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Abstract

Radiotherapy aims to achieve a high tumor control probability while minimizing damage to 

normal tissues. Personalizing radiotherapy treatments for individual patients, therefore, depends 

on integrating physical treatment planning with predictive models of tumor control and normal 

tissue complications. Predictive models could be improved using a wide range of rich data sources, 

including tumor and normal tissue genomics, radiomics, and dosiomics. Deep learning will drive 

improvements in classifying normal tissue tolerance, predicting intra-treatment tumor changes, 

tracking accumulated dose distributions, and quantifying the tumor response to radiotherapy based 

on imaging. Mechanistic patient-specific computer simulations (‘digital twins’) could also be used 

to guide adaptive radiotherapy. Overall, we are entering an era where improved modeling methods 

will allow the use of newly available data sources to better guide radiotherapy treatments.

Radiotherapy aims to optimize the ratio between tumor eradication probability and normal 

tissue toxicity probabilities. This requires selecting the best dose distribution and the best 

dose-fractionation prescription. Treatment personalization has been limited to date and 

focuses on mainly physical factors that constrain the possible dose distribution. However, 

genuinely personalizing a course of radiotherapy for any patient ultimately depends on 

integrating the physical aspects of treatment planning with quantitative models of predicted 

disease control and normal tissue complication risk. Tumors vary enormously concerning 

genomic alterations, vascular supply, cell density, transcriptomic profiles, hypoxia, glucose 

consumption, cellular radiation repair capacity, heterogeneity, and many other factors.1 

Invasion into surrounding tissues is also a highly variable process.2–4 In addition, local 

control may depend on multiple host factors, including immune-related variables, such 

as tumor invasive lymphocytes (TILS).5,6 Hence, individual tumors can be said to have 

individual dose-response curves that are steeper than population dose-response curves.7 As 

discussed below, multidimensional information could further define cancer subtypes with 

steeper dose-response characteristics compared to the population average.

Figure 1 shows an example of dose-response curves for tumor control probability (TCP) and 

multiple toxicity endpoints, estimated for an early-stage non-small lung cancer treatment 

plan delivered at MSK.8–10 Most of these curves are relatively shallow, making a truly 
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personalized optimization of radiotherapy for this patient difficult. Nonetheless, there 

are many reasons to believe that predictions willl improve. Cancer imaging relevant to 

radiotherapy response has become multimodal and quantitative and can be deployed during 

a course of RT. In-room imaging technologies and AI autosegmentation tools allow us 

to image and adapt radiotherapy routinely. The ability to sample or image many disease 

characteristics, including how they may change over the course of radiotherapy,11 and 

to integrate all this information, together with biological predictors, into dose-response 

prediction models, promises a new era of clinical and research progress in radiotherapy. The 

challenge is to answer how all this information should be integrated into dose-response and 

physical-response (e.g., tumor regression) predictions. Which data elements or features are 

predictive, nonredundant, and practical to collect and routinely analyze? What is the optimal 

data integration and prediction method: through statistical models such as nomograms, 

comprehensive AI models, or minimal-complexity mechanistic mathematical models?

The need to accelerate efforts to model cancer and cancer treatments mathematically is 

now well-recognized. In a recent (2021) NIH-DOE series of workshops on advancing 

computational approaches for predictive oncology in the clinical and research domains of 

radiation oncology,12 one key question identified was “How can we develop computational 

models to simulate how radiation kills a cell, affects a group of cells, transforms a tumor, 

and impacts a patient— and how does underlying patient-specific heterogeneity affect this 

process at multiple scales?” An important conclusion of the workshop was that patient-

specific computer simulation “…provides a paradigm shift in oncology because it will 

enable data-driven simulation models to be integrated into routine clinical care—a key step 

toward the goals of precision oncology: to uniquely and continuously tailor treatment to 

each patient over time.”

We are entering an era where new or improved informatics tools and analysis methods 

allow us to use many rich data sources within reach to better guide cancer research 

and treatments. Models of individualized disease response and normal tissue toxicity dose-

response curves could be integrated directly into the planning optimization process.13 New 

deep-learning tools in development will be able to track and monitor accumulated doses14–

17 and even predict tumor regression patterns over the course of treatment,18 providing 

an improved basis for decision-making and plan adaptations. In this article, we briefly 

review a selection of information sources and model-building approaches for physically 

and biologically optimized radiotherapy. These include new opportunities based on real-

world data, multidimensional imaging, radiomics and deep learning analyses, tumor and 

normal tissue genomics, monitoring longitudinal tumor changes, normal tissue complication 

modeling, and tumor control modeling. We emphasize the opportunities to advance radiation 

oncology via data science approaches, but this is not to diminish the critical role of 

hypothesis-driven preclinical studies and prospective clinical trials. Some important topics 

of relevance to data science, including blood based assays of tumor cells or circulating tumor 

DNA,19 are only mentioned briefly.
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Missing Real World Data (RWD) in radiation oncology.

