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A P P L I E D  S C I E N C E S  A N D  E N G I N E E R I N G

Perovskite retinomorphic image sensor for embodied 
intelligent vision
Zhilong He1†, Hongxiao Duan1†, Jianmin Zeng1,2†, Jie Zhou3†, Xiaolong Zhong1, Zhixin Wu1, 
Shenzhou Ni2, Ze Jiang2, Guangjun Xie2, Jung-Yong Lee4, Yi Lu5, Yonghong Zeng5, Biao Zhang5, 
Wu Bin Ying4*, Zhibin Yang3*, Zhang Zhang2*, Gang Liu1*

Retinomorphic systems that can see, recognize, and respond to real-time environmental information will extend 
the complexity and range of tasks that an exoskeleton robot can perform to better assist physically disabled peo-
ple. However, the lack of ultrasensitive, reconfigurable, and large-scale integratable retinomorphic devices and 
advanced edge-processing algorithms makes it difficult to realize retinomorphic hardware. Here, we report the 
retinomorphic hardware prototype with a 4096-pixel perovskite image sensor array as core module to endow 
embodied intelligent vision functionalities. The retinomorphic sensor array, using a one photodetector–one tran-
sistor geometry to resemble retinal circuit with broadband, ultrahigh, and reconfigurable photoresponsivities, 
executes both adaptive imaging with a contrast enhancement of ~620% under a dim-lit intensity of 10 microwatts 
per square centimeter and an instantaneous one-dimensional feature extraction algorithm to decompose the 
origin visual scenarios into parsimoniously encoded spatiotemporal information. This retinomorphic system en-
dows embodied intelligence with adaptive imaging, in situ processing, and decision-making capabilities and 
promises enormous potential for autonomous robot applications.

INTRODUCTION
Exoskeleton robots are human-centered systems that aim to revolu-
tionize the way we assist people with disabilities to live their lives in 
close proximity to normal human beings (1, 2). Extension to handle 
more complicated daily tasks with improved assistance quality re-
quires such robots to sense, recognize the environmental informa-
tion, and make decisions intelligently. Among all biological senses 
in a nature world, visions are the most direct, efficient, and impor-
tant methods for animals to interact with their surviving environ-
ments (3). For instance, the sensitivity of leaf tailed geckos’ retina to 
light is 350 times better than that of human beings, which enables 
them to see colors at night (4, 5). Frogs have five classes of ganglion 
cells in their retina that decompose complex images into simple in-
formation of contrast, convexity, edge, darkness, etc. Facile recogni-
tion of these representative features can help geckos and frogs to 
catch preys and dodge predators agilely (6, 7). Using embodied in-
telligent vision to sense, recognize, and respond to real-time sur-
rounding environments will surely empower exoskeleton robots to 
serve handicapped people better. In view of this, developing ad-
vanced retinomorphic computation devices and systems that simul-
taneously integrate ultrasensitive optical sensing, real-time retinal 
processing, and decision-making functions becomes increasingly 
critical for the next-generation exoskeleton robot applications.

An ideal embodied intelligent vision system should achieve ac-
curate imaging of visual targets in light environments with various 

frequencies and intensities. In situ feature extraction is also indis-
pensable to accelerate the visual target recognition and actuation 
by eliminating downstream transmission of redundant visual infor
mation to higher-order controller units (8). With these concerns, 
ultrasensitive and nonvolatilly reconfigurable photoresponses are es-
sential indices for the retinomorphic devices to achieve precise image 
sensing and synapse weight updating of the neural network algo-
rithms, respectively (9). Unfortunately, although conventional Si-, 
Ge-, InGaAs-, and HgCdTe-based photodetecting devices have exhi
bited promising sensing capabilities in the broad visible to infrared 
spectrum (10–12), their intrinsic vulnerability of fixed photores-
ponsivity hinders direct application as core modules of hardware ac-
celerators to perform instantaneous retinomorphic processing tasks. 
Because of the exotic carrier transport dynamics in atomically thin lay-
ers, two-dimensional (2D) van der Waals materials have been recently 
widely studied for retina-inspired sensor devices with reconfigurable 
photoresponses and simulated image encoding, enhancement, and 
target/motion recognition functions within small-scale (e.g., 8 by 8) 
retinomorphic sensor arrays (RSAs) (13–26). However, reduction in 
the vertical dimension of the material also attenuates the degree of 
light-matter interaction in the 2D nanosheets, which leads to small 
photoresponsivities (viz., <100 mA/W in a broadband spectrum) and 
weak dim-light sensing capability. Although high sensitivities can be 
realized via gate tuning in phototransistors (27, 28), a concurrent in-
crease of the dark current and a decrease of the on/off ratio severely 
deteriorate the contrast and quality of acquired images. It is notewor-
thy that the lack of large-area synthesis and integrating capability of 
2D materials also restricts hardware implementation of artificial ret-
ina that resembles the complete anatomic structure and functions of 
the biological visual systems. Instead of executing a specifically de-
signed neural network algorithm on the sensor array, the state-of-
the-art retinomorphic systems rely heavily on convolution to perform 
in situ feature extraction during the image sensing process. The con-
volution neural network (CNN), which is traditionally efficient in 
handling complex patterns, can only run its first layer operation via 
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weighted multiplication and accumulation (MAC) in the optoelectric 
domain (14–18). The effectiveness of extracting sufficient features 
with convolution is therefore substantially limited for high-
accuracy target recognition and judging tasks. In short, the realiza-
tion of embodied intelligent vision hardware, lacking large-scale 
integratable, ultrasensitive, reconfigurable visual sensor devices and 
efficient edge-processing algorithms, remains challenging.

In this contribution, we report the full-hardware implementation 
of the retinomorphic system with a monolithically integrated 
4096-pixel perovskite image sensor array as the core element to endow 
the embodied intelligent vision functionality. Beneficial from the 
strong broadband absorption, large photoresponse, controllable re-
configurability upon ion migration, and facile solution processability, 
organometallic halide perovskites can ensure large and tunable photo-
responsivity and provide the large-area integrating capability that are 
considered compelling materials for the construction of retinomor-
phic hardware systems. Narrow bandgap (NBG) perovskite with 
strong ultraviolet–visible–near-infrared (UV-VIS-NIR) absorption, 
large on/off ratio, and reconfigurable photoresponsivity is used to fab-
ricate a large-scale photodetector array on an amorphous Si thin-film 
transistor (a-Si TFT) panel. Because of the prominent modulation 
ability of the TFT driver, each one transistor–one photodetector (1T-
1PD) pixel of the 4096-pixel RSA exhibits ultrasensitive and individu-
al reconfigurable photoresponsivities that fulfill the dim-lit image 
sensing and synapse weight updating requirements of the retinal pro-
cessing operations. An instantaneous one-dimensional feature extrac-
tion (ODFE) algorithm that can be fully projected on the RSA has 
been designed to solve the inefficient feature extraction problems 
arose by the widely adopted optoelectric domain convolution meth-
odology. Upon feeding the effectively decomposed spatiotemporal 
information into a fully connected layer or a recurrent neural network 
premounted on the retinomorphic hardware, real-time visual target 
recognition and decision-making for exoskeleton robots’ motion in 
complex lighting environments are demonstrated. This innovative 
retinomorphic computation system with instantaneous “see, recog-
nize, and respond” capability promises enormous potential for future 
embodied intelligent vision applications.

