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Abstract
Drying is a crucial unit operation within the functional foods and biopharmaceutical industries, acting as a fundamental 
preservation technique and a mechanism to maintain these products' bioactive components and nutritional values. The heat-
sensitive bioactive components, which carry critical quality attributes, necessitate a meticulous selection of drying methods 
and conditions backed by robust research. In this review, we investigate challenges associated with drying these heat-sensitive 
materials and examine the impact of various drying methods. Our thorough research extensively covers ten notable drying 
methods: heat pump drying, freeze-drying, spray drying, vacuum drying, fluidized bed drying, superheated steam drying, 
infrared drying, microwave drying, osmotic drying, vacuum drying, and supercritical fluid drying. Each method is tailored 
to address the requirements of specific functional foods and biopharmaceuticals and provides a comprehensive account of 
each technique's inherent advantages and potential limitations. Further, the review ventures into the exploration of combined 
hybrid drying techniques and smart drying technologies with industry 4.0 tools such as automation, AI, machine learning, 
IoT, and cyber-physical systems. These innovative methods are designed to enhance product performance and elevate the 
quality of the final product in the drying of functional foods and biopharmaceuticals. Through a thorough survey of the 
drying landscape, this review illuminates the intricacies of these operations and underscores their pivotal role in functional 
foods and biopharmaceutical production.
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Introduction

Driven by evolving consumer preferences for convenience, 
health, and satisfaction, the food product market constantly 
pushes the envelope of innovation. One area of noteworthy 
progress has been in functional foods and biopharmaceuti-
cals. These advancements cater to consumers’ inclination 
toward health-promoting foods that offer potential protection 
against diseases [1]. Functional foods are those that provide 
health benefits beyond their basic nutritional value. They 

can be naturally occurring, nutrient- or ingredient-enriched, 
and recognized for their diverse health-promoting properties. 
On the other hand, a nutraceutical is identified as a product 
extracted or purified from food sources and typically mar-
keted in medicinal forms, which are not commonly associ-
ated with traditional food items. The term "nutraceutical" is 
often used synonymously with functional food, highlighting 
their shared health-benefiting characteristics. Despite their 
growing popularity, an acceptable, all-encompassing defini-
tion for these terms remains elusive, contributing to their 
continued interchangeability. The varieties and nuances of 
functional foods are numerous, ranging from foods natu-
rally containing bioactive compounds to those synthesized 
to have an increased level of such compounds. The diversity 
of functional food categories and their examples is further 
elucidated in Table 1.

Simultaneously, the field of biopharmaceuticals has 
seen tremendous strides. Biopharmaceuticals, comprising 
biomolecules such as proteins, nucleic acids, antibodies, 
enzymes, hormones, and vaccines, have been recognized 
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and utilized for their immense therapeutic potential for 
decades [7, 8]. However, the efficient preservation and 
processing of these beneficial products pose a remarkable 
challenge due to their heat-sensitive nature. Both functional 
foods and biopharmaceuticals contain bioactive compo-
nents that, while contributing to their health benefits, are 
highly susceptible to heat, and therefore, careful selection 
of drying methods and conditions is required [9, 10].

Drying, an integral part of the food and biopharmaceuti-
cal industry, serves as an effective preservation technique, 
ensuring a longer and safer shelf-life of the products. The 
drying process, however, must be conducted judiciously to 
minimize damage to the heat-sensitive bioactive components 
[9, 10]. The current review aims to amalgamate the research 
and advancements in drying methods, shedding light on 
their suitability for different biomaterials, their associated 
problems, and strategies to preserve the active ingredients 
in biopharmaceuticals, nutraceuticals, and functional foods.

This review explores the nature of functional foods and 
biopharmaceuticals, addressing the challenges of drying 
these heat-sensitive materials. It will examine various dry-
ing techniques used to preserve diverse, valuable functional 
foods and biopharmaceuticals, elaborating on the advantages 
and disadvantages of each method. The discussion extends 
to hybrid drying technologies that enhance product perfor-
mance and quality (Fig. 1). By providing a comprehensive 
overview of these drying techniques and their applications 
this review is poised to stimulate further research into devel-
oping even more effective preservation methods for these 
invaluable resources by providing a comprehensive overview 
of these drying techniques and their applications.

History of Drying of Sensitive Bioproducts

The world has witnessed the emergence of new technolo-
gies in modern medicine and health care, followed by the 
Second World War. Freeze-dried plasma and antibiotics were 
the two remarkable medical advances made during wartime. 
After the discovery of penicillin by Alexander Fleming in 
1928, a series of curious investigations were conducted to 
stabilize pure penicillin. Later, in 1939, Dr. Howard Florey 
and Ernst B. Chain, working at Oxford, used freeze-drying 
to stabilize penicillin, earning them the Nobel Prize in 1945 
[11, 12]. Later, numerous research studies were done in the 
field of drying, and many were primarily focused on drying 
heat-sensitive products. At the end of the 19th century, spray-
drying technology emerged, and a patent [13] was issued 
for spray-drying liquid eggs. The technique proved suitable 
for drying heat-sensitive biopharmaceutical products as well. 
With the advent of technology and research, different modifi-
cations and designs were studied in various drying methods 
to improve the quality and safety of dried products, retaining 
their functional and nutritional properties.

Major Concerns in Drying of Heat‑Sensitive 
Materials

In the large-scale production of bioactive ingredients for 
nutraceuticals and functional foods, drying is a critical 
operation demanding significant energy. As demonstrated 
in Fig. 2, the removal of moisture in the drying process 
can occur in different ways: simple evaporation as in hot 

Table 1   Different categories of functional foods

Source: [1–6]

Category Definition Examples

Basic foods Food/ food products that naturally contain the
bioactive

• Carrots with beta-carotene
• Oat bran and barley cereals with beta-glucan
• Green vegetables rich in lutein
• Fruits, tea, and citrus containing neutralize free 

radical
Processed foods
with added
bioactive

The bioactive does not exist
naturally in the food and is
added during processing

• Orange juice with added calcium
• Milk with added omega-3 fatty acids
• Salmon and other fish oils rich in omega-3 fatty 

acids
• Cheese, meat products (a good source of Conjugated 

Linoleic Acid (CLA))
• Soy-based foods with Isoflavones: Daidzein Gen-

istein
• Yogurt and other dairy products (essential source of 

Lactobacillus)
Food ingredients synthesized to 

have more bioactive com-
pounds

The level of the bioactive compounds is modified or 
concentrated beyond its natural level by traditional 
breeding, special livestock feeding, or genetic 
engineering

• Yogurt with increased levels of probiotics
• Tomatoes with increased levels of lycopene
• Eggs with increased levels of omega-3 fatty acids
• Foods fortified with indigestible carbohydrates
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Fig.1   Overview of the review 
methodology
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air or vacuum drying, condensation and evaporation as in 
superheated stem drying, atomization and evaporation as 
in spray drying, sublimation as in freeze drying, and pre-
cipitation as in supercritical fluid (SFC) drying [14, 15]. 
Several factors, such as temperature, humidity conditions, 
pressure, and exposure time, can influence the end prod-
uct's quality and functionality. Although drying's primary 
objectives include microbial stability, reducing chemical 
degradation, facilitating storage, and minimizing trans-
portation costs, researchers also aim to develop drying 
strategies to mitigate the loss and deformation of bioactive 
compounds in the dried product [16].

Key indicators of product quality include cellular shrink-
age, reduced rehydration capacity, absorbency, solid mobil-
ity, surface hardening, and the diminution of volatile aro-
matic compounds. The evolution of drying methods has led 
to the categorization of drying technologies into four gen-
erations. The first-generation drying technologies, being the 
most rudimentary, primarily relied on natural elements like 
sun and wind for drying. With the second generation, artifi-
cial heat sources such as ovens and stoves were introduced, 
greatly improving the reliability and control over the drying 
process. The third generation brought about mechanized 
drying techniques, employing hot air ovens, spray drying, 
and drum drying. This generation saw widespread use in 
industrial settings, demonstrating enhanced efficiency and 
control over drying conditions. Currently, we are in the era 
of fourth-generation drying systems, which use advanced 
technologies like microwave, infrared, radiofrequency, 
refractance window, heat pump fluid bed drying, and various 
hybrid systems. The central aim of these fourth-generation 
systems is to prioritize preserving food quality, ensuring the 
retention of essential nutritional components and taste attrib-
utes [17–20]. With each progressive generation, the field of 
drying technology becomes increasingly refined, balancing 
efficiency, energy consumption, and quality retention.