Predictive model building typically starts with retrospective institutional datasets. However, 

the lack of well-annotated real-world datasets is a major obstacle to advancement in 

radiation oncology.20 While data on patient characteristics, imaging, pathology, genomics, 

and treatments can theoretically be integrated, this is rarely done in practice and is 

not well-supported by current informatics systems. Our experience is that the reliability 

(i.e., correctness) of data collected during clinical workflows correlates with clinical 

usefulness.21,22 This is yet another incentive to develop more effective clinical workflow 

tools in radiation oncology, a win-win proposition.23

New informatics tools and AI large language models (LLMs) could help create more 

complete “patient data stories” by automatically and reliably extracting information from 

unstructured health record narratives, inferring context, and linking data elements.24–30 This 

could increase RWD’s availability to improve research and clinical care.31,32 Data standards, 

shared ontologies, and increasingly standardized electronic health record systems support 

the feasibility of large-scale RWD datasets.33,34 Patient data stories can be made comparable 

and computable using graphs.35 Graph-based analyses could probe numerous real-world 

issues, such as differences in outcomes reported between different classes of healthcare 

systems36 or possibly the impact of an initially incorrect cancer diagnosis. However, 

fully representing the patient story computationally, even for the application of clinical 

guidelines,37 is an unsolved problem. The scale and presence of errors in clinical datasets 

also represents methodological obstacles. Using a new generation of AI tools to monitor 

narrative dictation in real time to flag ambiguities or to identify missing data elements 

could increase the efficiency and reliability of RWD collection. For clinical data mining, 

an “hypothesis laundering” approach could leverage machine learning on large “dirty” 

RWD datasets to generate a relevant hypothesis, which could then be rigorously tested 

on a smaller, curated “clean” dataset. This would balance the benefits of analyzing large 

datasets with the need for rigorous hypothesis testing. Creating comprehensive, integrated 

RWD datasets and computable patient stories has implications beyond specific medical 

fields and could potentially improve the applicability of medical guidelines and algorithms 

more broadly. Capturing comprehensive clinical data that is structured and computable could 

enable a new era of true learning health systems.20

Connecting radiobiology and genomics.

Tumor and germline genomics have shown significant potential for improving 

patient-specific dose-response predictions. Torres-Roca and colleagues developed the 

Radiosensitivity Index (RSI) based on tumor mRNA expression profiles for 10 key 

genes and demonstrated impressive predictive power for local control and survival 

endpoints across multiple cancer types.38–42 This has been further refined into the 

genomically adjusted radiation dose (GARD) metric by Scott et al.43 These results 

firmly establish the relevance of gene expression patterns in determining clinical radiation 

response. Increasingly comprehensive multi-omic screens of radiosensitivity have recently 

become available.44 Manem and colleagues have recently developed multigene mRNA 

radiosensitivity predictors using multiple preclinical datasets.45,46
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The genomics of normal tissue radiation response (often called radiogenomics) is also a 

promising target for continued progress. Single gene validation studies have generally not 

been positive, probably because effect sizes from individual alleles are typically small,47 

although the XRCC1 single-nucleotide polymorphism (SNP) appears to be important.48 

Efforts to build multigene predictive models by the REQUITE genome-wide association 

studies (GWAS) consortium have shown promising performance for multiple endpoints.49,50 

In addition, several recent studies have shown that machine-learning approaches applied to 

germline GWAS can classify toxicity risk based on multi-SNP models.51–55 In particular, 

the novel preconditioned random forest regression (PRFR) algorithm developed by Jung 

Hun Oh and colleagues54 has successfully predicted risks for multiple postradiotherapy 

endpoints, including late rectal bleeding,54 erectile dysfunction,54 urinary toxicity,56 

hematuria,52 and radiation-induced second breast cancers.57 Post-hoc network analyses of 

the models can identify relevant interacting genes and biological pathways contributing 

to toxicity risk. For normal tissue toxicity, tissue-specific genes and pathways involved 

in maintenance or function are often identified as important, rather than DNA damage 

repair pathways. The REQUITE consortium has also shown that an AI sparse autoencoder 

approach is effective for multi-SNP toxicity prediction.58 These results together indicate the 

potential of machine learning and AI methods applied to GWAS to produce genomic profile 

risk models predictive enough for clinical use. A critical future obstacle will be making 

this area of research beneficial to all patients, not just those in the largest ethnic and racial 

groups.59 The decreasing cost of obtaining patient germline profiles makes this approach 

feasible for clinical implementation. However, continued multi-institutional collaborations 

will be required to produce clinically useful and validated tools.

Quantitative imaging biomarkers can help refine patient-specific dose-

response curves.