RESULTS
Design of perovskite retinomorphic computation system
Natural creatures rely on a visual system to cope with the vast barrage 
of incoming light patterns (left of Fig. 1A), wherein the retina is so-
phisticated as an information-processing “accessible part of the 
brain” with marvelous anatomic complexity and functionality. In 
general, the retina consists of chemically and/or electrically intercon-
nected neurons of photoreceptors (P), horizontal (H) cells, bipolar 
(B) cells, amacrine (A) cells, and ganglion (G) cells (4). They are ar-
ranged into an intricate network of three cellular layers and two 
modulating synaptic layers, not only functioning as a simple spatio-
temporal prefilter for light adaption and sharpening but also serving 
as a neural computation circuit to convey an efficiently processed 
image to the downstream area of the brain. As depicted in the right 
of Fig. 1A, the photoreceptor senses incident lights with various 
wavelengths and intensities and converts them into physiological sig-
nals. The bipolar cells receive these signals and shunt them to the 
ganglion cells. The sensitivities of the photoreceptors and bipolar 
cells are intermediated by horizontal cells, guaranteeing high-fidelity 
image sensing in all lighting environments. Then, the excitory signals 

are transmitted from bipolar cells to ganglions cells directly, while 
the inhibitions are delivered upon amacrine cell modulation. Last, 
feature-extracting computation is done in ganglion cells with either 
excitory or inhibitory signals, outputting compressed images for the 
next-level processing. Instead of reading a generic pixel representa-
tion of the original image, the downstream area of the brain receives 
a parsimoniously encoded set of features including sustained edge, 
moving edge, net convexity, net dimming, and darkness from the 
ganglion cells via visual nerves. Upon pooling the firings of feature-
extracting ganglion cells in a weighted summation, the cerebral cor-
tex recognizes the visual targets simply without any higher-level 
processing. It is this unique anatomic structure and function of the 
vision system that enable frogs to catch preys fast and precisely. 
Therefore, development of advanced retinomorphic computation 
system should be orchestrated by simplifying the intricate visual cir-
cuit into ternary parts of the sensing-perception assemblage (P, B, 
and G neurons), the photoresponse modulator (H and A neurons), 
and the brainoid cortex yet portraying their holistic visual function 
with advanced sensor devices.

With this concern, we use 1T-1PD cells based on perovskite photo-
voltaic devices to reproduce the above-described bigroup retina hierar-
chy (top left of Fig. 1B) and integrate them back-end-of-line 
monolithically into a 4096-pixel image sensor array for fully hardware 
implementation of the retinomorphic system. Because of the strong 
absorption in the UV-VIS-NIR spectrum, the very long charge recom-
bination lifetime, the large photoresponsivity, and the on/off ratio, as 
well as the wide linear dynamic range (LDR), NBG organometallic ha-
lide perovskites have been widely studied for high-performance photo-
voltaic and photodetector applications (29–31). The intrinsic ion 
migration process occurred in perovskite (32), arising from the mon-
ovalent organic cations and halide anions with small activation energy 
and a modest coefficient of diffusion in solid-state thin films (33–38). 
When perovskite is subjected to external voltage bias or light illumina-
tions, these mobile ions will migrate considerably. Such intrinsic ion 
migration phenomenon provides an exotic opportunity of nonvolatile 
photoresponsivity reconfiguration through modulation of the materi-
al’s composition and the device energy band diagram (bottom left of 
Fig. 1B). Although unfavored for high-efficiency solar energy conver-
sion applications, such switchable photovoltaic behavior offers a basic 
operating principle for synaptic weight updating in a retinomorphic 
computing paradigm. In combination with the sensitive photores-
ponse, reconfigurability and facile solution processability for large-area 
fabrication, perovskites are considered compelling materials for the 
construction of retinomorphic hardware systems. Here, NBG 
perovskite with the composition of FA0.8Cs0.2Pb0.5Sn0.5I3 was designed 
to build an ultrasensitive and reconfigurable sensing-perception as-
sembly of P, B, and G neurons with the device geometry of indium tin 
oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrene sul-
fonate) (PEDOT:PSS)/perovskite/C60/bathocuproine (BCP)/Au (note 
S1 and figs. S1 to S3). MA-free and Cs-containing composition is used 
to enhance the photothermal stability of the material, while partial sub-
stitution of Pb with Sn lowers perovskite’s toxicity for human-friendly 
usage. In particular, the inclusion of the Sn component and the Sn/Pb 
atomic ratio of 1 can minimize the bandgap of the material and extend 
its absorption coverage into short-wavelength NIR regions (39).

Underlying the perovskite photodetectors, a-Si TFTs function as 
both selectors to guarantee proper operation on target perovskite de-
vices in the crossbar array via gate control and H/A modulators to 
regulate the photoresponses of the 1T-1PD retina pixels through 
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source-drain manipulation (bottom right of Fig. 1B). On one hand, 
amplification of the perovskite photoresponse can enhance the quality 
of image sensing under dim-light conditions. When a visual object is 
projected onto the 4096-pixel RSA, adaptive imaging over a broad 
spectrum will be performed by a TFT-modulated perovskite photode-
tector layer. On the other hand, regulation of devices’ photorespon-
sivities allows synaptic weight updating according to the ex situ 
trained sensor neural network algorithm. As such, feature extraction 
can be executed in the perovskite photodetector array directly by op-
toelectronic MAC operation during photoelectric conversion, through 
row-wise selection by TFT and bit line readout of the weighted photo-
current summation according to Im = 

∑N

n=1
P
mn

⋅ R
mn

, where Rmn is 
the photoresponsivity of the mth perovskite device in the nth word 
line and Pmn denotes the optical intensity irradiated onto the device 
(top right of Fig. 1B). Last, using a commercial microcontroller unit 
(MCU) and a field-programmable gate array (FPGA) as the brainoid 
cortex to control the execution of sensory neural network algorithms, 
a retinomorphic computation hardware that reproduces the complete 

anatomic hierarchy of the biological vision system with full function-
alities of simultaneous optical sensing, visual processing, and decision-
making in a compact computing-in-sensor mode is established.

Perovskite RSA and reconfigurable 
photodetecting characteristics
Figure 2 (A to E) depicts the circuit layouts and a photograph of the 
64 by 64 TFT panel, as well as images of a perovskite-coated TFT 
panel, a monolithically integrated 1T-1PD RSA, and a flexible print-
ed cable bonded sample. Zoom-in examination reveals that each 
pixel of the RSA has an overall area of 500 μm by 500 μm, while the 
interdigitated source-drain electrode pair defines a channel width/
length of 100 μm/10 μm, respectively (Fig. 2A). The TFT drain is 
connected to a 300 μm–by–300 μm ITO plate through SiNx vias, 
which serves as the bottom electrode of the perovskite photodetector. 
The RSA therefore has a commendable pixel fill factor of 0.36 that 
favors high areal efficiency of photoelectric conversion and guaran-
tees full-hardware implementation of the retinomorphic computing 

Fig. 1. Biological visual system and perovskite retinomorphic computing system. (A) Adaptive sensing-perception by the biological visual system through the hier-
archy of photoreceptors, horizontal cells, bipolar cells, amacrine cells, and ganglion cells. (B) Schematic illustration and working principle of the retinomorphic computing 
system based on a 4096-pixel 1T-1PD perovskite RSA, microcontroller unit (MCU), and field-programmable gate array (FPGA). ADC, analog-to-digital converter; TIS, trans-
impedance amplifier; DAC, digital-to-analog converter.



