,g,φ,φ† 

T −1 ∑ 

t=1 

w(x t ) ||y t − g(y t+1 ) || 

+ λ||ˆ x t+1 − x t+1 || , (7) 

where ˆ x t+1 = φ† ( f (φ(x t ))) ; y t = φ(x t ) and 
y t+1 = φ(x t+1 ) are the macro-states; g : Rq → Rq 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae279#supplementary-data
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s a new function that we introduce to simulate the
nverse macro-dynamics on the macro-state space,
hat is, to map each macro-state at the t + 1 time
tep back to the macro-state at the t time step. The
arameter λ serves as a Lagrangian multiplier, to
e considered a tunable hyperparameter within our
xperimental framework. The inverse probability
eights, denoted w(x t ) , are characterized by the
efinition 

w(x t ) =
˜ p (y t ) 
p(y t ) 

= ˜ p (φ(x t )) 
p(φ(x t )) 

. (8)

n this context, ˜ p represents the modified distribu-
ion of macro-states y t following the intervention ac-
ording to do (y t ∼ Uq ) , whereas p denotes the in-
erent distribution of the observed data. For prac-
ical implementation, p(y t ) is approximated using
ernel density estimation [52 ] (further elaborated
n Section S3.2). The post-intervention distribution
˜ p (y t ) is presumed to be uniformly distributed, sig-
ified by a consistent value across its range. As a re-
ult, the weight w is determined by the ratio of the
riginal to the modified distribution. Mathematical
heorems mentioned in Section S2.2 and proven in
ection S4.2 guarantee that this new optimization
roblem (Equation ( 7 )) is equivalent to the original
ne (Equation ( 1 )). 

MRI time series data 

OMIC is an fMRI collection that comprises
OMIC PIOP1, AOMIC PIOP2 and AOMIC
D10 0 0 [48 ]. 
AOMIC PIOP2 collected subjects’ data for mul-

iple tasks such as emotion matching, working mem-
ry and so on ( TR = 2 s). Here, we just use 50 sub-
ects’ resting fMRI data since some time steps of
ther subjects have been thrown out by removing
he effects of artificial motion, the global signal, the
hite matter signal and the cerebrospinal fluid signal
sing fMRIPrep results [53 ,5 4 ], w hich leads to a dif-
culty in time alignment. 
AOMIC ID 10 0 0 collected data when 881 sub-

ects were watching movies. It contains both raw data
nd pre-processed data ( TR = 2 . 2 s; see further
xperimental and pre-processing details in [48 ]).
ere, we should note that the movie is edited in
uch a way that it has no clear semantic meaning,
ut is just a collection of concatenated images from
he movie. Therefore, it is expected that subjects’
rain activation patterns should not respond to some
igher-order functions such as semantic understand-
ng. The detailed pre-process method is presented in

ection S8.3. 
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