Many baseline imaging parameters are relevant to radiotherapy response.60–62 Quantitative 

imaging has shown significant potential in predicting and assessing radiotherapy response 

through various biomarkers and techniques.63 We mention a few salient results: FDG-PET 

imaging predictors often correlate with poor outcomes. For example, higher SUVmax values 

correlate with more aggressive disease and radioresistance in head and neck cancers and 

NSCLC.64 A modeling analysis of published data for oropharyngeal cancer estimated that 

tumors with abovemedian SUVmax values required about 20% higher radiation dose to 

achieve the same local control rates as those patients with below-median values.62 MRI 

apparent diffusion coefficient (ADC) imaging has been shown to correlate with local 

control for multiple tumor sites.65–67 Lower diffusion relates to greater cellular density and 

worse local control.68 Pretreatment hypoxia, imaged, for example, using PET F18-labeled 

misonidazole (F-MISO)69,70 has been correlated with poor outcomes in many tumor sites.71 

Hypoxia has also been associated with an immune-cold microenvironment in colorectal 

tumors.72 It should be emphasized that all these methods of interrogating the tumor are 

closely linked. Figure 2 illustrates this by relating image-based metrics extracted for an 

H&N cancer cohort.73 Closely correlated metrics are directly connected in the graph. It 

may be surprising to see a strong correlation between, for example, MRI-ADC values 

and PET-FDG mean standard uptake values in the lesion. Understanding these correlations 
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could be a key to defining actionable yet practical clinical biomarkers. Quantitative imaging 

measures of residual disease may also be coupled with serum molecular measures of disease 

under development.74,75

Extracting more information from images: radiomics.

Extracting more detailed imaging features, called ‘radiomics,’ provides potentially useful 

inputs for predictive models.76–78 Recent reviews summarize evidence that radiomic models 

can provide histopathological and prognostically relevant information for many disease 

sites and subtypes.79–93 Radiomic features could be tested for inclusion in patient-specific 

dose-response models. For H&N tumors, Mukherjee et al.94 showed that radiomics models 

can predict tumor grade, perineural invasion, lymphovascular invasion, extracapsular spread, 

and HPV status. van Dijk et al.95 recently reported on an internally- and externally-validated 

model that used CT features and machine learning to identify H&N cancer classes of widely 

varying local control and overall survival levels. In some cases, the multi-modal bivariate 

distributions of image features may be important, as shown by Vallières et al.96 in predicting 

metastatic spread from sarcoma tumors using co-located FDG-PET and MRI features. 

Important problems still persist with radiomics methods, however, including understanding 

the inter-relationship of unusual features with more standard prognostic metrics such as 

tumor volume.97

Predicting tumor phenotypes with deep learning.

More recently, artificial intelligence (AI) methods have often been used to further probe 

the predictive value of image characteristics.98,99 Deep learning AI image analysis tools 

essentially start with simple features and build up many combined features of different 

characteristics and scales.100 The learning process emphasizes features meaningful to the 

selected learning task, which may be an outcome endpoint. A recent review concluded that 

deep-learning-based models outperformed radiomic feature modeling in 65% of reported 

comparisons.101 However, low-dimensional radiomic models are more explainable, and 

understanding what key imaging features drive classification in individual cases may be 

critical to clinical adoption and to advancing cancer science.

Computer science advances in algorithms and techniques are being rapidly translated into 

medical imaging applications, and in particular, the impact of deep learning models on 

predicting outcomes based on clinical images is accelerating. For example, the recent 

publication of De Blase et al.102 showed that multiple standard clinical images could 

be combined, in this case including CT and FDG-PET images, as well as gross disease 

planning contours, within deep learning frameworks to predict multiple endpoints, including 

the risk of local failure and distant progression. Ma et al.103 in work from the same group, 

showed that a hybrid CNN vision transformer architecture could be used to develop a robust 

model to predict multiple endpoints, including local failure, distant progression, and overall 

survival. Patients in the low-risk groups (about 40%) for local-regional control and distant 

progression had few events during followup. HPV status was captured and accounted for 

separately from the deep learning predictions in the final prediction.
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Another recent approach to using deep learning was published by Jiang et al.,104 who 

showed that multitask learning for gastric cancers could improve both performance and 

the interpretability of deep learning predictive models. Learned endpoints included the 

response to chemotherapy and immunotherapy and the tumor microenvironment. Significant 

splits in survival curve predictions may reflect distinct biology or radiobiology. It should 

be emphasized that validated image classification signatures could be applied to scans 

for surgical patients and correlated with underlying genomic and pathological signatures 

from surgical specimens to identify cancer subtypes. The correlation of tumor genomics 

with radiological phenotype is often called ‘radiogenomics,’ which is often confused with 

using the same term to mean radiosensitivity genomics. Shui et al. recently reviewed the 

substantial progress in relating specific radiomic features to clinically meaningful genetic 

tumor subtypes.105 Qian et al.106 have recently reviewed efforts to correlate lung cancer 

radiomics with underlying genetic or pathology markers. Deep learning approaches for 

cancer subtype classification and survival prediction using radiological imaging data show 

promise for providing biological insights, even without full integration with genomic 

data.107 For example, a study on lung adenocarcinoma patients used deep learning and 

radiomics networks based on CT imaging to predict histologic subtypes.108 The ability 

to predict outcomes from imaging alone could potentially guide treatment decisions and 

provide prognostic information noninvasively. Even without full data integration, deep 

learning overall survival classifications could be compared with genomic processing 

of tumor surgical specimens (mRNA, methylomics, copy number variations, spatial 

transcriptomics, etc.), potentially extending the ability of imaging to ‘see biology.’ The 

noninvasive nature of imaging could allow for longitudinal monitoring of tumor evolution 

and treatment response in ways not possible with tissue sampling.