He et al., Sci. Adv. 11, eads2834 (2025)     3 January 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

4 of 13

paradigm through 4096-pixel integration (note S2). In this work, the 
4096-pixel TFT panel was designed and taped out from Tianma stan-
dard G4.5 6-mask fab and is semitransparent (Fig. 2B and figs. S4 and 
S5). The perovskite film has a dark brown color that endows itself 
strong absorption in the VIS-NIR spectrum (Fig. 2C). Upon deposit-
ing the superincumbent electron transporting layer (ETL) of C60 and 
BCP, a universal Au electrode is formed over the entire array and acts 
as a common terminal for all perovskite photodetectors during the 
photoresponsivity modulation and photocurrent readout operations 
(Fig. 2D). To avoid potential voltage cross-talking and misoperation 
by the adjacent TFTs, the photodetectors of the neighboring pixels 
are isolated from each other with a physical separation of 150 μm, as 
defined by the patterned PEDOT:PSS hole transporting layer (HTL) 
through aqueous etching.

The fundamental photoelectric performance of the perovskite 
material is first evaluated in 0.08-cm2 individual devices (note S3 
and figs. S6 to S11). With an inverted configuration of ITO/

PEDOT:PSS/FA0.8Cs0.2Pb0.5Sn0.5I3/C60/BCP/Au having an opti-
mized 800-nm perovskite thickness, an interfacial energy barrier, 
and a balanced hole/electron mobility, the perovskite photodetector 
shows a low zero-biased dark current density (Jd) of 1.73 × 10−9 A/
cm2 in the current density–voltage (J-V) curves (fig. S8). The maxi-
mum external quantum efficiency (EQE), photoresponsivity (R), 
and specific detectivity (D*) reach 90%, 0.56 A/W, and 9.11 × 1012 
Jones in the VIS-NIR range of 400 to 1000 nm, rendering a high 
light/dark current ratio of 107 under AM 1.5G illumination. In par-
ticular, the perovskite device has a large LDR of 168 dB over the 
wide white light intensity range of 0.1 W/cm2 to an extremely low 
detection limit of 0.4 nW/cm2 (Fig. 2F), which is essential for sensi-
tively capturing a shadowy target in a complex lighting environment 
(40). Transient photocurrent (TPC) measurement reveals that the 
perovskite photodetector has an ultrafast photocurrent responding 
speed of 2.75 ns that is favorable for instant image sensing (fig. S9), 
while both the 200-hour stability under continuous solar irradiation 

Fig. 2. The 4096-pixel perovskite RSA and its reconfigurable photodetecting characteristics. (A) Circuit layouts and (B) a photograph of a 64 × 64 a-Si TFT panel. 
Images of (C) a PEDOT:PSS/FA0.8Cs0.2Pb0.5Sn0.5I3-coated TFT panel, (D) a full-structure 1T-1PD RSA, and (E) a flexible printed cable bonded sample. LDR (F) and reconfigu-
rable photovoltaic characteristics (G) of an individual FA0.8Cs0.2Pb0.5Sn0.5I3 photodetector recorded under standard AM 1.5G illumination, upon being subjected to voltage 
biases between ±0.5 and ± 2.0 V. Broadband, linear, and reversible photoresponsivity reconfiguration of (H) an individual FA0.8Cs0.2Pb0.5Sn0.5I3 photodetector and (I) a 
1T-1PD pixel of the RSA under 8-mW/cm2 monochromatic illuminations, respectively. NA, not applicable.
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or heating and the 30-day retention of ~96% photodetecting capa-
bility allow long-term operation for practical application (fig. S11). 
All these figures of merits of the perovskite device, outdistancing 
those of the state-of-the-art retina-inspired sensors, establish basic 
characteristics for ultrasensitive image sensing.

To verify the possibility of modulating the photoresponsivity of 
the FA0.8Cs0.2Pb0.5Sn0.5I3 devices, voltage stimuli with the ampli-
tudes of ±0.5 to ±2.0 V and a duration of 30 s were applied through 
the Au top electrode to induce ion migration toward the counter 
electrode in the perovskite layer. The universal bottom ITO elec-
trode was grounded during measurements, while the photocurrents 
of the device were immediately scanned under white light illumina-
tion after the application of the stressing voltages. In response to the 
intensified band bending of the perovskite photodetector, the J-V 
curves shift obviously and continuously to a lower voltage region 
upon being subjected to negatively biased voltage stimuli (Fig. 2G). 
As the amplitudes of the stressing voltages increase from −0.5 to 
−2.0 V, the VOC decreases from 0.58 to 0.47 V, accompanying a si-
multaneous decrease in photocurrent minimum from 5.28 × 10−2 to 
1.61 × 10−2 mA/cm2, respectively. It indicates that giant switching in 
the photovoltaic characteristics occurs in the perovskite photode-
tector. When the polarity of the stressing voltage stimuli is reversed, 
the J-V curves shift back continuously to their initial position. The 
open-circuit voltages, as well as the corresponding photocurrents, 
also become fully recovered. Therefore, reversible reconfiguration of 
photoresponsivity may be made possible by electric field–induced 
ion migration in the FA0.8Cs0.2Pb0.5Sn0.5I3 photodetector. Note that 
the cationic nature of the PEDOT+ components in the HTL layer 
may help in reserving the migrated I− anions; thus, the photores-
ponsivity modulation is more effective and reliable by applying neg-
ative voltages onto the top Au electrode to induce iodine ion 
migration toward the bottom ITO electrode first.

The monochromatic photoresponsivity of the device can be mod-
ulated consecutively, linearly, and reversibly by voltage pulse trains 
over the VIS-NIR spectrum (note S4). As shown in figs. S12 and S13 
and Fig. 2H, the FA0.8Cs0.2Pb0.5Sn0.5I3 device exhibits an initial photo-
responsivity of 1.11058 A/W under 860-nm illumination with an op-
tical power of 8 mW/cm2. When a voltage pulse with the amplitude of 
−0.60 V and a duration of 30 s is applied onto the device, its photore-
sponsivity decreases to 1.11056 A/W. Afterward, application of a 2.0-V 
voltage can return the device to the initial photoresponsivity state. 
Then, a voltage pulse with the amplitude of −0.625 V and a duration 
of 30 s switches the device photoresponsivity to 1.10045 A/W, which 
can be recovered to the pristine value by the subsequent 2.0-V voltage 
stressing. Similarly, the application of negative voltage pulses with the 
ramping step of −0.025 V and a duration of 30 s can program the 
photoresponsivity of the perovskite device continuously and linearly 
to 0.89247 A/W, while the following 2.0-V voltage stress can com-
pletely reset it to the initial value with full reversibility. Such linear and 
reversible modulations of the FA0.8Cs0.2Pb0.5Sn0.5I3 device photores-
ponsivities are observed over all the wavelengths of 940, 860, 640, 530, 
and 460 nm, again confirming the effectiveness of the ion migration–
based reconfiguration strategy. Note that the reconfigurable photores-
ponsivity of the perovskite device can retain even after 10,000 cycles 
(fig. S14), further confirming the excellent reliability and stability and 
benefiting to the long-term operation for practical application. Criti-
cally, a large photocurrent/dark current ratio exceeding 9 × 103 can be 
maintained over all wavelengths after photoresponsivity reconfigura-
tion, which in turn allows high-contrast image sensing in dim-light 