Drying processes are characterized by conductive and/or 
convective heat-transfer mechanisms. The primary aim of 
these processes is to diminish the concentration of residual 
volatile components in process streams rich in nonvola-
tile compounds. These procedures facilitate the transfer of 
energy from the outer surface to the interior of the wet mate-
rial, resulting in the generation of internal heat within the 
solid substance. The different types of functional foods, 
including dairy, meat, grain, and plant-based functional food 
ingredients, are rich in bioactive elements such as vitamins, 
essential fatty acids, minerals, antioxidants, etc. These com-
ponents, however, are highly susceptible to damage from 
high temperatures. The process of dehydrating these bio-
logical molecules may result in substantial chemical, physi-
cal, and nutritional degradation, including but not limited to 
browning reactions, lipid oxidation, colour and aroma deple-
tion, and loss of vitamins and minerals [21].

Certain products are solvent-wet forms that are centri-
fuged before drying to minimize degradation. However, 
intense evaporation during drying can still cause a carry-over 
of solid product particles by the vapour flow. This carry-over 
can cause clogging of the filters and ducts, resulting in dam-
age to the dryer system. Another common issue with biop-
harmaceutical and functional products is the agglomeration 
of particles and their hygroscopic nature, often leading to 
undesired “lumps” in the end product. Moreover, in the case 
of organic solids, in which the drying process is controlled 
by the diffusion of the liquid through the solid, larger lumps 
lead to longer processing times [8].

Moving forward, the discussion shifts to hybrid drying 
systems. These represent an advanced frontier in processing 
heat-sensitive materials. The forthcoming section will delve 
into these technologies, focusing on preserving the inherent 
qualities of functional foods and biopharmaceuticals.

Drying Systems for Heat‑Sensitive 
Biomaterials

As most functional foods, nutraceutical foods, and biophar-
maceutical ingredients are thermos-liable with a tendency 
for structural and functional deformation at extreme drying 
conditions, selecting the appropriate drying system is key. 
These drying methods and strategies are also chosen based 
on the nature of end products, such as food powders, flakes, 
leathers, or sheets from juices, purees, pastes, or suspensions 
[10]. Thermal degradation models for various biomolecules 
and nutrients are essential for understanding and predicting 
the behavior of heat-sensitive biomaterials under various 
temperature conditions [22]. Several numerical models aim 
to describe the kinetics of degradation reactions, assess the 
impact of temperature on biomaterial stability, and optimize 
processing parameters to minimize thermal degradation [23, 
24]. Thermal degradation of the primary macro-nutrients 
such as carbohydrates, proteins, and lipids is sometimes 
essential for converting them to more digestible forms for 
enhancing nutrient intake. On the other hand, changes to 
micronutrients such as vitamins, minerals and other func-
tional micronutrients may significantly affect on their func-
tionality and bioavailability [24]. Table 2 summarizes the 
thermal degradation mechanism and models of macro-nutri-
ents and micro-nutrients. The following section delves into 
an array of drying methods commonly used in the food and 
biopharmaceutical industries, specifically focusing on their 
application in the drying of functional foods and biophar-
maceuticals. These methods are critical for preserving the 
products' quality, nutritional value, and bioactive properties 
while ensuring safety for consumption or use. The methods 
discussed include heat pump drying (HPD), freeze-drying, 
spray drying, vacuum drying, fluidized bed drying (FBD), 
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Table 2   Thermal degradation mechanism and models of macro-nutrients and micro-nutrients

Nutrient type Mechanism and effects of thermal degradation Models Reference

Macro-nutrients Carbohydrate Mechanism
• Temperature < 200 °C -loss of free water 

and hydroxyl groups in physical and poly-
meric changes

• Temperature 220 °C -550 °C -formation of 
dehydrated anhydrides with structural and 
chemical changes

• Temperatures > 550 °C further carboniza-
tion to degrade to smaller molecules CO2, 
H2, CH4, etc.

Effects
o Caramelization of carbohydrates leading 

to the formation of brown color, aroma and 
flavor compounds

o Pyrolysis of carbohydrates, resulting in the 
breakdown of complex carbohydrates

The Arrhenius equation and Reaction rate 
models: k = k0 · e−Ea/RT

Ea is the activation energy (kJ mol −1), k is 
the rate constant, and k0 is the frequency/
pre-exponential factor. R is the universal 
gas constant (8.314·10 −3 kJ mol −1 K −1), 
and T is the absolute temperature (°K)

E.g.: Friedman model, Ozawa model, Kiss-
inger model, Flynn-Wall-Ozawa model, 
Coast-Redfern model

[24–30]

Proteins Mechanism
• Temperature 100 °C -200 °C -spatial struc-

ture changes -thermal aggregation
• Temperature > 200 °C – thermal degrada-

tion
Effects
o Denatured protein molecules undergo 

aggregation or covalent cross-linking, lead-
ing to the formation of insoluble protein 
aggregates

o Pyrolysis of proteins, resulting in the break-
down of peptide bonds

First and second-order Kinetic Models
Arrhenius model and reaction model

[31–33]

Lipids Mechanism
• Thermal oxidation 100 ~ 200 °C
• Polymerization
Effects
o Free radicals formation leading to the 

formation of off-flavors, rancidity, and 
potentially harmful compounds such as 
lipid peroxides

o Hydrolysis of lipids, resulting in the free 
fatty acids

Second-order polynomial model
Arrhenius model

[24, 34–37]

Micro-nutrients Vitamins Mechanism
• Thermal oxidation and degradation
Effects
o Lower bioactivity, irreversible binding to 

other molecules, or degradation to inactive 
compounds

o 300–500 °C, some vitamins (Vitamin A) 
decomposes to form aromatic substances

Vitamin C, D, & β-carotene- first-order reac-
tion kinetic

ln

(

Ct

C
0

)

= −kt

Where, C0 -initial concentration of vitamin, 
Ct – measured concentration of vitamin at 
time t and k temperature- dependent rate 
constant

[24, 38–42]

Minerals Mineral stability and availability are reported 
to have minimal impact by drying process-
ing than other macro- and micronutrients

- [43, 44]

Phenols, Fla-
vonoids and 
Glycosides

Mechanism
• Maillard reaction
Effects
o Some polyphenols and flavonoids may 

increase during drying, but long-term expo-
sure of heat reducing their concentration 
and bioavailability

First-order reaction kinetic [39, 45, 46]
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superheated steam drying, infrared (IR) drying, microwave 
drying, osmotic drying, and supercritical fluid drying. Each 
method will be discussed in detail, highlighting its working 
principle, advantages, limitations, and particular applica-
tions in drying functional foods and biopharmaceuticals.

Heat Pump Drying

The Heat Pump Dryer System (HPDS) represents an innova-
tive and energy-saving approach to drying and dehydration 
processes that harnesses low-grade energy to heat the dry-
ing medium. Heat pump drying technology is used in high-
value foods and biomaterials where low-temperature dry-
ing generally ranges from 45 to 70 °C and well-controlled 
conditions are essential [47]. Its potential as a waste heat 
recovery system and high drying efficiency have boosted 
HPD’s popularity [48, 49]. Heat pumps can be classified 
into different designs, such as gas-engine-driven heat pumps 
[50–53], ground source heat pumps (GSHP), solar heat 
pumps [54–56], photovoltaic/thermal (PV/T) heat pumps 
[57], chemical heat pumps [58], and desiccant heat pumps 
[59, 60].

This technology is particularly suitable for high-value 
products, as it allows for controlled transient drying condi-
tions in terms of temperature, humidity, and air velocity, 
thereby improving product quality attributes and reducing 
drying costs. HPD has proven to be a reliable method for 
biomaterials or food materials, including aquatic food prod-
ucts with a high content of phenolics, chlorophyll, ascorbic 
acid, phycocyanin, and antioxidant activity [48, 61–64]. 
Some of the advantages of HPD include [53, 65]:

•	 Lower energy consumption (about 60%) for each unit of 
water removed, and therefore, higher energy efficiency 
with improved heat recovery

•	 Well-controlled temperature profiles, making it highly 
suitable for heat-sensitive high-value products with better 
quality outcomes

•	 Flexibility in drying conditions as it can generate tem-
peratures typically ranging from -20 to 70 °C (with aux-
iliary heating) and a relative humidity of 15–80% (with 
a humidification system).