While radiomic and deep learning quantitative imaging correlates show promise, challenges 

remain in harmonizing data across different scanners and protocols to reduce bias and 

improve clinical applicability.109 Ongoing research aims to overcome these obstacles and 

enable the widespread use of quantitative imaging in predicting and assessing radiotherapy 

response.

Capturing the longitudinal phenotypes of cancer.

The concept of a temporal disease trajectory in cancer and the potential for improved 

tracking of tumor growth rates represents a significant opportunity in oncology. We use the 

term temporal disease trajectory to refer to the progression of cancer over time, including 

its initiation, growth, response to treatment, and potential recurrence. Understanding 

this temporal and spatial trajectory is likely helpful for several reasons. In particular, 

a better understanding of the disease trajectory can help predict patient outcomes and 

adjust treatment strategies accordingly. The rate of growth can be an indicator of tumor 

aggressiveness, helping to guide treatment intensity. Studying temporal trajectories across 

many patients can reveal new insights into cancer biology, such as subtype and treatment 

efficacy. New streams of temporal information are also critical to leveraging the “digital 

twin” approach to guiding cancer care.110,111
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Monitoring tumor growth rates before, during, and after treatment would be a paradigm-

shifting practice that offers many benefits. This could provide a rapid assessment of whether 

a chosen therapy is effective, allowing real-time adaptations to treatment plans based on 

tumor response and possibly identifying the development of treatment resistance before 

it becomes clinically apparent. Detailed growth rate data can also drive new biological 

investigations, for example, by correlating growth rates with genomic data to identify 

key drivers of tumor progression and exploring how the tumor microenvironment (e.g., 

hypoxia, cellular density) influences growth rates and treatment response. As one example, 

Attalah et al. reported that the growth rate of lung tumors before RT is a strong negative 

predictor of both local control and overall survival.112 They later validated this finding in 

a separate cohort.113 They concluded that “SGR [tumor specific growth rate] can be used 

in conjunction with other well-known predictive factors to formulate a practical predictive 

model to identify subgroups of the patient at higher risk of recurrence after SBRT.”

Changes in imaging parameters during radiotherapy have also been shown to correlate 

with outcomes. For example, for nonsmall cell lung cancer (NSCLC) patients, a more 

substantial reduction in SUVmax observed over the course of radiotherapy correlated with 

better outcomes.114 As discussed further below, the resolution of PET-detected hypoxia early 

in treatment is associated with better outcomes.115 Intratreatment changes in MRI apparent 

diffusion coefficient (ADC) values, related to tumor cell density, also predict outcomes.66,116 

Trada et al. have shown that, in head and neck cancer, a combination of increasing ADC 

and decreasing FDG-PET metabolic tumor volume correlates with treatment success.117 

Intratreatment changes in cfDNA may also help guide adaptations.118 For NSCLC patients 

treated with stereotactic body radiotherapy, Residual FDG-PET at 12 weeks post-RT is 

well-correlated with local failure.119

Changes in imaging features during therapy, often called delta-radiomics, have been 

extracted to predict response. Delta-radiomics features have been shown to be predictive 

in multiple settings, beyond baseline values, for example: H&N local progression 3 months 

post-RT based on cone-beam CTs,120 local control for NSCLC based on weekly CTs,121 

pancreatic cancer pathological response based on per-fraction CTs,122 and NSCLC response 

to immunotherapy post-RT using contrast CTs taken after 2 to 4 treatment cycles.123 

Regarding normal tissue toxicity, in RT for H&N cancer, weekly CT delta-radiomics have 

also been used by van Dijk et al. to improve the early prediction of xerostomia.124 Thor et 

al. showed that early expansion of the esophagus during RT for NSCLC as determined on 

weekly MRIs was correlated with the later development of severe acute esophagitis.125

Longitudinal tracking of metastases.

For patients who develop metastases, quantifying the time course could be impactful. For 

example, Hsu et al.126,127 recently developed a deep learning methodology and software 

system for automatically tracking the appearance and location of brain metastases across 

multiple longitudinal MRI scans. Patients vary widely in terms of temporal and spatial 

patterns in the appearance of brain metastases, e.g., widespread metastases appearing a 

few months after treatment vs. an isolated metastasis appearing years later. Understanding 

how such factors should guide treatment management requires routine quantitative tracking 
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in space and time. Tracking brain metastases’ temporal/spatial appearance and correlating 

with underlying primary and metastatic biology may lead to valuable scientific and clinical 

insights. AI tools for monitoring the volume change of tumors can be more reliable than 

by-eye RECIST size marking.128 New and future AI methods will likely be able to track 

tumor changes in detail, even giving information about how a tumor grows or loses mass and 

the variability of mass density changes across the tumor volume. Patient-specific histograms 

of tumor mass gains or losses per unit time could provide a new window into disease 

prognosis and treatment response.