environments. Multiplying the device current (8.24 × 10−7 A under 
860-nm irradiation), the reading voltage (1.6 V), and the responding 
speed (2.75 ns), the perovskite-based photovoltaic detector exhibits an 
ultrasmall energy consumption of 3.63 × 10−15 J, which is close to the 
biological neuronal system (10 fJ per synaptic event). Although pas-
sivation of perovskite with organic small molecules may further en-
hance the device photodetecting capability, it also hinders 
photoresponsivity reconfigurability for retinomorphic computing. 
Thus, in this work, passivation of perovskite is not used.

When incorporated into 1T-1PD pixels, the large on/off ratio of 
the a-Si TFT will select the target FA0.8Cs0.2Pb0.5Sn0.5I3 device prop-
erly for subsequent operation (note S5). The source-drain manipula-
tion may further regulate the sensor device’s photoresponse through 
ion migration. As shown in Fig. 2I, when a gate voltage of 10 V and 
a source voltage of −4.0 V are used, the monochromic photorespon-
sivities of the pixel are 22.37, 27.38, 24.52, 20.18, and 16.42 A/W, 
respectively, recorded under illuminations at the wavelengths of 940, 
860, 640, 530, and 460 nm with the optical intensity of 8 mW/cm2. 
By continuously applying voltage pulses through a source electrode 
with a ramping step of −0.2 V and a duration of 10 s, pseudo-linear 
enhancement of the pixel’s photoresponsivities to 46.67, 56.35, 49.78, 
41.38, and 35.78 A/W is achieved over 16 steps with linearities of 
more than 0.99 at all experimental wavelengths (table S2). It emu-
lates the excitory modulation of the photoreceptors inside biological 
retina. Note that these photoresponsivities, over 100 times higher 
than most of the state-of-the-art retinomorphic devices (13–28), 
guarantee ultrasensitive image sensing in a dim-light environment. 
Again, a commendable on/off ratio of 200 can be maintained in the 
1T-1PD geometry. Upon reversing the polarity of the voltage stimu-
li and decreasing their amplitude from 3.5 to 2.0 V with a ramping 
step of −0.1 V, the photoresponsivities of the pixel become linearly, 
symmetrically, and almost fully recovered to their pristine values, 
with linearities of ~0.99 over all five wavelengths. Linear reversible 
inhibition of the responsivities to 5.08, 6.59, 5.31, 3.81, and 2.80 A/W 
is also observed when voltage stimuli with the ramping step of −0.1 V 
from 2.0 to 3.4 V and a duration of 10 s are applied in 16 modulation 
steps. Such linear, fully reversible inhibitory and excitory modula-
tions not only allow precise updating of synaptic weight for weighted 
MAC operations but also solve the paradox of simultaneously achiev-
ing ultrasensitive and reconfigurable photoresponsivity for high-
fidelity retinomorphic computation.

Adaptive image sensing performance
The ultrasensitive, broadband image sensing capability of the mono-
lithically integrated 4096-pixel perovskite RSA was first assessed us-
ing a commercial readout circuit. In our experiment, the gate voltage 
is set to 10 V for pixel selecting via row-wise scanning, while a 
source voltage of 0.1 V is applied through bit lines in a column-by-
column manner to read the pixel’s current response with the Au 
common electrode (note S6). As shown in Fig. 3 (A to D), fig. S19, 
and movie S1, the 1T-1PD pixels of the RSA exhibit an average dark 
current of 1.80 nA and average photocurrents of 11.84, 50.12, 91.47, 
and 181.37 nA under white light illuminations of 10, 50, 0.10, and 
0.20 mW/cm2, respectively. By defining a particular pixel outputting 
photocurrent lower than 90% of the average value as dead pixel, a 
high production yield of 99.88% can be derived from the photocur-
rent mapping profiles for the present perovskite RSA. In addition, 
the monolithically integrated RSA has a high pixel-to-pixel unifor-
mity (PPU) exceeding 95.82%, which is comparable to those of the 
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state-of-the-art visible light, infrared, and x-ray photodetectors 
(41–45). High PPU will help to increase the signal-to-noise ratio, 
lowering the deviation of the interpixel contrasts and improving the 
spatial resolution of the RSA.

As shown in Fig. 3E, fig. S20, and movie S2, handwritten digits 
and letters printed on transparent plastic sheets, as well as entities of 
a metallic paper clip, a key, and a hairpin, can be faithfully captured 
by the perovskite RSA with source and gate voltages of 0.1 and 10 V, 
under 0.20-mW/cm2 white illumination that is much weaker than 
normal room light conditions. In this situation, the imaging con-
trasts of the RSA, which is defined as the current ratio of the pixels 
occupied by the target and the blank background, reach as high as 
74.71. It corresponds to a photoresponsivity of 0.36 A/W. On the 
other hand, although the pixel’s photocurrent and thus the photo-
to-dark current ratio decrease at low optical intensities, the constant 
photoresponsivity over wide illumination power (LDR) range of the 
perovskite photodetector still allows clear imaging of the visual tar-
gets by the RSA under dim-lit conditions. Figure 3F-1 and fig. S21 
(B and C) summarize the images of handwritten digits acquired un-
der various white light illumination intensities of 0.01, 0.05, and 
0.10 mW/cm2 and a source voltage of 0.1 V, respectively. At all opti-
cal intensities, the handwritten digits “2023” can be visualized clear-
ly (movie S3). The corresponding average current contrasts of the 

target and background pixels are 5.96, 21.76, and 40.99. Note that 
the lowest light intensity of 0.01 mW/cm2 is approaching that of the 
moonlight in the evening, confirming the perovskite RSA’s capabil-
ity of capturing indistinct targets in caliginous environments. In ad-
dition, the ratio of the pixels occupied by the handwritten digits in 
the acquired images and in the original template is defined as image 
sensing fidelity of the RSA. Through counting the occupied pixels in 
Fig. 3 (E-4 and F-1) and fig. S21 (B and C), high fidelities exceeding 
96% under all illumination intensities are demonstrated (fig. S21E).