Despite these numerous benefits, HPD also has some limi-
tations. The dryers require regular maintenance of compo-
nents (compressor, refrigerant filters, etc.), and using CFCs 
in the refrigerant cycle presents environmental concerns. The 
technique is also not universally suitable for preserving all 
bioactive compounds. For instance, HPD can negatively affect 
ascorbic acid in functional food or biomaterials [62, 66].

Another notable hindrance to the widespread adoption 
of HPD is the constraints in achievable drying temperatures 
and the substantial capital required for setting up the system. 

However, these challenges do not overshadow the key benefits 
of this technology. Its ability to precisely control the operating 
temperature and relative humidity makes it ideal for drying 
functional foods, yielding minimal discoloration and ascorbic 
acid degradation. Despite the limits on temperature range, this 
precision positions HPD as a promising technology for enhanc-
ing the preservation of high-value foods and biomaterials.

Freeze Drying

Freeze drying, also known as lyophilization, is primarily uti-
lized to remove water from sensitive biological molecules. 
This procedure prevents damage, enabling their preservation 
in a storable state that can be reconstituted simply by adding 
water. This method is optimal for preserving biopharmaceuti-
cal/nutraceutical products (Table 2) like antibiotics, bacteria, 
vaccines, diagnostic medications, protein-containing, biotech-
nological products, cells and tissues, and chemicals [67, 68]. 
Furthermore, freeze-drying is apt for preserving and drying 
various high-value functional foods like fruits, dairy products, 
meat proteins, eggs, etc. [69, 70].

Owing to the water being removed in its frozen state rather 
than its liquid state, the material's morphology, solubility, 
and chemical integrity are largely maintained after freeze-
drying [71]. Freeze-drying is a three-phase process: initially, 
the product is frozen, decreasing the temperature to cause 
most of the water to crystallize, leaving only a small fraction 
unfrozen and incorporated within the product. Subsequently, 
the primary drying phase occurs, during which the chamber 
pressure is reduced to enable sublimation while heat is con-
currently supplied to the product. The sublimation process 
is initiated from the material surface, which is driven by the 
vapor pressure gradient above the sublimation surface Pvi and 
the evaporated surface Pa and the rate of sublimation is com-
puted by Eq. 1 [72].

where S is the sublimation rate, kg/(m2·s); Rd is the resist-
ance inside the dry layer, m2/(Pa·s kg); Rs is the resistance 
to mass transfer from the dry surface to the resublimation 
surface, m2/(Pa·s kg); and Ri is the ice sublimation resist-
ance, m2/(Pa·s kg).

And 

Under the general assumption that the resistance of the 
convective mass transfer from the evaporation surface to the 
resublimation surface is negligible, the maximum sublima-
tion rate possible can be computed as:

(1)S =

(

Piv − Pa

)

(

Rd + Rd + Ri

)

(1a)Ri =

√

Ti

Ki
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In primary stage drying, there is a moving interface of 
freeze-dried layer and frozen layer, and there is no distinc-
tive boundary between the first and second phases of freeze-
drying [72]. Equations 3a and 3b give the initial conduction 
heat transfer from the material surface to the sublimation 
interface and the frozen layer to sublimation interface, 
respectively [73].

where Qd and Qi are the heat flux through dried layer and 
frozen layer in (W), respectively; �d and �i are the thermal 
conductivity of dried layer and frozen layer in (W/mK), 
respectively; As , Af  , and Aext are the surface area of the 
sublimation interface, frozen layer, and external surface in 
(m2), respectively; Ts , Text , and Tf  are the temperature of the 
sublimation interface, external surface, and frozen layer in 
(K), respectively.

In the secondary drying phase, the product's temperature 
is increased to remove residual moisture, including bound 
and unfrozen water [74]. The heat transfer rate by conduc-
tion can be defined as the heat flux conducted through the 
frozen layer of the material (Eq. 3b). This technique has 
captivated researchers due to its capability to dry materials 
at lower temperatures, thereby maintaining their original 

(2)Smax =
PivKi
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Ti
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colour, texture, and quality [70, 75]. The application of novel 
freeze-drying technologies such as Thin film freeze-drying 
(TFFD) enabled the production of uniform-sized aerosol 
particles for biopharmaceutical products such as Inhala-
tion-based medication delivery. TFFD has several advan-
tages over traditional freeze-drying processes in biopharma-
ceutical applications. TFFD uses an intermediate freezing 
rate, typically between 102 and 103 k/s, which is faster than 
standard freeze-drying [76]. This intermediate freezing rate 
improves the structural integrity and bioactivity of sensi-
tive biopharmaceutical compounds enabling the production 
of engineered dry powders and facilitating precise dosing. 
Table 3 illustrates the freeze-drying conditions for different 
foods with bioactive components in FBD.

Among the key advantages of freeze-drying for food and 
biomaterial drying are:

•	 Preservation of structural, biochemical, and immunologi-
cal characteristics

•	 Enhanced viability or activity rates, along with improved 
textural attributes, owing to drying at low temperatures

•	 Effective recovery of volatile substances, maintaining 
structural integrity, surface area, and stoichiometric bal-
ances, leading to high product yield, prolonged shelf life, 
and decreased weight for easier storage, transportation, 
and handling [85]

•	 Minimal oxidative reactions due to the absence of oxygen 
during drying, maintaining the quality of the final prod-
uct.

However, the broad implementation of freeze-drying is 
constrained by the significant capital investment required. 
It is a high-energy, high-cost process for both operation 
and maintenance. Despite these limitations, freeze-drying 

Table 3   Freeze drying conditions for different foods with bioactive components

Product Drying condition Drying Pressure (Pa) References

Green banana flours
(Starch and crude fibre)

Temperature:
-47 to -50 °C

700 [77]

Brazilian ginseng root (beta-ecdysone & fructo-oligosac-
charides)

Temperature: -40 °C Atmospheric [78]

Symbiotic drink with lactobacillus casei Temperature: -49 °C 1000 [68]
Seabuckthorn berries (phenolic, carotenoids, fatty acids, 

and vitamin contents)
-20 to -50 °C shelf plate temperature Atmospheric [79, 80]

Blueberries (polyphenols, antioxidant activity, and ascor-
bic acid)

Temperature: -30 °C Atmospheric [81]

Submicron lactate dehydrogenase (LDH) protein particles lyophilization (1 K/min) and spray freeze-
drying (SFD) (106 K/s), temperature –50 to 
-140 oC

Atmospheric [76]

Encapsulated Probiotic bacteria chamber freeze-drier at -80 oC 0.02 mbar [82]
Encapsulated Spirulina Maxima in whey protein Temperature: −50 °C 0.04 mbar [83]
Monoclonal antibodies formulated with lactose/leucine Temperature - -100 °C Atmospheric [84]
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remains an effective method for protein powder production. 
Nevertheless, issues such as ice formation, solute and protein 
concentration affecting protein stability, and potential cold 
denaturation during the freezing process are concerns. To 
address these issues, hybrid techniques such as combined 
spray- and freeze-drying, thin film freeze-drying, etc., have 
been developed, which involve spraying the product into a 
cryogenic medium, followed by the standard primary and 
secondary drying processes of freeze-drying [86–90].

Spray Drying

Spray drying, a popular particle formation and drying 
method, is particularly effective for continuously produc-
ing dry solids. These can be either powder or agglomer-
ated particles derived from a liquid feedstock [91, 92]. 
This technology excels when the final product must meet 
specific quality standards, such as particle size distribu-
tion, residual moisture content, bulk density, and particle 
morphology.

The spray drying process involves rapid heat and mass 
transfer as the liquid feed is atomized into fine droplets and 
introduced into a hot airstream. The water evaporates from 
the droplet during this process, and the resulting dried pow-
der is cooled and collected using cyclone separators. Spray 
drying modelling is one of the most commonly simulated 
models using computational fluid dynamics (CFD) [93]. The 
advanced computational power of CFD was reported to be 
effective in solving very sophisticated models such as the 

continuous phase flow model, droplet agglomeration models, 
particle droplet tracking, and wall depositions models [94]. 
The mechanism of increased surface area for evaporation 
of moisture from the atomized particles is attributed to the 
uniform and faster drying of spray droplets. Consequently, 
a single heat transfer equation can be utilized to model the 
heat flux to the droplet in the heating period and the follow-
ing wet bulb temperature period (Eq. 4) [95].

where Tg and Tp are the drying medium and spray parti-
cle temperature in (K), respectively; Rp is the spray particle 
diameter in m; Cpp is the specific heat capacity of spray parti-
cle in (J/kg⋅K); mp represents spray particle mass; mr is mass 
flow rate and hl is the latent heat of vaporization in (J/kg).