Data integration challenges.

Standard nomograms typically use regression modeling to combine quantified risk levels 

from multiple data elements. However, the high-dimensional information in genomics, 

radiological imaging, and pathology features must arguably be related. Hence, more 

effective integration of multiple data types requires building topological cross-links that are 

currently primarily unknown. For several reasons, multimodal data integration in oncology 

offers significant potential for improving research, diagnosis, and clinical management. 

Different diagnostic modalities provide complementary insights that are crucial for 

comprehensive treatment management. For example, integrating imaging, histopathology, 

genomics, and clinical data can offer a more complete picture of a patient’s condition 

than any single modality alone.129,130 Combining data from multiple modalities can 

potentially increase the accuracy of prognostic models. Integrated analyses can potentially 

reveal overlaps or shared dependencies between different data types, providing a deeper 

understanding of disease mechanisms and patient outcomes.130 Multimodal data integration 

may be more effective at identifying important cancer subtypes or host interactions 

that are not apparent when examining single data types in isolation.131 In addition to 

graph-based integration methods, AI-driven data fusion strategies include early fusion 

(combining raw data or features at the input level), late fusion (aggregating predictions 

from separate unimodal models), and intermediate fusion (iteratively learning improved 

feature representations under a multimodal context).130 Disparate systems of different 

kinds and scales must be integrated for optimal predictive power. Consequently, multiscale 

modeling coupled with machine learning is also an important data integration and modeling 

methodology.132,133

AI methods can be used to convert one type of data into another type (imperfectly), 

potentially establishing important co-dependencies. For example, a deep learning model 

can use standard pathology slides to estimate molecular marker densities usually only 

available with more advanced immunofluorescence methods.134 The problem of integrating 

high dimensional data of multiple data types into a joint network is an active area of 

investigation. Jaume et al.135 presented a transformer model (named SurvPath) that can 

learn the relationships between whole slide pathology features and bulk transcriptomics. 

Outside of AI, high-dimensional biomedical data is typically represented in a connected 

graph format, with links indicating a strong correlation or known chemical reactions. Some 

networks can be built from known interactions (such as protein interaction networks), 

whereas network topologies for other data types need to be constructed, for example for 

radiomic features. This can be done, for example, by analyzing the correlations of radiomic 
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features derived from relevant image collections.136 A subject sample can be represented as 

a normalized distribution in such a network. Optimal mass transport theory is a powerful 

method for quantifying the closeness of any two samples. Multiple data types can be 

represented as multigraphs with some inter-modality cross-links. Using such methods, 

meaningful comparisons can be made on high-dimensional spaces with a modest number 

of subject samples. As an example of multimodal non-AI data fusion, Pouryahya et al.131 

integrated breast cancer multiomics (mRNA, copy number variations, and methylomics) on 

a graph network representing known gene interactions. Unsupervised optimal mass transport 

distances were used to cluster distinct subtypes, resulting in identifying a biologically 

distinct and particularly lethal subtype.

The heart of radiotherapy is the tissue-registered dose distribution. Hence, developing 

improved Normal Tissue Complication Probability (NTCP) models is crucial for advancing 

radiotherapy treatment planning and optimizing patient outcomes. One key is assembling 

appropriately large multi-institutional datasets. In addition to the QUANTEC papers,137 

which are now more than a decade old, many of the important issues are discussed in 

the comprehensive book edited by Rancati and Fiorino.138 Despite extensive research into 

NTCP models, clinical practice still heavily relies on dose-volume threshold constraints. 

While these constraints are practical, they greatly oversimplify the complex relationship 

between the dose distribution and tissue response. Validated NTCP models have the 

potential to provide more nuanced and relevant information about treatment outcomes 

compared to standard dose-volume constraint guidelines.139,140 As noted above, many 

NTCP risk curves are relatively shallow, meaning that complications risk changes gradually 

with dose. Converting these curves into binary dose-volume constraints can lead to 

overemphasizing specific thresholds and losing important context about the continuous 

nature of risk.137

A significant challenge in developing robust NTCP models is the limited variance in 

dose-distribution data from institutions that adhere to consistent dose-volume constraints. 

This lack of variability in potentially predictive dose-volume metrics makes it difficult 

to derive comprehensive NTCP models that accurately reflect the full range of the 

dose-response relationship. Unsurprisingly, NTCP models that combine multi-institutional 

and multiprotocol data can demonstrate altered tolerance relationships141. There is an 

opportunity to create multi-institutional treatment plan dose-distribution databases, which 

could provide a broader range of dose-distribution data, allowing for the development of 

more robust and generalizable NTCP models.