Since source-drain modulation of the perovskite device’s inter-
nal ion distribution and potential profile can substantially recon-
figure its photoresponsivity, image sensing quality under low optical 
powers will be greatly improved. When a source voltage of 0.2 V is 
applied, the pixels’ photoresponsivities and imaging contrast of 
handwritten 2023 acquired under 10-μW/cm2 illumination are 
amplified by 618.49% to 2.93 and 36.88 A/W, respectively (Fig. 3F-
2; fig. S21, C and D; and movie S4). The image contrast is close to 
that obtained under 10 times stronger illumination intensity of 
0.10 mW/cm2 without amplification, verifying the present RSA’s 
capability of executing adaptive image sensing tasks. Remember-
ing that ultrahigh photoresponsivity reaching 50 A/W can be 
achieved upon TFT-enabled RSA reconfiguration, enhancements 
of extreme dim-lit imaging quality to that obtained under normal 

Fig. 3. Adaptive image sensing performance of the 4096-pixel perovskite RSA. (A) Dark and (B) photo current profiles of all pixels in the RSA. (C) Average values, 
variations, pixel-to-pixel uniformities, photo-to-dark ratios, and (D) distributions of pixel currents recorded under various white light intensities. (E) Image sensing of 
handwritten digits 2023 and a metallic paper clip with the perovskite RSA and a commercial readout circuit under 0.20-mW/cm2 white light illumination. (F) Adaptive 
sensing of handwritten digits 2023 under 0.01-mW/cm2 white light illumination before and after photoresponsivity amplification, respectively. (G) Image sensing of 
handwritten digits 2023 under VIS-NIR monochromic illuminations before and after being partially sheltered by a piece of print paper, respectively.
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daylight illumination can thus be reasonably expected with larger 
source voltages.

Because of the broadband absorption characteristic of the NBG 
perovskite FA0.8Cs0.2Pb0.5Sn0.5I3, image sensing under monochro-
mic illuminations over the entire visible and short wavelength NIR 
spectrum is also demonstrated by the perovskite RSA. As shown in 
Fig. 3G, fig. S22, and movie S5, the handwritten digits 2023 can be 
captured clearly under 0.20-mW/cm2 monochromic illuminations 
at the wavelengths of 460, 530, 640, and 860 nm, with the corre-
sponding imaging contrasts of 64.68, 73.35, 84.60, and 81.71%. The 
NIR imaging capability of the perovskite RSA, in addition, also en-
ables visualizing targets behind thin obstacles. When a piece of 
printing paper is covered on the handwritten digits “20,” they can 
still be visualized by the RSA under 860-nm irradiation (Fig. 3G-3 
and movie S6). In comparison, when illuminated with a 640-nm 
light source, the handwritten digits 20 cannot be imaged anymore. 
Such NIR detection is of great importance for airport or railway sta-
tion security surveillance, as well as offers possibility of building 
night vision systems and realizing intelligent medical diagnosis.

Hardware implementation of retinomorphic 
computation system
Last, we demonstrate all-hardware implementation of a retinomor-
phic computation system using the 4096-pixel perovskite RSA, MCU, 
and FPGA controllers. Now, lightweight CNNs such as LeNet-5 are 
most popularly used for the simulation of retinomorphic computing 
with advanced sensor devices. Facilitated by sharing of the convolu-
tional kernel parameters, CNNs allow for end-to-end learning of the 
grid-like pixel feature with relatively modest computing cost. Never-
theless, although the first layer of convolution can be implemented by 
optoelectronic MAC operations in the RSA by Ii = ΣPl × Rl, where Pl 
and Ii represent the input light intensity and output photocurrent, 
while Rl is the photoresponsivity of the array pixel, pooling and fur-
ther convolution using the current representatives of the extracted 
features (outputs of the first convolution layer) as inputs cannot be 
performed by the same way on the RSA any more (note S7 and fig. 
S23A). As such, the effectiveness of extracting sufficient features us-
ing the optoelectronic sensor devices and a single layer convolution 
operation for high-accuracy target recognition is limited, which re-
stricts the power of CNNs for handling complex images. On the other 
hand, to extract finer local features during the first layer convolution, 
the stride is often set smaller than the dimension of the convolution 
kernel (fig. S23B). After executing MAC operation with the incident 
light pattern during the optoelectronic sensing process, the small-
step shift of convolution kernel will result in rewriting of the pixels’ 
photoresponsivities in the overlapped regions according to the pre-
trained neural network algorithm. This not only addresses a high cri-
terion for the device endurance but also requires repeated snapshots 
and processing of the visual target over the rewritten pixels during 
convolution to accomplish a feature extraction task. The multiple-
time “see, write, and calculate” operations do not conform with the 
instantaneous “see and recognize” principle of biological visual sys-
tems and seriously affect the overall performance of the retinomor-
phic system. Developing a more efficient feature extraction method 
that can be completely and simultaneously executed during the image 
sensing process while encodes as much information as possible from 
the generic representation of the captured visual scenario is thus a 
basic requirement to achieve highly effective retinomorphic comput-
ing based on advanced optoelectronic sensor devices.

In this study, we design a ODFE algorithm and combine it with a 
fully connected (FC) layer into a fast optical-based pattern recogni-
tion network (FOPR-Net) to fulfill the above requirements (Fig. 4A). 
Here, a 64 × 1 weight vector W is designed, pretrained, and mapped 
repeatedly onto each column of the photoresponsivity matrix of the 
64 × 64 perovskite RSA. When incident light patterns are projected 
onto the RSA, multiplication between pixel’s light intensity and pho-
toresponsivity occurs simultaneously over the entire array during the 
photoelectric conversion (thus image sensing) procedure. Column-
wise summation of the weighted photocurrents equals the MAC op-
eration, resulting in one-time readout of a 1 × 64 vector I [I1, I2…I64] 
in which each element reflects the corresponding column feature of 
the visualized light pattern. Then, the extracted features are fed into 
the FC layer to deliver a final recognition result through simple spa-
tial information pooling and forward propagation operation.

Ex situ training of FOPR-Net was conducted in a common Py-
Torch framework through initialization, forward and backward 
propagations, according to the gradient descent scheme of the L2 
loss function for synaptic weights updating (note S7). The synaptic 
weights in the 1D vector are quantified into either positive or nega-
tive decimal numbers with 5-bit precision, which are in accordance 
with the 32-state reconfigurable photoresponsivity potentiation and 
depression characteristics of the 1T-1PD perovskite RSA. A subset 
of 50,000 handwritten digit image samples is extracted from the 
Modified National Institute of Standards and Technology (MNIST) 
dataset for the network training. Figure 4 (B and C) and table S3 plot 
the synaptic weight and aligned photoresponsivity vectors obtained 
after 30 training epochs. Using the training-ready weight vector, 
FOPR-Net can recognize a testing subset of 10k MNIST handwrit-
ten digit images with a commendable accuracy of 88.7% (Fig. 4, D 
and E, and fig. S25). As shown in Fig. 4F, the successful classification 
of arbitrary handwritten digit sample confirms the effectiveness of 
the ODFE and FOPR-Net algorithms.