The spray drying technique has widespread application 
in the biopharmaceutical industry [96] and in drying of 
encapsulated food ingredients [97] (Table 3). It is mainly 
used for microencapsulating the active ingredients of many 
biological materials, such as flavours, lipids, essential fatty 
acids, carotenoids, and more. The spray drying technique 
with microencapsulation was also reported to be a potential 
solution for manufacturing food additives for food fortifica-
tion applications such as minerals [98]. The active ingredient 
is homogenized in an emulsion, which forms the microcap-
sules' coating. Subsequently, the active ingredient emulsion 
is spray-dried (Table 4).

(4)
dTp

dt
= h

(

Tg − Tp
)

4�R2
p

Cppmp

−

hlmr

Cppmp

Table 4   Drying conditions for different encapsulated active ingredients in spray drying

Encapsulated ingredient Wall material Air inlet  
temperature (°C)

Air outlet  
temperature (°C)

References

Anhydrous milk fat Whey proteins/lactose/
Maltodextrin

160 80 [99, 100]

Ethyl butyrate ethyl caprylate Maltodextrin/gum arabic 160 80 [101, 102]
Caraway essential oil Maltodextrin/Skim milk powder 175–185 85–95 [103]
Cardamom oleoresin Gum arabic/modified starch/maltodextrin 176–180 115–125 [104, 105]
Bixin Maltodextrin/gum arabic/modified starch 180 130 [106, 107]
d-Limonene Maltodextrin/gum arabic/modified starch 200 100–120 [108, 109]
l-Menthol Gum arabic 180 95–105 [110]
Black pepper oleoresin Gum arabic/whey protein concentrate 176–180 105–115 [111, 112]
Cumin oleoresin Maltodextrin/ gum arabic/modified starch 158–162 115–125 [113]
Arachidonyl l-ascorbate Maltodextrin/gum arabic/soybean polysaccharides 200 100–110 [114]
Fish Oil konjac glucomannan, Soybean protein isolate, potato 

starch
200 80 [115]

Fish oil Sugar beet pectin/glucose syrup 170 70 [116, 117]
Short-chain fatty acid Maltodextrin/gum arabic 180 90 [118, 119]
Hawthorn Berry polyphenols β-cyclodextrin, whey protein isolate, gum arabic 165 [120]
Lycopene Gelatin/sucrose 190 52 [121, 122]
Turmeric oleoresin Maltodextrin/gum arabic 150–200 90 [123]



548	 Food Engineering Reviews (2024) 16:540–566

This prevalent method for drying liquid products has 
numerous advantages, including:

•	 Drying time is comparatively less than other drying 
methods since the heat transfer rate is high

•	 Good reconstitution capacity and product quality
•	 Minimal chances of thermal denaturation as the droplet's 

surface temperature is maintained at the wet-bulb tem-
perature, significantly lower than the drying gas tempera-
ture

•	 Enhanced bioavailability of active ingredients and con-
trolled release in encapsulated products

•	 Improved control over particle size as the feed droplet 
size can be easily regulated.

However, it's essential to note that spray-dried products 
are thermoplastic and hygroscopic. As such, product recov-
ery post-drying should be done swiftly and carefully to avoid 
the product sticking to the dryer walls, which could reduce 
overall efficiency. Moreover, these dried products are highly 
sensitive to moisture and temperature fluctuations during 
storage. Therefore, meticulous efforts must be made to main-
tain precise relative humidity and temperature levels during 
storage [124, 125].

Fluidized Bed Drying

Fluidized bed drying is widely applied in the drying of gran-
ular solids in various industries such as food, ceramics, biop-
harmaceuticals, and for drying phytochemicals like organic 
acids, carbohydrates, reducing sugars, lipids, and proteins 
[126–131]. This method is suitable for drying powders in 
the 50–2000 μm range, thanks to its high heat and mass 
transfer rates. FBD's effectiveness lies in its fluidization pro-
cess, allowing for improved drying rates and reduced drying 
time. The fluidized bed drying process is another multiphase 
drying model, as the fluid and solid phases are in an inter-
acting continuum. The drying process is governed by the 
continuum phase heat transfer from the drying medium into 
the solid phase. Therefore, the general continuum equation 
for heat, mass and momentum transfer for the fluid medium 
is set as the boundary conditions for the solid phase drying 
modelling. The solid phase dying is governed by diffusion 
equations (Eqs. 5a and 5b) for energy and mass transfer, 
respectively [132].
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where, Mm is the moisture content of the material in kg/kg; 
Tm is the temperature of the material in K; Cpm is the specific 
heat capacity of the material; �m is the thermal conductivity 
of the material; �m is the density of the material kg/m3; Rm is 
the effective radius of the material in m; Deff is the effective 
diffusivity coefficient m2/s.

In FBD, the product is subjected to a high flow veloc-
ity greater than its specific gravity. This flow lifts it above 
the periphery of the dryer mesh. It then decelerates and 
falls onto an annular zone between the central core and 
the equipment wall. This flow pattern establishes a unique 
solid–fluid suspension, ensuring uniform and faster drying 
[130]. This drying system has several advantages, such as:

•	 Rapid drying speeds, facilitated by superior contact 
between gas and particles, results in high rates of heat 
and mass transfer

•	 Enhanced thermal efficiency and a reduced flow area in 
comparison to traditional pneumatic dryers

•	 Ease of control of the drying process by controlling the 
fluidization velocity and pressure drop.

However, the method does come with its limitations. It 
involves high power consumption, requiring suspending the 
entire bed in the gas phase, leading to a substantial pressure 
drop. There's an increased chance of attrition and, in some 
instances, granulation or agglomeration. FBD also has low 
flexibility for the type of product that can be dried (e.g., it is 
unsuitable for wet products). Furthermore, frequent issues 
during the drying of phytochemicals include instability 
within the drying bed, accumulation of products, coating on 
non-reactive substances, clumping of particles, and potential 
system failure. Moreover, there can be losses in bioactive 
components due to thermal degradation [130]. Therefore, 
precise control of the drying conditions is necessary for such 
products with bioactive components, as detailed in Table 5.

Superheated Steam Drying

Superheated steam drying is a non-polluting, safe, and 
energy-efficient method [147–149]. Its capacity to dry mate-
rials at temperatures above 100 °C makes it widely appli-
cable in the food industry, as illustrated in Table 5. This 
method offers various benefits, including reduced drying 
time and dryer size, ease of integration into production lines, 
and the ability to recover the energy supplied to the dryer 
in a usable form.

The drying medium in this method is superheated steam, 
which operates in a closed cycle, picking up moisture from 
the wet product in the drying chamber and then condensing 
the evaporated water in a heat exchanger [150, 151]. Since the 
drying occurs in a closed environment, the probability of oxi-
dative reaction is minimal, preserving the quality and aroma 
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of the dried material [15, 93]. Moreover, superheated steam 
drying resembles high-temperature short-time (HTST) treat-
ment in which food gets decontaminated while drying [139, 
140]. Low-pressure superheated steam is highly suitable for 
drying heat-sensitive products like fruits and vegetables, herbs, 
and other bioactive materials. Low-pressure superheated steam 
drying takes place in the pressure range of 5–10 kPa [147], at 
which the steam becomes saturated [152–154]. Compared to 
hot air-based drying, superheated steam drying has a faster 
drying rate, as part of the initial accelerated heat transfer is 
aided by latent heat contributed by the initial condensation 
and the subsequent free water evaporation (Eqs. 6a and 6b) 
followed by the diffusion model (Eqs. 5a and 5b) [15, 155].

where, Tm, Tsat, Tss are the material temperature, satura-
tion temperature and superheated steam temperature in K, 
respectively; hf  is the film condensation heat transfer coef-
ficient; h is the convective heat transfer coefficient; and hl is 
the latent heat of condensation/evaporation.
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Various scholars have utilized superheated steam dry-
ing to investigate its ability to preserve bioactive com-
ponents, primarily antioxidant components, in multiple 
products. These include tea leaves, where studies have 
shown significant preservation of antioxidant properties 
compared to conventional oven drying methods [156], and 
in other products like onions, where low-pressure super-
heated steam drying has demonstrated better retention 
of bioactive components [157]. Another relevant work 
Suvarnakuta et al. [158] examined the effects of drying 
methods on the assay and antioxidant activity of xanthones 
in mangosteen rind. They concluded that hot air drying 
or low-pressure superheated steam drying at 75 °C is the 
most suitable drying method to maximize the quantity and 
quality of mangosteen.