While privacy issues are an obstacle for multi-institutional databases, advanced techniques 

for mapping dose-distributions to representative patient anatomies offer a potential solution. 

Point-wise correlations with outcomes, called ‘voxel based analysis,’ can provide essential 

insights into toxicity predictors.142–146 These methods could allow institutions to contribute 

anonymized dose-distribution data while maintaining patient privacy.

Most NTCP model building is low-dimensional, using only a few fitting parameters 

to conserve statistical power. One effective method for building low-dimensional and 

interpretable dose volume predictive models is to use ensemble model methods, for 
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example, by combining (‘bagging’) models constructed on bootstrap data replicates. Thor 

et al.147 used this approach to effectively model the overall survival impact of irradiating 

cardiopulmonary structures in the RTOG 0617 clinical trial data.

Spatial NTCP models aim to geometrically represent the 3D dose distribution, allowing 

for a more comprehensive analysis of dose patterns and their impact on normal tissue 

complications.148 Analogous to genomics and radiomics, ‘dosiomics’ is a term used to 

describe the more general extraction and modeling of dose features to predict outcomes.149 

Multiple recent efforts have been made to improve toxicity predictions using deep learning 

based primarily on the dose distribution.150 Men et al.151 used a deep learning approach to 

predict xerostomia following H&N RT based on the dose distributions of RTOG trial 0522. 

Humbert-Vidan et al.152 recently reported that deep learning could beat a random forest 

approach for predicting mandibular osteoradionecrosis. Reber et al.153 recently investigated 

machine learning and deep learning approaches to predicting osteoradionecrosis from 

dose-distribution data. Machine learning on extracted features had superior performance 

compared to deep learning. Other work has demonstrated that deep learning can be useful in 

classifying the risk of xerostomia in head and neck treatment plans151.

A recent exciting trend is the combination of tissue image features, whether extracted by 

radiomics or deep learning, with dose distribution features to predict toxicity risk. El Naqa et 

al.154 recently showed in a pioneering deep learning analysis that liver MRI images could be 

used to classify liver function and feed into a more traditional NTCP model of liver toxicity 

that accounts for dose-volume characteristics. Bin et al.155 used lung ventilation images in 

addition to the dose distributions as inputs to deep learning to improve the prediction of 

post-RT pneumonitis. An exciting aspect of their study was that they weighted the dose 

distribution by estimated ventilation values to create ‘functional dose’ maps. Zhang et al.156 

recently constructed a nomogram that combined a lung radiomics score with a dosiomics 

score and other clinical variables to predict pneumonitis.

Predicting the tumor dose-response curve.

Tumor Control Probability (TCP) modeling has evolved significantly to incorporate more 

realistic and mechanistic factors that impact tumor response to radiation therapy. We do 

not consider radiopharmaceutical therapy here, which has a set of distinct issues.157 As 

noted above, many TCP curves are relatively shallow (changes of 1–2% absolute increase 

in TCP per 1% increase in dose are typical.158) This shallowness is presumably due to 

a mix of previously unquantified factors that impact response. The mathematical goal 

of TCP modeling is to produce models that agree with clinical data and have steep 

dose-response curves. The scientific goal is to create models with a valid mechanistic 

basis so they can be extrapolated beyond the current data, even if just hypothetically. 

Here, we summarize some key factors in TCP modeling. The cellular access to oxygen 

or lack thereof (hypoxia) is nonuniform on both the microscale and the macroscale in 

human tumors.159,160 Hypoxia is known to correlate with poor clinical outcomes, as noted 

above.161 Incorporating hypoxia into TCP modeling is critical because hypoxic tumor cells 

are more radioresistant162,163 and also because hypoxia negatively affects other important 

factors, particularly reducing cellular proliferation.164,165 Not all tumor cells are stem cells 
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capable of regrowing a tumor. Variation in stem cell fraction is also important and likely 

impacts the dose needed for control, similar to what is shown in preclinical studies.166 

This is not currently accounted for in human TCP models,166 although spatial variability 

of tumor stem cell density could be taken into account.167,168 Tumors are also known to 

be heterogenous in clonal lineage. Cellular radiosensitivity measured using in vitro cell 

survival experiments based on repeat biopsy samples has demonstrated very high variability 

(coefficients of variation of 30–40% being typical169). Early bioeffect models sought to 

compare values of “biologically equivalent dose” (BED), rather than predicting the resulting 

TCP directly. This was done primarily using the Poisson distribution, based on in vitro 

experiments, to calculate the probability of zero clonogens surviving after radiotherapy. 