Figure 4G displays the prototype of the retinomorphic comput-
ing hardware system constituting a 4096-pixel perovskite RSA, a 
home-made printed circuit board (PCB), and a commercial FPGA 
controller. The RSA serves as an image sensing panel and an instan-
taneous feature extractor in the system, while the FPGA controller 
accounts for information pooling of the FOPR-Net algorithm. On 
the other hand, the PCB containing MCU and periphery modules 
controls line selection, weight writing, and data reading of the 
RSA. Before operating, the photoresponsivities of all pixels are pro-
grammed in one-shot according to the pretrained weight vector. 
Then, a handwritten digit drawn with a black marker pen on a piece 
of transparent plastic sheet is used and placed on top of the RSA as 
a visual target to assess the pattern recognition performance of the 
retinomorphic hardware. As controlled by the MCU driver, the RSA 
collects and extracts features from the incident light patterns shield-
ed by the handwritten digit template and amplify and feed them as a 
1D voltage vector into the following FC layer. By running FOPR-Net 
manipulation of the image feature on the RSA and the FPGA board, 
handwritten digits of 0 to 9 can be visualized and recognized in real 
time, with their clearly captured images and recognition outputs 
displayed as the standard Arabic numbers on the embedded liquid 
crystal display (LCD) screen (Fig. 4H, fig. S26, and movies S7 and 
S8). During the experiment, 100 sets of MNIST handwritten digit 
images are input randomly into the system, which can be processed 
within 0.54 s to deliver their recognition results. Therefore, the over-
all response speed of the present retinomorphic system is taken as 
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5.4 ms per frame or 184 frames/s (fig. S27). Note that the retinomor-
phic system uses a home-made PCB to read feature information 
from the RSA, and the analog-to-digital conversion of the extracted 
feature information is probably the speed-limiting step during op-
eration. Therefore, while the photocurrent response of the perovskite 
photodetector is as fast as in a range of ~100 ns, practical limitation 
in data transfer now defines the achievable speed for full system op-
eration. Furthermore, optimizing the readout circuit of the RSA 
may accelerate the responding speed of the retinomorphic system, 
which is yet beyond the scope of the present work.

Embodied intelligent vision for locomotion control of 
exoskeleton robot
Such retinomorphic hardware can arm an exoskeleton robot with the 
ability of sensing, recognizing, and responding to environmental in-
formation intelligently and assist people with physical disabilities to 
live an easier life. For instance, when passing through crossroads, pe-
destrians can use their vision to observe the changing traffic lights 
with a flashing counting down timer, based on which they are able to 

make decisions and pace accordingly. For patients with blindness and 
dyskinesia, on the other hand, these actions can be performed by an 
exoskeleton robot with embodied intelligent vision instead (Fig. 5A). 
In this work, we assume that an exoskeleton robot moves at the initial 
constant speed of 1.0 m/s, while its maximum speed should be limited 
to slower than 2.5 m/s. When it approaches to 5 m away from the 
crossroad, the retinomorphic system starts to monitor the counting 
down numbers of the flashing timer continuously in a 1-s interval. 
The premounted ODFE algorithm simultaneously decomposes the 
observed 64 × 64 pixels flashing numbers into a 64 × 1 feature vector, 
which is then recognized with a temporal network to decide the ro-
bot’s next-step motion status by considering the spatiotemporal rela-
tionship between the counting down time, moving speed, and distance 
from the traffic junction. Since the exoskeleton robot can pass the 
crossroad within 5 s at its initial speed, it only needs to walk steadily 
when the monitored 5-s counting down numbers are in the series 
from [9, 8, 7, 6, 5, 4], [8, 7, 6, 5, 4, 3], to [5, 4, 3, 2, 1, 0] (left of Fig. 5B). 
If the flashing timer counts down from 4 or 3, it indicates that the 
exoskeleton robot has to speed up to cross the junction. In this case, 

Fig. 4. Hardware implementation of perovskite-based retinomorphic computing system. (A) FOPR-Net for instantaneous ODFE through the perovskite RSA and 
target recognition through pooling by the FPGA-based FC neural network. Training-ready (B) 1D synaptic weight vector, (C) aligned photoresponsivities, (D) confusion 
matrix, (E) evolved recognition accuracy, and (F) simulated recognition results for MNIST handwritten digit database. (G) Architecture and photographs of the complete 
prototype of perovskite RSA-based retinomorphic hardware system. (H) Captured image and recognition outcome of handwritten digit “4” acquired by the perovskite 
RSA-based retinomorphic hardware system. a.u., arbitrary units.



He et al., Sci. Adv. 11, eads2834 (2025)     3 January 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

9 of 13

the acceleration and the final speed should be no less than (1/8 m/s2, 
1.5 m/s) and (4/9 m/s2, 7/3 m/s), respectively. When the counting 
down timer flashes from 2, 1, or 0, the exoskeleton robot in no way 
can pass through the traffic junction safely under the limiting speed of 
2.5 m/s. Thus, it should decelerate to stop at the stop line and wait for 
the traffic light to turn into green again, with the deceleration speed of 
no less than −0.1 m/s2. The detailed calculation process for the above 
motion scheme of the exoskeleton robot is summarized in note S8.

To train the retinomorphic computing system to accomplish the 
above-mentioned exoskeleton robot tasks, we design a fast optical-based 

recurrent neural network (FO-RNN) comprising an input layer, a ODFE 
layer, a long short-term memory (LSTM) hidden layer, and an output 
layer with three neurons of L1 to L3 that represent the three motion stat-
ues of the exoskeleton robot when approaching the crossroad (right of 
Fig. 5B). In particular, the LSTM layer involves six continuous time steps 
of T0 to T5, according to the robot’s motion scheme that requires at least 
5 s to pass the traffic junction from the distance of 5 m at the initial con-
stant speed of 1 m/s. In each step, a 64 × 1 feature vector (x0 to x5) of the 
standard electronic counting down digit monitored at the present time 
is input and processed to result in an updated hidden state (h0 ~ h5) of 

Fig. 5. Embodied intelligent vision for exoskeleton robot’s motion control. (A) Schematic illustration of a retinomorphic computing system armed exoskeleton robot 
to assist patients with blindness and dyskinesia to pass through the traffic junction safely. (B) Motion scheme (left), database examples (middle), and FO-RNN (right) for 
the exoskeleton robot according to various monitored counting down numbers of the flashing timer. (C) Accuracies (left) and overall confusion matrix (right) of making 
decisions for the exoskeleton robot to pass through the traffic junction safely during different periods of a day.
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the step. The hidden state contains information of the previous time 
step, which will be fed into the next time step upon updating. A recogni-
tion label of the counting down number monitored at the present time is 
output at each time step. These labels obtained at the steps of T0 to T5 are 
temporally correlated with each other and combined into a six-member 
group by the LSTM to deliver the final probability of outputting motion 
statues of L1 to L3. The robot will pace correspondingly to maintain the 
traffic safety.

Here, we compose a database with images of standard electronic 
digits in a black ground, showing different contrasts and noise levels 
to represent the counting down numbers of the flashing timer that 
are recorded in different light conditions for FO-RNN training 
(middle of Fig. 5B and figs. S28 and S29). Since the counting down 
numbers are monitored continuously with a time interval of 1 s as 
the robot approaching to 5 m away from the crossroad, each sub-
group of the database should contain six images of electronic digits 
that are arranged in a monotonically decreasing sequence. It also 
corresponds to the six time steps of the LTSM hidden layer. Note 
that each image contains dual labels of the counting down number 
itself and motion statues of L1  to L3. As discussed previously, the 
motion labels are L1, L2, and L3, when the numbers recorded in the 
T0 images are in the range of (9 to 5), (4 to 3), and (2 to 0), respec-
tively. On the other hand, the brightness of the counting down num-
ber and thus the electronic digit increase as the robot moves nearer 
to the junction. In the case that the counting down number decreas-
es to 0 at a certain moment, all the following numbers will be re-
corded as 0. In this study, 3000 training subgroups and 300 testing 
subgroups of database are composed for each label of L1, L2, and L3. 
Upon adjusting the network parameters with the back-propagation 
algorithm and the Adam optimizer, the deviations between the pre-
dictions and labels are minimized. As shown in Fig. 5C and fig. S30, 
the FO-RNN has high accuracies of 93.33% for different time peri-
ods over a day, which allows the retinomorphic computation system 
and the exoskeleton robot to assist a patient to pass through the traf-
fic junction safely.