Superheated steam drying has several advantages over 
hot air drying, including [159–162]:

•	 Improved drying efficiency when compared to other dry-
ing techniques, especially with the closed-loop system.

•	 Clean process without any emission of flue gases and 
odor emissions to the environment.

•	 Absence of direct contact between the product and hot, 
oxygen-rich gas, reducing the likelihood of oxidation

•	 Beyond drying, hot steam serves as a sterilizing agent

Table 5   Drying conditions for 
different foods with bioactive 
components in fluidized bed 
drying and superheated steam 
drying

Product and bioactive compound Drying condition (air or superheated steam) References

Phytochemicals Inlet temperature: 60 to 180 °C
Feed flow rate: 3 to 12 g/min

[130]

Green vegetables (broccoli) Inlet temperature: 60 to 80 °C
Particle size: 1-3 cm
Air flow rate: 1-3 m/s

[133]

Pellet coated pharmaceuticals Inlet temperature: 90 °C
Gas flow rate: 50 kg/h

[134]

Soybeans Inlet temperature: 110–140 °C
Air velocity: 2.4–4.1 m/s

[135]

Probiotic bacteria Inlet temperature: 40 °C [136]
Bee pollen Inlet temperature: 40 °C

Air velocity: 6.0 m/s
[137]

Muskmelon seed Inlet temperature: 40–60 °C
Air velocity: 7–11 m/s

[138]

Wheat grains (dietary fibre and polyphenols) Steam temperature: 110 to 180 °C [139, 140]
Fish (omega-3 fatty acid) Steam temperature: 300 °C

Flow rate: 150 kg/h
[141]

Beef (Bioactive antihypertensive peptides) Steam temperature: 130 to 180 °C
Flow rate: 35 -55 kg/h

[142]

Shrimps (carotenoprotein, calcium) Steam temperature: 120 to 180 °C [143]
Soybeans (Lysine content) Steam temperature: < 135 °C

Steam velocity: 3.2 m/s
[144]

Oats (beta-glucan) Steam temperature: 110 to 160 °C
Steam velocity: 0.35 to 1.0 m/s

[145]

Waxy rice (Amylose content, Gamma-amin-
obutyric acid)

Steam temperature: 130–150 °C
Steam velocity: 3.5 m/s

[146]
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•	 Improved control over the drying process by regulating 
the amount of steam introduced into the compressor, aid-
ing in achieving precise product dryness.

The primary concern with superheated steam drying is 
the phenomenon known as initial condensation. This occurs 
when superheated steam comes into contact with a cold solid 
feed at ambient temperature, leading to vapor condensation 
on the material surface. This condensed moisture could 
increase the drying time unless the feed material is preheated 
by other means. A low-pressure superheated steam system is 
required to minimize prolonged drying of heat-sensitive bio-
active compounds [144]. The full energy efficiency advan-
tage of superheated steam drying can only be fully utilized 
in a closed-loop system, where the output steam is diverted 
elsewhere in the processing plant. Such design modifications 
could add to the system’s complexity and cost [157].

Infrared Drying

Infrared drying technology uses IR energy directly trans-
ferred from a heating element to the food, bypassing the 
need to heat the surrounding air. Thus, it helps to save 
energy and drying time. In IR drying, the radiant energy 
penetrates the product and converts it into heat, heating its 
surface and inner layers. This intense heating produces a 
higher heat and mass transfer rate than conventional drying 
methods. Recent research has highlighted this technique's 
capability to preserve bioactive components in foods post-
drying, showing its effectiveness in maintaining the quality 
of various food products by preserving their phytochemi-
cal content and minimizing the loss of antioxidant activity 
[163–167].

The drying mechanism is also governed by the diffusion 
equation as explained in "Fluidized Bed Drying" section, 
and the energy balance is governed by the conduction, con-
vection and radiation energy as given by Eq. 7 [168]. Lee 
et al. [169] studied the effects of far-IR drying on the anti-
oxidant and anticoagulant activities of Ecklonia cava (brown 
seaweed) extracts. Their findings indicated that far-infrared 
radiation releases and activates low molecular weight bio-
active compounds, such as polyphenols, due to its ability to 
heat materials without degrading their surface molecules 
[169, 170]. Senevirathne et al. [171] reported that far-infra-
red radiation drying at 80 °C is an effective and economical 
method for drying citrus press cakes with minimal loss of 
antioxidant activity.

where Tm, Tg, Tr are the material temperature, drying 
medium (hot air) temperature, and radiation temperature in 
K, respectively; Qm is the material energy, � is the material 

(7)𝜌
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(
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𝜕t

)

=Qm−h(Tm−Tg)+𝜁𝜎𝜀(Tr
4
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4
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shape factor; � is the Stefan-Boltzmann constant, W/cm2 
·K4; � is the emissivity of the material; hv is Latent heat of 
vaporization, J/g; hd is the heat of desorption.

IR drying offers several advantages, including:

•	 Reduced drying time due to higher dehydration rates and 
high heat transfer rates are achievable with compact heat-
ers

•	 High energy efficiency
•	 Rapid process control while maintaining the final prod-

uct's quality.

The IR drying systems suffer from disadvantages, espe-
cially for food and biomaterial drying, such as i) brown-
ing reactions resulting in darkening, ii) increased hardness, 
especially with increased IR power, and iii) deterioration of 
qualitative parameters [172–174].

Moreover, IR drying is an effective intermittent irradia-
tion method when combined with convective air drying for 
heat-sensitive materials. An infrared-augmented convective 
dryer can rapidly remove surface moisture during the ini-
tial drying stages, followed by intermittent drying for the 
remainder of the process. This approach ensures a faster ini-
tial drying rate and offers better process control, as the IR 
power source can be easily cut off in the event of excessively 
high temperatures in the chamber, preventing overheating of 
the product. Ratseewo et al. [175] reported that far-infrared 
radiation drying of pigmented rice enhanced the content of 
total phenolic, flavonoid, tocopherols, anthocyanins, gallic 
and ferulic acids, and quercetin compared to traditional hot 
air drying. Overall, as demonstrated in Table 6, the IR dry-
ing method is reported to be appropriate for drying high-
valued heat-sensitive food products.

Microwave Drying

Microwave drying, or microwave-assisted drying, is a rapid 
drying technique extensively used in the food industry. This 
method involves transmitting microwave energy through the 
product, generating heat due to dipolar polarization and ionic 
conduction phenomena. This method is distinguished by its 
volumetric heating, propelled by electromagnetic radiation at 
915 or 2,450 MHz frequencies. The heat is generated by the 
interaction between microwaves and the material, converting 
a portion of the electromagnetic energy into heat throughout 
the volume, primarily heating polar molecules like water in 
the product [185]. The heat transfer mechanism by internal 
heat generation results in a volumetric heating mechanism of 
electromagnetic energy supplied by microwaves. The volu-
metric heat flux is represented by the Eq. 8 [186].
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where, V is the product volume in m3, and P is the Power 
in W, generated by the absorption of Microwave. This micro-
wave power absorbed by water molecules (polar) is con-
verted to heat.

Various studies have explored the potential of micro-
wave drying in producing high-quality end products. The 
utilization of a two-stage microwave power system, which 
adjusts the power levels during the drying of functional food 
products, was proposed by [187, 188]. They proposed that 
adjusting the power levels of microwave energy (1- 2 kW/
kg depending on the initial moisture content) could facili-
tate higher retention of β-carotene in dried carrots. Micro-
wave-assisted vacuum drying has also been recognized as 
an appropriate drying method for thermolabile products, 
including certain foods (e.g., cranberries, carrots, garlic, 
mushrooms) and biopharmaceutical powders and granules 
[189]. Condurso et al. [190] found that microwave drying 
considerably increased the concentration of trisulfides and 
cyclic sulfur compounds, which contribute to the specific 
aroma of garlic and possess potent anticancer and chemo-
protective properties, in Sicilian garlic compared to hot air 
drying. Moreover, Berteli et al. [191] studied the microwave 
vacuum drying process for biopharmaceutical granules and 
found that it is faster than other drying techniques. They 
highlighted several benefits:

•	 Enhanced heat and mass diffusion through biomaterial 
due to its volumetric heating nature

•	 Quicker formation of internal moisture gradients, leading 
to enhanced drying speeds

•	 Accelerated drying rates achieved without raising the 
surface temperatures

•	 Enhanced product quality, making it suitable for heat-
sensitive products (such as carrots, garlic, mushrooms).