Models further incorporated the linear-quadratic (LQ) cell survival model, which accounts 

for both single-particle-track DNA lethal damage (linear in fraction dose) and multiple-track 

lethal interactions (quadratic in fraction dose). Cellular proliferation itself is also a vital 

resistance mechanism, as mentioned above. Proliferation can increase during a course of RT 

due to cell death and decreased resource competition, mimicking a reversal of Gompertzian 

(i.e., slowing) growth curves. This can reduce overall treatment efficacy, especially for 

longer treatment courses.170 For this reason, a time factor has often been added to the 

LQ framework to reflect a reduction in local control for treatments of increasing overall 

treatment time past an assumed ‘kickoff time.’171 This applies for tumors that proliferate 

significantly during conventionally fractionated radiotherapy (i.e., most tumors, excluding 

very indolent tumors such as prostate).171 The LQ model of tumor control has been used to 

analyze many radiotherapy datasets,172–174 and has been extended, for example, to account 

for the kinetics of repair processes.175

Going beyond these simple bioeffect equations, some models attempt a more mechanistic 

approach. One critical test of any mechanistic TCP model is whether it can recapitulate 

clinical dose-response relationships with reasonable parameters. Unfortunately, validating 

biological mechanisms is almost always a challenge due to a lack of adequate test data. 

As one potential approach to capturing the dynamic response to radiotherapy, Jeong et 

al. have published a flexible tumor radiobiological simulation model based on established 

radiobiological principles as well as the novel concept of an “energy budget,” representing 

the fact that, in a tumor, the competition for locally available oxygen invariably limits the 

fraction of cells that can progress through the cell cycle.176,177 The model recapitulates 

many critical aspects of known tumor biology and radiobiology, including doses required 

to achieve local control, tumor volume regression during RT, high cell loss factors, volume 

doubling times much longer than cell cycle times, and the increase in the dose required 

as overall treatment time increases past 3–4 weeks. The usefulness of the model was 

demonstrated in a fit to all published RT protocol results for early-stage non-small cell 

lung cancer178 (see Figure 3). In a further test, the same model could fit all the early-stage 

NSCLC radiotherapy outcome data from the Japanese carbon ion beam therapy results.179 

As shown by Crispin-Ortuzar, the model is also consistent with previously reported image-

based predictors of radiotherapy response.180 It is an open question whether this level of 

tumor dynamics is always needed as opposed to approaches with simplified dynamics.181 

One interesting prediction of this mechanistic model is that radiotherapy may be more 
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effective if delivered in a ‘primer shot’ approach, by giving a single fraction of 5–8 Gy 

followed by a break, to allow tumor reoxygenation, of 10 days to 2 weeks.182

Shrinkage of NSCLC tumors during RT has been positively correlated with improved 

outcomes.183,184 Future developments of this or other TCP models could incorporate 

patient-specific imaging (e.g., FDG-PET, FMISO-PET hypoxia imaging, DWI-MRI) at 

baseline and changes measured during treatment using cone-beam CT (CBCT) or other 

modalities.185–187 Compartment modeling is just one possible approach.

A different approach to tumor response modeling emphasizes using partial differential 

equations to model the physical image of a tumor including the invasive edge.2,186,188–190 

This can be linked with image-based machine learning as well. This approach has been used 

to predict tumor response to radiotherapy, for example in brain and breast tumors.191 An 

advantage of this approach is that it leverages the behavior of the tumor shape for learning.

TCP models could incorporate any number of features representing different characteristics 

of the problem.188,192,193 The impact of an immune contribution to dose-response 

may be considerable. For example, recurrence risk following post-op radiotherapy in 

the SweBCG91RT trial was reduced when tumor samples contained tumor-infiltrating 

lymphocytes (TILs).194 Immune ‘hot’ tumors could be identifiable partly through radiomics 

or deep learning models.195,196 The best modeling approach depends on the clinical use 

case, the disease site, histology, and the treatment modality. Preclinical studies are also an 

underused potential source of modeling data.

Local control is undoubtedly also a function of dose to subclinical disease, which has been 

shown to have an exceptionally shallow dose response.197 Unexplained failures to control 

early-stage NSCLC tumors, even at high doses, may be related to hard-to-image tumor 

cells in the peri-tumoral region, as indicated by the results of Davey’s model.198,199 In 

prostate cancer, the impact of daily kV image-guidance on outcomes has been shown to 

be related to the predicted likelihood of extracapsular extension.200 Bortfeld and colleagues 

have recently been studying how the nonimageable component of disease could be modeled 

and probabilistically estimated.201,202 Unkelbach and colleagues have been using models to 

estimate the probabilistic likelihood of lymph node spread in head and neck patients.203

The impact on TCP of low-dose regions inside or, more commonly, on the edge of a tumor 

is relatively unknown, although calculations can be made under assumptions.197 The ICRU 

paradigm (updated in ICRU 83204) rather dogmatically assumes that the proper guidance in 

RT is not to allow any drop in the prescription dose near the edge of a tumor. In the presence 

of localization uncertainty, subclinical disease uncertainty, and unavoidable dose-rolloff, this 