DISCUSSION
In summary, we implement the retinomorphic computing hardware 
with a 4096-pixel perovskite image sensor array. It not only surpasses 
the performance of the existing retinomorphic sensor devices in terms 
of reconfigurable photoresponsivity and large-scale integrating capa-
bility but also demonstrates a technically more feasible solution to 
turn the fascinating concept of embodied intelligent vision into real-
ity (Table 1). Through merging the real-time predictable visual in-
formation to understand environmental perception and infer entity 
actuations, such retinomorphic computing hardware is of undoubted 
importance in areas of exoskeleton robots, autonomous vehicles, etc. 
Upon maximizing the complexity and range of tasks that an embodied 
intelligent vision system can perform, the instantaneous see, recog-
nize, and respond capability may also enable all-weather fast actua-
tion of mobile robots including pilotless automobile to detect and 
dodge on-road pedestrians, accompanying vehicles and other traffic 
obstacles. Along with this motivation, future efforts should be devot-
ed to miniaturizing the retinomorphic pixels into a sub-10-μm di-
mension, fabricating with flexible substrates, integrating them into 
high resolutions such as 640 × 480 pixels, as well as encapsulating 
with optical lenses and complementary metal-oxide semiconductor 
auxiliary components into chiplets for practical applications.

MATERIALS AND METHODS
Precursor and perovskite preparation
Formamidine iodide (FAI; 99.999%) was provided by Greatcell Solar 
company. CsI (99.999%), PbI2 (99.999%), SnI2 (99.999%), SnF2 
(99.999%), N,N-dimethylformamide (DMF; 99.8%), dimethyl sulfox-
ide (DMSO; 99.8%), chlorobenzene (99%), and BCP were purchased 
from Sigma-Aldrich. PEDOT:PSS (Clevios P VP. AI 4083) and C60 
were obtained from Heraeus and Nano-C Company, respectively. 
PEDOT:PSS was filtrated with a 0.22-μm syringe filter before use. Pre-
cursor solutions of NBG perovskite FA0.8Cs0.2Pb0.5Sn0.5I3 with the con-
centrations of 1.4 to 1.8 M were prepared in a nitrogen-filled glove box, 
through dissolving 1.12 mol of FAI, 0.28 mol of CsI, 0.7 mol of PbI2, 
0.63 mol of SnI2, and 0.07 mol of SnF2 in 0.78- to 1-ml mixed solvents 
of DMF:DMSO (with a volume ratio of 9:1) and stirred for 12 hours. 
All other chemicals and reagents were used as purchased.

Device fabrication
Perovskite devices, with a p-i-n configuration of ITO/PEDOT:PSS/
perovskite/C60/BCP/Au and a size of 0.08 cm2, were fabricated first 
for fundamental photovoltaic performance characterization. The 
prepatterned ITO substrates were completely cleaned in deionized 
water, acetone, and isopropanol, each for 15 min in that order. The 
overall size of the glass substrate is 1.7 cm by 1.7 cm, while that of the 
patterned ITO electrode is 1.7 cm by 1.2 cm. The ITO substrates were 
then treated with UV irradiation to improve the hydrophilicity to 
assist the coating of PEDOT:PSS HTL. Subsequently, the PEDOT:PSS 
HTL was spin-cast onto the UV-treated ITO surface at 5000 rpm for 
30 s and baked at 150°C for 15 min. Forty-microliter as-prepared 
perovskite precursor solutions with different concentrations were 
spin-coated onto the PEDOT:PSS films with a speed of 4000 rpm for 
30 s to afford perovskite layers with different thicknesses of 600, 800, 
and 1000 nm. During the last 15 s of spinning, 180 μl of anti-solvent 
of chlorobenzene was added quickly onto the spinning sample. Af-
terward, the as-prepared sample was annealed at 100°C for 8 min to 
form the final perovskite film. Ultimately, the ETLs of C60 (20 nm) 
and BCP (5 nm) were continually deposited onto the active layers via 
thermally evaporation. For the top electrode, 120-nm-thick Au pads 
with the active area of 0.08 cm2 (0.2 cm by 0.4 cm) were deposited 
onto the ETLs through thermal evaporation. The perovskite devices 
were encapsulated with UV curing adhesive and a glass slide for sta-
bility measurements.

Perovskite devices with similar configurations but smaller sizes of 
7.85 × 10−5 cm2 were fabricated to verify the enhancement and recon-
figuration of photoresponsivity through intrinsic ion migration effects. 
In this case, the ITO bottom electrode is not prepatterned, while the 
top circular shape Au electrodes with a diameter of 100 μm and a 
thickness of 50 nm were deposited via dc magneto sputtering. The size 
of the devices is then determined by the diameter of the Au top 
electrodes.

The 1T-1PD structure retinomorphic sensor was fabricated by su-
perimposing perovskite-based photodetectors on an a-Si TFT panel. 
To match the electrical performance of perovskite devices, the a-Si 
TFTs were designed with a channel W/L of 100 μm/10 μm, a maxi-
mum driving voltage of 20.0 V, and output currents in the range of 
10−12  to 10−6 A (VDS = 1 V). The 4096-pixel a-Si TFT panels were 
taped out from Tianma Microelectronics Co. Ltd., while the 
perovskite-based photodetector array was fabricated through solution 
processing directly on the TFT panel. The active area of the perovskite 
devices, which is defined by the bottom ITO electrode connected to 
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the drain of the TFT, is 9 × 10−4 cm2 (300 μm by 300 μm). To avoid 
potential voltage stimulus cross-talk and misoperation by the neigh-
bor TFT devices, the highly conductive PEDOT:PSS universal HTL 
was patterned into isolated pixels by standard photolithography and 
aqueous etching processes. Before depositing, the TFT panel was com-
pletely cleaned in deionized water, acetone, and isopropanol, each for 
15 min in that order. Then, it was treated with UV irradiation to im-
prove the hydrophilicity. Considering that the total area of the TFT 
panel (3.2 cm by 3.2 cm) is about four times as that of the ITO sub-
strate (1.7 cm by 1.7 cm) used for individual perovskite device fabrica-
tion, the spin-coating speed of PEDOT:PSS was decreased to 2000 rpm 
in this case to ensure the same HTL thickness. After annealing at 
150°C for 15 min, a 0.5-ml AZ5214 photoresist was spin-coated onto 
the PEDOT:PSS HTL layer at the spinning speed of 1000 rpm for 10 s 
and 5000 rpm for 30 s, followed by baking at 100°C for 90 s. Afterward, 
a photomask with square-shaped openings of 350 μm by 350 μm and 
separations of 150 μm was placed on top of the sample. The photo-
mask openings were right above the ITO electrodes connected to the 
drain of the TFT, with their centers overlapped with each other. The 
sample was then exposed to UV irradiation of photolithography pro-
cess for 13 s and immersed in deionized water for 35 s. The exposed 
photoresist denatured and retained, while the unexposed part was re-
moved. The PEDOT:PSS in the unexposed area therefore manifested. 
The sample was further immersed in deionized water for another 10 s 
to remove the manifested part of the water-soluble PEDOT:PSS layer, 
following by ultrasonicating with acetone to remove the denatured 
photoresist in the exposed part. As such, separated square-shaped 
islands of PEDOT: PSS with the size of 350 μm by 350 μm and a 