However, despite these advantages, further research is 
needed to address specific challenges associated with this 
method. These include problems such as non-uniform prod-
uct heating and uneven distribution of the electromagnetic 
field in a microwave cavity [185] (Table 8).

Osmotic Drying

Osmotic dehydration is a critical process in drying func-
tional foods such as grapes, berries, tomatoes, carrots, and 
mushrooms, as it minimizes the loss of functional compo-
nents [192–196]. The technique operates on the principle of 
osmotic pressure difference caused by the salt and sugar con-
centration gradient between the cells of the food product and 
the surrounding medium. This method minimizes organo-
leptic and nutritional elements in the product, preserving its 
flavour and nutritional value [193, 196, 197].

Singh et al. [198] conducted studies on drying carrots by 
osmotic dehydration using sucrose (50° to 80°Brix) and salt 
solutions (5 to 15%). They reported that the drying occurs 
through a simultaneous process of water loss and solute dif-
fusion, effectively drying the food product without excessive 
loss of nutrients following the Ficks diffusion equation. The 
osmotic pressure of the drying surface rises until it reach 
a critical level as the diffusion proceeds, resulting in cell 
membrane rupture. This facilitates increased cell permeabi-
lization index which is measured by electro-physical meas-
urements [199]. The chemical potential gradient, closely 
associated with the concentration gradient, represents the 
force exerted on each penetrant molecule during osmosis 
and diffusion. Under constant temperature and pressure con-
ditions, the chemical potential (μ) can be described by the 
following equation [200, 201]:

Table 6   Drying of different functional foods with bioactive components in Infrared Radiation drying

Product and bioactive compound Drying condition References

Ecklonia cava (Brown seaweed) (antioxidants) Temperature: 40 to 80 °C
Optimum temperature: 80 °C

[169, 170]

Citrus press-cakes (antioxidants) Temperature: 40 to 80 °C
Optimum temperature: 80 °C

[171, 176]

Saffron (antioxidants and aroma compounds) Temperature: 50 to 80 °C
Optimum condition: 80 °C for 30 s

[177]

Gamguk flower (herb) (Chrysanthemum indicum L.) (phenolic and flavonoid) Temperature: 50 °C [178, 179]
Rice hulls (phenolic compounds) Temperature: 100 °C [180, 181]
Peanut hulls (antioxidants and radical scavenging activity) Temperature: 150 °C for 60 min [182]
Ginkgo biloba seeds
(Flavanoids and anti-oxidants)

Temperature: 80 °C [183]

Garlic (thiosulfinates, phenolic compounds and antioxidants) Temperature: 50 to 80 °C
optimum temperature - < 70 °C

[184]
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where, 
(

�EG

�n

)

 is the partial derivative of the ratio of Gibbs 
free energy and number of moles of the penetrant. The 
chemical potential in a liquid phase as a function of tempera-
ture and water activity is determined by Eq. 10 [202].

where, �◦ is the standard chemical potential, R is the uni-
versal gas constant (J/Kmol), and T and aw are the absolute 
temperature (K) and water activity of the substance in the 
liquid phase, respectively.

García-Segovia et al. [203] investigated the effect of 
osmotic dehydration on Aloe Vera, focusing on retaining 
its immunomodulatory, anti-inflammatory, and antibacterial 
properties. Their research found that optimal results were 
achieved when osmotic drying was conducted at lower tem-
peratures, specifically at 40 °C, demonstrating the poten-
tial for preserving bioactive compounds during the osmotic 
dehydration process.

Overall, the osmotic drying process is particularly effec-
tive for fruits and vegetables. The technique can dewater 
these items without compromising their nutritional and func-
tional elements, preserving their inherent health benefits. 
Moreover, the capability to fine-tune the osmotic solution 
allows for optimization based on the specific properties of 
the food product, making it a versatile and efficient dry-
ing method. However, the technique has limitations, such 
as potential changes in texture and the need to remove the 
osmotic agents from the product after drying, which warrant 
further research and technological improvements. Also, the 
diffusion rate of water differs for different materials depend-
ing on their composition, geometry, and size, and this lim-
its the drying rates, affecting their nutritional quality and 
organoleptic properties [199].

Pressure‑Regulating Drying (Vacuum Drying)

Leveraging the universal gas laws, where temperature and pres-
sure are directly proportional, pressure-regulating drying, com-
monly known as vacuum drying, has gained widespread atten-
tion among researchers. By reducing atmospheric pressure, 
vacuum drying enables water to evaporate at lower tempera-
tures, making it an ideal choice for drying heat-sensitive food 
products like herbs, curry leaves, and carrots. This approach 
allows for achieving the desired dryness level without compro-
mising the product's quality, as it operates in a pressure-regu-
lated environment [204–206]. Typically, the operating pressure 
range varies from a vacuum to close to one atmosphere [151].

Orikasa et al. [207] investigated the effect of vacuum dry-
ing on the quality attributes of kiwi fruit. They reported that 
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vacuum drying helps to improve the quality and nutritional 
value of the dried kiwifruit when compared to hot air drying 
by retaining l-ascorbic acid, a crucial vitamin. In another 
relevant study, Šumić et al. [208] noted a remarkable reten-
tion of functional elements such as phenols, anthocyanins, 
and total solids after vacuum-drying frozen sour cherries.

Moreover, the vacuum drying technique offers consider-
able flexibility and is less costly than freeze drying, mak-
ing it a preferred choice for many custom or hybrid drying 
systems to preserve heat-sensitive biomolecules. Examples 
include vacuum-assisted microwave and vacuum foam dry-
ing [209, 210].

However, while vacuum drying offers several advan-
tages, it's important to consider its potential limitations. 
Some challenges include the need for specialized equip-
ment to maintain a constant vacuum, potential issues with 
oxidation, and slower drying times due to reduced pressure. 
Despite these challenges, the potential for high-quality dried 
products positions vacuum drying as an attractive method 
in the food industry. Continuous research and technological 
improvements can help address these challenges, increasing 
the efficiency and applicability of this method.

Supercritical Fluid Drying

Supercritical fluid drying is a relatively new drying method 
utilized in the food and biopharmaceutical field, especially 
in the drying of proteins [211–215]. This technique lever-
ages the anti-solvent properties of SCFs to induce protein 
precipitation and remove water from formulations. SCFs, 
existing at temperatures and pressures beyond their critical 
points, exhibit distinctive characteristics of both liquid and 
gas states. Their density can exceed that of a liquid under 
increased pressure, yet they maintain the diffusivity and 
viscosity similar to a gas, facilitating effective mass trans-
fer. When subjected to a supercritical jet of cosolvent, it 
dissolves the free water in the material and as penetrates 
deeper to dissolve entrapped water and bound water. The 
convective mass transfer is driven by the concentration gra-
dient of cosolvent between the material surface and the fluid 
medium. This mechanism has it’s disadvantages as there is a 
high risk of removing water-soluble nutrients and bioactive 
compounds along with the water. Hence, solvent pressure, 
flow rate, temperatures, etc., impact the techno-functional 
properties of the dried material.

Supercritical carbon dioxide (CO2) is commonly 
employed in supercritical fluid drying due to its relatively 
low critical temperature of 31.5 °C, significantly lower than 
water's 374.4 °C. Additionally, the Food and Drug Admin-
istration recognizes it as a safe substance for food treatment 
applications. However, research in this drying area is some-
what limited, and potential issues such as residual CO2 in 
the product, which may alter the pH of the end product, need 



553Food Engineering Reviews (2024) 16:540–566	

further investigation [213]. SCF drying is primarily utilized 
for drying foods and biopharmaceuticals where preserv-
ing the structures of the material pores is not critical [216]. 
Some notable patented applications of SFD in drying foods 
and biopharmaceuticals are detailed in Table 7.

While supercritical fluid drying presents a new approach 
for drying functional foods and biopharmaceuticals, several 
challenges persist. These include the need for high pressure, 
potential residual solvents in the product, and substantial 
investment for setup and operation.