‘paranoid target volume’ approach implies that large margins of normal tissue must also be 

irradiated to high doses. This already seems at odds with the recognition that RT is a balance 

between disease eradication and normal tissue toxicity.205,206 Fortunately, the stereotactic 

prescription approach that allows for more target volume dose heterogeneity and is more 

comfortable with dose gradients at the edge of a tumor seems to have superseded or at least 

supplemented the ICRU 83 guidance. Continuing improvements in pretreatment and on-

table imaging also support this transition. The ICRU approach does not optimally manage 
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how localization uncertainties are handled.207 A critical knowledge gap could be filled 

by inter-institutional analyses of the impact of target dose heterogeneity (e.g., GTV and 

PTV dose heterogeneity) on TCP. We hope these brief comments clarify that personalized 

TCP models could become much more refined and comprehensive while retaining scientific 

interpretability. Nonetheless, deep learning approaches directly on target dose distributions 

may lead to improvements in predictive power. For example, Dudas et al.208 recently used 

deep learning to estimate the risk of local failure for NSCLC treatments. Analysis showed 

that the dose periphery was the most predictive region (see Fig. 4). This may be related to 

peri-tumoral sub-clinical extension, as predicted by Davey’s model, discussed above.

In summary, there is an urgent need to identify tumor subtypes and other radio-response 

factors to provide steeper dose-response relationships to guide treatment planning and 

personalized prescriptions. Validated predictive models, although difficult to build and 

validate, could utilize widely available data sources to have a positive impact on the 

treatment process of millions of cancer patients worldwide. Advances in radiation oncology 

modeling could connect radiobiology with current themes in cancer biology, support the 

rational use of multimodality imaging and integration with genomics, and give clinicians 

much more precise and personalized insights into prescription and planning tradeoffs. 

Predicting and monitoring early tumor response to treatment, informed by digital twin 

tumor simulations, could guide adaptive tumor prescription changes. How much effort will 

be required to perform these studies, and what is the potential payoff? Figure 5 shows 

our speculative schematic summarizing many of the topics reviewed here, ordered by the 

estimated level of resources required along the x-axis and the estimated upper ceiling of 

potential significance along the y-axis. We invite you to mark up the image based on 

your own estimations of what efforts would be most impactful. While many studies may 

be pursued by single institutions, multi-institutional studies, and even cooperative group 

studies will typically be required for themes to reach their full translational significance. 

Many under-developed aspects of radiation oncology data science could drive simultaneous 

improvements in disease control, toxicity avoidance, and efficient patient management.
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Figure 1. 
Lung cancer radiotherapy patients have individualized dose-response curves. Dose-response 

predictions, for tumor eradication and normal tissue risks, calculated for an early-stage 

nonsmall lung cancer treatment plan. Left: A planning CT scan overlaid with a dose 

colorwash. Right: the left-most curve shows the probability of local control, which is high 

for this dose and fractionation prescription (93%). The risk of toxicities (pneumonitis, 

esophagitis, bronchial stenosis) are shown. All curves intersect a 1.0 scale factor at the 

prescription fraction size. Data science could drive the development of predictive models 

that account for underlying biology and radiobiology, providing an improved basis for 

treatment decisions [reprinted with permission from10]).
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Figure 2. 
A relatedness graph of quantitative metrics derived from images for H&N cancer patients 

(N=23), as reported by Paudyal et al.73 Image types include FDG-PET/CT (SUL [lean 

body mass corrected SUV], FMSIO-PET/CT (K1 [perfusion], k3 [hypoxia], TBR [hypoxia 

tumor blood ratio], and DV [distribution volume]), DW-MRI (ADC [apparent diffusion 

coefficient]), IVIM (D [true diffusion coefficient], D* [pseudo diffusion coefficient,] and f 

[perfusion fraction]), and FXR DCE-MRI (Ktrans [volume transfer constant], ve [volume 

fraction of extravascular and extracellular space], and τi [intracellular water mean lifetime]). 

A spin-glass model was used to derive closely-related communities, indicated by node color. 

Edge color refers to Spearman’s rank correlation coefficient, ρ. (Used with permission).
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Figure 3. 
The Jeong model fit to all analyzable Stage I (localized) NSCLC cohorts as reported in 

Jeong et al.178 Left: 4-parameter model fit to 38 cohorts (published by 2010 and before, plus 

two internal datasets); Right: Validation test of fitted model to separate cohorts (published 

2009–2014.) This mechanistic model is the first model of any kind shown to well-fit RT 

response across all fractionation regimes, from single fraction delivery to 2 Gy per weekday. 

The model identifies the point of dose intensity beyond which response flattens, regardless 

of fractionation (reprinted with permission.)
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Figure 4. 
In a deep learning model published by Dudas et al.208 to predict the likelihood of local 

failure, attention analysis shows that the dose near the target volume edge was critical. 

(reprinted with permission.)
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Figure 5. 
To stimulate thinking, we estimate the payoff versus resources required for developing and 

implementing modeling approaches we have discussed. We invite the reader to ‘correct’ the 

diagram.
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