separation of 150 μm were formed on top of the ITO electrode regions 
of the TFT panel. Subsequently, 180 μl of 1.8 M perovskite precursor 
solution was spin-coated at the speed of 3000 rpm for 30 s, while 
500 μl of chlorobenzene was dropped rapidly during the last 15-s spin-
ning process. The C60/BCP (20/5 nm) ETL layer was continuously de-
posited through thermally evaporation. The 50-nm-thick top Au 
electrode is universally deposited through dc magneto sputtering and 
connected to the common electrode area of the TFT panel. Last, the 
monolithically integrated 4096-pixel 1T-1PD RSA was encapsulated 
with UV curing adhesive and a glass slide to ensure stable operation in 
an ambient environment.

Characterization and measurement
Thickness and optical absorption spectra of the FA0.8Cs0.2Pb0.5Sn0.5I3 
thin films prepared on glass substrates were measured with a Filmet-
rics Profilm 3D Optical Profiler and a Shimadzu UV-Visible 3600 
Spectrophotometer, respectively. X-ray diffraction patterns were re-
corded to investigate the crystallinity of the NBG perovskite on a 
Bruker D8 Advance diffractometer with CuKα radiation from the 
diffraction angles of 5° to 40°. X-ray photoelectron spectroscopic 
and UV photoelectron spectroscopic measurements were performed 
using a Nexsa x-ray photoelectron spectrometer to determine the 
chemical composition, work function, Fermi level, and band posi-
tions of the perovskite film. High-resolution field-emission scanning 
electron microscopic (SEM) observation was conducted by a Tescan 
MAIA3 GMU model 2016 scanning electron microscope to acquire 
the morphology and grain size of the perovskite film. The SEM 
perovskite sample was prepared on an ITO/PEDOT:PSS substrate. 

Table 1. Performance comparison. The comprehensive performance of retinomorphic sensor devices and computation systems.

Photosensitive 
material

Device 
structure

Photo-
responsivity 

(A/W)

On/off 
ratio

Array 
scale

Fill 
factor

Neural net-
work type

Computation 
function

Full-hardware 
implementation

Reference

 SWNT@GDY Phototran-
sistor

0.03 103 9 (3 × 3) ~0.052 Convolu-
tional neural 

network

Image filtering and 
coding/decoding

No (21)

 WSe2﻿ Photodiode 0.06 ~100 9 (3 × 3) ~0.0037 Fully con-
nected neu-
ral network

Coding/decoding 
and classification

Partial (14)

 PdSe2/MoTe2﻿ Phototran-
sistor

0.31 – 64 (8 × 8) – Convolu-
tional neural 

network

Pattern recognition No (18)

 MoTe2/graphene 
/poly(vinylidene 
fluoride-
trifluoroethylene)

Phototran-
sistor

0.83 – 9 (3 × 3) ~0.05 Convolu-
tional neural 

network 

Image filtering and 
motion tracking

Partial (23)

NbS2/MoS2﻿ Phototran-
sistor

1.1 ~30 100 
(10 × 10)

~0.012 – Denoising and 
motion tracking

Partial (26)

 MoS2/pV3D3- PTr Phototran-
sistor

19.8 1.8 31 ~0.27 Fully con-
nected neu-
ral network

Image filtering Partial (16)

 WSe2/h- BN Phototran-
sistor

5.93 × 104 0.75 25 (5 × 5) ~0.35 Single-layer 
perceptron

Coding/decoding 
and motion tracking

Partial (24)

 Perovskite 1T-1PD 56.35 ~200 4096 
(64 × 64)

0.36 ODFE Instantaneous 
sensing, target 

recognition and, 
decision-making

Yes This work
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Cross-sectional scanning transmission electron microscopic (STEM) 
images of the TFT and perovskite photodetector were acquired using 
a Thermo Fisher Scientific Talos F200X microscope, wherein the 
STEM samples were prepared using a GAIA3 focused ion beam 
time-of-flight secondary ion mass spectrometer. Conductive atomic 
force microscopic measurements were performed on a Solver P47-
PRO (NT-MDT Co., Moscow, Russia) microscope to monitor the 
local conducting behavior of the perovskite films.

The J-V curves of the 0.08-cm2 FA0.8Cs0.2Pb0.5Sn0.5I3 photodetec-
tors were acquired by a Keithley 2400 source meter in the dark and 
under AM 1.5G white light illumination (100 mW/cm2). LDR of the 
device was acquired under different input light intensities of the simu-
lated standard solar irradiation attenuated using Thorlabs metallic-
coated neutral density filters. These measurements were done in a 
glove box with N2 atmosphere. The trap state density (tDOS) of the 
perovskite film was evaluated through space charge–limited current 
measurements in an ITO/PEDOT:PSS/perovskite/MoO3/Au configu-
ration. EQE profiles of the device were measured by the Enlitech EQE 
system (Enlitech QE-M110) with a silicon diode as a reference cell. 
Monochromatic light was generated from an Enlitech lamp source 
with a monochromator. Transient photovoltage (TPV) decay was 
measured through connecting the device to a digital storage oscillo-
scope (Keysight, 1 GHz Agilent DSO7104B) to form an open-circuit 
condition and illuminated by a standard solar simulator. An attenu-
ated 337-nm laser pulse (with a frequency of 20 Hz and a pulse width 
of <2.5 ns) was applied as a small perturbation on the device. TPC 
measurement was performed similarly, by connecting the device and 
the oscilloscope to form a short-circuit condition. In both measure-
ments, the impedance of the oscilloscope was set to 50 ohm. The 
tDOS, EQE, TPV, and TPC measurements were performed upon de-
vice encapsulation in an ambient environment. All the above mea-
surements were performed by irradiating the perovskite devices from 
the ITO electrode. Furthermore, photoelectrical measurements of the 
7.85 × 10−5 cm2 perovskite photodetectors and 9 × 10−4 cm2 1T-1PD 
retinomorphic sensors were performed in vacuum on a Keithley 4200 
semiconductor parameter analyzer coupled probe station. Commer-
cially available light emitting diode lamps with wavelengths of 460, 
530, 640, 860, and 940 nm were used as the light sources for these 
devices and illuminated from the Au electrode side. The illuminating 
intensity, duration, and frequency of the incident light were controlled 
by a RXN3505 M DC power supply and a DORI RH-D12 single-chip 
microcontroller. The illumination intensity projected onto the devices 
was calibrated using a Li-250A Light Meter (LI-COR Inc.).
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