In conclusion, "Drying System for Heat-Sensitive Bioma-
terials" section provided a comprehensive review of the sev-
eral drying methods used in drying food and biopharmaceu-
ticals. It is evident that the preservation and retention of the 
nutritional value and bioactive properties of functional foods 
and biopharmaceuticals during drying is an area that needs 
further research. Our thorough research of the published 
work also showcased that each reviewed method offers 
unique advantages and presents certain limitations, influ-
encing its suitability for different applications. Despite the 
challenges associated with each method, ongoing research 
and development efforts are continually seeking to optimize 
these techniques and address their limitations. The following 
section will build on this foundation to explore hybrid drying 
methods that combine the strengths of multiple techniques, 
pointing toward the future of drying technology.

Hybrid Drying Methods: Innovation 
and Opportunities

The effectiveness and appropriateness of the aforementioned 
drying methods depend on the of biomaterial or bioactive 
compound type, the initial state of the material to be dried, 
and the desired final product form and functionality. Table 8 
provides a comprehensive summary of the various drying 
methods, highlighting their strengths and limitations and 

the biomaterials for which each method holds the greatest 
application potential. As reported in Table 8, many of these 
drying techniques have limitations that could be minimized 
by combining the different techniques to improve the overall 
drying process, preserving the product integrity, efficacy, 
and quality of biopharmaceuticals and nutraceuticals while 
enhancing efficiency and cost-effectiveness.

The ongoing quest to retain the bioactive properties of 
foods and biopharmaceuticals during drying has sparked 
numerous innovations, including developing hybrid drying 
methods. By integrating two or more existing techniques, 
these hybrid methods are designed to leverage the strengths 
of each approach, thereby compensating for their limitations.

The industry and researchers increasingly recognize 
emerging hybrid techniques such as microwave-assisted 
vacuum drying, microwave sprouted bed drying, superheated 
steam fluidized bed drying, vacuum double-drum drying, 
spray freeze drying, and infrared-assisted drying in func-
tional foods and biopharmaceuticals due to their superior 
efficiency and performance [8, 249, 250]. The advent of 
particle engineering, encapsulation, and the development 
of novel functional food ingredients in biopharmaceuticals 
have underscored the need for comprehensive research on 
tailored drying strategies and hybrid methods. Table 9 pre-
sents examples of hybrid drying methods and their applica-
tions in various functional foods.

Advancements and Future Directions 
in Drying Technologies

Novel Drying Techniques

The novel, fourth-generation dryers primarily focus on prod-
uct quality, drying efficiency, time and temperature changes. 
This category's major types of dryers are high-vacuum, 
microwave, radio-frequency, and refractive window drying 

Table 7   Applications of SCD in 
Foods and biopharmaceuticals

Compounds SC-Solvents Reference

Protein, peptides, nucleic acids, bacterial cells, anti-
bodies, serums, liposomes, and viruses

Near supercritical CO2 [217–222]

β-Carotene, α-tocoferol and rosmarinic acid Supercritical CO2 [223]
Strawberries (ascorbic acid, anthocyanins) Supercritical CO2 [224]
drug substance, liposome CO2 or other gases

/co-solvent (ethanol)
[225, 226]

Theophylline ethanol/CO2 [227]
Phenolic compounds (gallic acid resveratrol) Supercritical CO2 [228]
Salmon calcitonin Supercritical CO2 [229]
Insulin Supercritical CO2 [230]
Fenofibrate particles Supercritical CO2 + ethanol [231]
Green tea extract Supercritical CO2 [232, 233]
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[265]. Among them, microwave and radio-frequency drying 
have gained comparatively faster commercial applications 
and attention from food processors and researchers over the 
others. Even though the technologies using electromagnetic 
heating, such as radio-frequency and microwave drying, have 
been researched for decades, the commercial application is 
still lagging behind the other types. The commercial-level 
scale-up of radio-frequency drying is limited by the large 
number of parameters that control the drying efficiency, such 
as dielectric, physical, and thermal characteristics of the bio-
material to be dried, voltage of electrode, electrode distance, 
etc. All these factors result in non-uniform heating and une-
ven distribution of temperature [266, 267]. Hence, there is 
ongoing research on novel drying technologies such as halo-
gen drying [268] and refractive window drying [269–271]. 
Refractive window drying has recently been researched for 
its specific indirect heating of the material and its potential 
application for low-temperature and short-time processes to 
dry delicate, heat-sensitive products [272]. This novel dry-
ing technique is based on all three modes of heat transfer 
through conduction, convection, and radiation. It is ideally 
suitable for liquid materials where high moisture material is 
spread over a thin infra-red film; the refractive indices of the 
water and the material become similar, reducing reflection 
at the interface and enhancing the transmissivity of radiant 
energy to the product. The method is reported to maintain 

product temperature between 60–70 °C due to evaporative 
cooling and convective heat transfer to the ambient air above 
the material [271, 272]. Despite the greater research and 
development in novel drying techniques, the commercial 
application of these techniques in the biopharmaceutical and 
nutraceutical food industries is limited by various factors 
such as cost, scalability, infrastructure requirement, techni-
cal expertise, etc.

Integration of Automation and Control Technologies

The landscape of drying technologies for functional foods 
and biopharmaceuticals is transforming substantially by 
integrating intelligent automation and control technolo-
gies. As advancements in artificial intelligence (AI), 
machine learning, the Internet of Things (IoT), and cyber-
physical systems continue, new opportunities for improv-
ing precision, efficiency, and sustainability in drying tech-
nologies are revealed.

Central to this transformation is the role of process 
automation, which involves using advanced software and 
hardware to manage and monitor drying processes. Con-
trol systems equipped with programmable logic control-
lers (PLCs) and supervisory control and data acquisition 
(SCADA) systems offer precise control over process varia-
bles such as temperature, humidity, and air velocity. These 

Table 9   Hybrid drying methods for various functional foods

Functional Food Product Drying method and condition Reference

Viable Probiotics Fluidized bed drying with encapsulation [239]
Egg White Powder Foam mat freeze-drying [251]
Lactobacillus plantarum in aloe vera 

and agave fructans, whey protein
Spray Freeze-Drying [238, 252, 253]

Apple pomace powder, blueberries Microwave-assisted vacuum drying [242, 254]
Biologics and Vaccines Microwave Vacuum Drying [209]
Passionflower (Passiflora alata) Spray and spouted bed [252]
Mexican plum fruit extract Spray Drying and Spout-Fluid Bed Drying Microencapsulation [255]
Wolfberry (Lycium barbarum L.) Far-infrared radiation heating assisted pulsed vacuum drying (temperature of 65 °C, 

vacuum pressure for 15 min, and normal pressure for 2 min)
[256]

Pre-osmodehydrated watermelon CO2 convective drying with Far-Infrared radiation heating assisted pulsed vacuum 
drying

[257]

Potato slices (Phenolic and Flavonoids) Ultrasound-assisted far-infrared radiation drying (ultrasonic resonant frequency of 
28 ± 0.5 kHz and temperature of 50 °C)

[258]

Pear slices (Phenolic and Flavonoids) Contact ultrasound-assisted far-infrared radiation drying (ultrasonic resonant fre-
quency of 28 ± 0.5 kHz and temperature of 30 °C)

[259]

Garlic Slices (allicin content) Ultrasonic-assisted vacuum drying (ultrasonic resonant frequency of 40 kHz and 
temperature of 60 °C

[260]

Acai puree (anthocyanin, phenolic 
compounds, antioxidants)

Infrared-assisted freeze-drying [261]

Polyphenol-enriched maple sugar Vacuum double-drum drying (80 °C and 87.99 kPa) [262]
Mulberry leaves extract Supercritical fluid extraction and spray drying [263]
Chrysanthemum cake (Phenols) Infrared and Hot Air Drying [264]
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systems ensure consistent product quality while minimiz-
ing energy consumption and waste by maintaining optimal 
drying conditions. Furthermore, automation remarkably 
reduces the need for manual supervision, thereby cutting 
labour costs and human error [273, 274].

Implementing AI and machine learning has demon-
strated its efficacy across various sectors, including biop-
harmaceuticals [275–277], drying technologies [278–280], 
and agri-food quality monitoring [281–283]. Alongside 
automation, incorporating AI and machine learning within 
drying technologies has unveiled new avenues for enhanc-
ing process efficiency. Machine learning algorithms can 
analyze historical and real-time data, enabling the predic-
tion of optimal drying conditions and swift responses to 
changes in process variables. Likewise, predictive mod-
els serve to optimize drying schedules, reduce energy 
consumption, and improve product quality. Moreover, 
advanced control systems developed with the help of AI 
and profound learning neural networks can learn, adapt, 
and make autonomous decisions based on complex data 
inputs, thus managing the nonlinear and dynamic nature 
of drying processes [278, 280, 284–286].

The complexities and scale of modern drying processes 
necessitate managing and analyzing large volumes of data, 
a demand met by cloud computing and big data analytics. 
Cloud computing and big data analytics provide scalable 
computational resources and tools for extracting valuable 
insights from complex data sets. Such capabilities support 
advanced AI and machine learning applications, predictive 
modelling, and real-time process optimization [287, 288].

Smart sensors and IoT technologies complement these 
developments, facilitating real-time monitoring and con-
trol of drying processes. Smart sensors gather granular 
data on various process parameters and environmental 
conditions, while IoT ensures interconnectivity among 
these sensors, forming a comprehensive and synchro-
nized data network [285, 287, 289, 290]. This real-time 
data fuels AI and machine learning systems, empowering 
predictive analytics, real-time adjustments, and proac-
tive maintenance. Moreover, IoT integration can extend 
beyond individual drying systems to include entire produc-
tion lines or even multiple manufacturing sites, fostering 
systemic efficiency and coherence.

Advancing this integration further, cyber-physical sys-
tems (CPS) represent the next fusion level between hardware 
and software in drying technologies. These systems tightly 
couple the computational (cyber) elements with the physical 
components of a drying process. Creating a digital twin – a 
real-time virtual replica of the physical process – is possi-
ble with CPS. Such digital twins can simulate and evaluate 
different process conditions and control strategies, yielding 
substantial improvements in system design and operation 
[291–294].

Ultimately, these integrated advancements in automa-
tion, AI, machine learning, IoT, and cyber-physical systems 
drive the evolution of drying technologies for functional 
foods and biopharmaceuticals. The continued exploration 
of these cutting-edge technological advancements will fur-
ther shape and enhance the efficiency and sustainability of 
drying processes.

Trends and Research Directions

Drying technologies for functional foods and biopharma-
ceuticals have made remarkable strides, yet the future has 
potential for further innovation and refinement. A funda-
mental challenge lies in developing drying techniques that 
balance energy efficiency, cost-effectiveness, scalability, and 
preservation of nutritional and bioactive properties. To dis-
cern patterns and trends of advancement and innovations in 
the drying of biopharmaceuticals, nutraceuticals, and func-
tional foods, a network visualization map was generated 
using VOSviewer as shown in Fig. 3. The figure visualizes 
the trends in drying of biopharmaceuticals, nutraceuticals, 
and functional foods over the years classified with keywords/
terms with a technique of full counting generating 5 clus-
ters of keywords. Based on the network visualization map, 
the advancement and innovations landscape in the drying 
of biopharmaceuticals, nutraceuticals, and functional foods 
showed that the earlier years of studies and focus were more 
skewed to the application of spray drying and micro-encap-
sulated spray-drying for biopharmaceuticals, nutraceuticals, 
and functional foods. This trend in technology and research 
has turned more towards hybrid drying systems and the 
application of machine learning, AI and IoT technology for 
improved hybrid drying systems for better drying efficiency 
and techno-functional properties of the final products in 
recent years.

In the meantime, as discussed in "Advancements and 
Future Directions in Drying Technoligies" section, the digi-
tal age allows further integration of advanced technologies 
into these drying methods. Artificial intelligence, machine 
learning, and smart sensor technologies can profoundly 
transform drying processes. These technologies enable 
superior control, permit real-time modifications, and facili-
tate comprehensive optimization of drying processes, effec-
tively ushering in a new era of intelligent and responsive 
drying techniques. These technologies use advanced sen-
sors, data analytics, automation, and connection to improve 
drying efficiency, reduce energy consumption, and maintain 
product quality and safety. Preliminary studies on the IoT-
based control system for smart drying technologies dem-
onstrated the potential to preserve food's functional quali-
ties and nutraceutical values, such as rehydration capacity, 
crude fibre, protein, and vitamin C levels, etc., compared to 
conventional drying method counterparts [295].
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In parallel with technological innovations, the shift 
towards sustainable production systems necessitates a thor-
ough understanding of the environmental impact and sus-
tainability of drying techniques. This includes an evalua-
tion of energy consumption, water usage, waste production, 
and how these techniques align with evolving regulatory 
requirements worldwide. The specific energy consumption 
(SEC) of drying technologies refers to the energy required 
to remove a unit of moisture from a product. Even though 
SEC is considered a good indicator of the energy perfor-
mance of drying methods, it is often not proportional to the 
techno-functionality of this drying technology application 
in biopharmaceuticals and nutraceuticals. Figure 4 com-
pares available data on SEC of different drying methods 
[296]. For instance, freeze-drying (lyophilization) is often 
preferred for biopharmaceuticals and certain nutraceuticals 
despite its relatively high energy consumption compared to 
other drying methods (Fig. 4). It has been reported to have a 
lower specific energy consumption (SEC) than freeze-dry-
ing, although it reduces total phenolic compounds [174]. 
Consequently, a hybrid infrared-freeze drying method has 
been reported effective for bioactive compounds to combine 
the benefits of both techniques, ensuring quality and energy 
efficiency [172, 174, 261]. Therefore, the choice of drying 

technology involves a trade-off between energy efficiency (as 
measured by SEC) and other factors such as product quality, 
safety, and regulatory compliance.

From an economic perspective, detailed analyses are 
needed to evaluate the financial aspects of various methods 
as a function of techno-functionality. These would consider 
elements such as capital and operating costs and return on 
investment, providing insights into the economic feasibility of 
each method. This information would guide industries in mak-
ing informed decisions on adopting these drying techniques.

Lastly, it is crucial to continue exploring the challenges 
and limitations inherent in different drying techniques, the 
potential integration of drying techniques for enhanced qual-
ity and sustainability, and the dedication of research efforts 
to finding potential pathways for digital transformation in 
the automation of these drying systems. This exploration 
will shape the evolution of drying technology, ensuring its 
practical viability and suitability for both functional foods 
and biopharmaceuticals.

Looking ahead, the emphasis should be on developing 
drying techniques that are not only efficient and sustainable 
but also economically viable. These methods must retain 
the quality of end products, ensuring that the therapeutic 
and nutritional benefits remain intact. Achieving harmony 

Fig. 3   Network visualization map on advancement and innovations landscape in drying of biopharmaceuticals, nutraceuticals, and functional 
foods
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among these aspects will be pivotal in shaping the future 
landscape of drying techniques in the food, nutraceutical, 
and biopharmaceutical industries.

Conclusion

The process of drying functional foods and biopharmaceu-
ticals poses unique challenges to industries due to the heat-
sensitive nature of these products. Consequently, select-
ing the appropriate drying strategy and methods requires 
careful consideration, as different products require vary-
ing initial conditions to maintain their bioactive and func-
tional components. Ongoing research focuses on enhanc-
ing existing systems and designing innovative hybrid 
solutions to improve drying outcomes. Functional foods 
and biopharmaceuticals are commonly dried under con-
trolled conditions - either at lower temperatures or higher 
temperatures for brief periods - to safeguard the intrinsic 
functional properties. Critical to this process is a deep 
understanding of particle engineering for optimal rheology 
and microstructure and devising product-specific drying 
strategies. This understanding is fundamental given that 
several chemical instabilities, such as oxidation, aggrega-
tion, chemical bonding, and glycation, are commonplace 
in biomolecules. As such, optimizing various drying 
methods, including freeze-drying, vacuum drying, and 
superheated steam drying techniques, is essential for each 
category of these products, necessitating a comprehensive 
study of their nutritional and functional properties. The 
ongoing evolution of drying techniques is pivotal for the 
future of functional foods and biopharmaceuticals, seek-
ing to balance quality retention, efficiency, and industrial 
feasibility in an ever-changing landscape. This compre-
hensive account of the advantages and limitations of each 
commonly used drying method provides researchers with 

a critical first building block to devise future innovative 
modifications to push the state-of-the-art into its future for 
drying products rich in bioactive volatiles.
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Fig. 4   Comparison of specific 
energy consumption (SEC) for 
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