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Recent progress in deep learning (DL) is producing a new generation of tools across numerous clinical
applications.Within the analysis of brain tumors inmagnetic resonance imaging, DL finds applications
in tumor segmentation, quantification, and classification. It facilitates objective and reproducible
measurements crucial for diagnosis, treatment planning, and disease monitoring. Furthermore, it
holds the potential to pave the way for personalized medicine through the prediction of tumor type,
grade, genetic mutations, and patient survival outcomes. In this review, we explore the transformative
potential of DL for brain tumor care and discuss existing applications, limitations, and future directions
and opportunities.

Deep learning (DL), a form of artificial intelligence (AI), is rapidly trans-
forming various fields, demonstrating remarkable success in tackling
complex challenges, such as image recognition and natural language pro-
cessing. These capabilities of DL have also found applications within
medicine, with DLmodels having demonstrated effectiveness on tasks such
as medical text summarization, prediction of future lung cancer risk, pre-
diction of SARS-CoV-2 infectivity and variant evolution, identification of
new antibiotics, and assessment of mammography for breast cancer1–5. In
this review, we specifically focus on the applications of DL to brain tumor
image analysis where there have been several important advances as well.

Brain tumors are the most common solid tumors in children and
adolescents. Annually, more than 88,000 adults and 5500 children are
diagnosed with brain tumors in the United States alone. These tumors have
veryhighmortality,with a 5-year relative survival rate followingdiagnosis of
a malignant brain or other CNS tumor of only 35.6% in adults6.

According to the 5th edition of theWHO classification, tumors of the
central nervous system (CNS) are classified into different tumor grades
based on histological, immunohistochemical, and molecular features7.
Diffuse gliomas (which include Astrocytomas, Oligodendrogliomas, and
Ependymomas) are the most common type of primary malignant CNS
tumor in adults,making up about 25%of all such cases6. Themost common
primary non-malignant brain tumors in adults are meningiomas. And the
overall most common type of brain tumor is brainmetastases, as about 20%
of all patientswith cancerwill develop brainmetastases during the course of
their treatment8.

Within neuro-oncology, the need for DL-powered solutions is directly
related to the complexities associated with brain tumors. Brain tumors
exhibit substantial heterogeneity in their presentation and require diverse

therapeutic approaches. Analyzing these tumors accurately and efficiently is
crucial for optimizingpatient care.DLcanplay apivotal role in this regard in
one of two broad capacities. The first set of applications of DLmodels is on
tasks that are very time-consuming for human experts within the existing
clinical workflow, such as the creation of 3D segmentationmasks for tumor
quantification. However, beyond this, DL models have been shown to be
capable of extracting insights beyond human capabilities, such as the pre-
diction of important genomic biomarkers based on MRI alone9. As these
capacities mature and develop, DL may help shape the workflows of
tomorrow.

This review explores the transformative impact of DL on brain tumor
analysis, focusing on its applications in two broad areas: segmentation and
classification. We discuss how DL models are enabling automated and
accurate tumor segmentation from medical images, facilitating objective
and reproducible measurements crucial for diagnosis, treatment planning,
and disease monitoring.

We also provide an outlook on current innovations for medical DL
models. Namely, we discuss the growing role of foundation models, which
are models trained on massive datasets of diverse data types, in the field of
medicine.We anticipate that thesemodels will greatly enhance the accuracy
ofDL-based brain tumor analysis and enable researchers to extend it toward
tumor types for which analysis was previously unfeasible due to the limited
amount of training data available.

Deep learning methods for MRI analysis
Asageneral term,AI refers to thedevelopment of computer systems capable
of performing tasks that typically require human intelligence, such as visual
perception, decision-making, and learning.
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The first generation of AI applications for MRI data included radio-
mics-based approaches. Here, predefined sets of features—quantifying
image characteristics such as intensity, contrast, shape or texture—were
extracted from the image and then passed into a classical machine learning
model, such as random forests or support vector machines, to make
predictions10,11. Their application to brain tumors has been extensively
covered by previous reviews12. By contrast, DL models use artificial neural
networks to learn complex patterns and relationships directly from the data,
during a process called training. During training, a model iteratively
improves by adjusting the internal model parameters to minimize the dif-
ference between its predictions and the known ground-truth labels. By
analyzing vast amounts of information, these deep learning models can
identify subtle features and make predictions that may not be readily
apparent to human observers. Since features in DL models are optimized
directly for a particular task, they are often able to make better predictions
than the previous generations of radiomics-based approaches.

The majority of modern deep learning-based architectures for image
analysis are based on convolutional neural networks (CNN)13. The core
component of a convolutional neural network is a convolutional layer,
whichmoves a learnedfilter across the image in a “sliding-window” fashion.
This approach uses fewer parameters compared to a simple “fully-con-
nected” neural network and is able to recognize the learned patterns
regardless of their location in the image. Each convolutional layer in the
network allows for increasing abstraction and identification of more
complex features. Within the scope of image analysis, tasks can be broadly
split into two groups: image segmentation (i.e. delineating salient/relevant
regions on the image) and image classification (i.e. categorizing the image
from a set of pre-determined classes). As illustrated in Figure 1, these deep
learning models have shown state-of-the-art performance across a wide

range of neuro-oncology tasks, including but not limited to tumor seg-
mentation, prediction of mutation status for gliomas, and prediction of
treatment response14–16.

Since brain MRIs are volumetric images, it is natural to employ
convolutions along all three dimensions, giving rise to 3D CNNs17. While
this is themore commonapproach for analyzingbrainMRI and allows the
model to fully consider volumetric informationwhenmaking predictions,
there are some drawbacks compared to the 2D CNNs that are more
common inother applicationdomains. Firstly, 3Dnetworks typically have
more parameters, leading to higher computational demands and making
them more challenging to optimize especially on small datasets. Addi-
tionally, powerful 2Dnetworks pre-trained on large datasets of 2D images
are readily available to use as the basis of new models via transfer
learning18, but a limited choice of 3D architectures is available in this way.
Finally, since thick sliceMRI data is highly anisotropic, it is not necessarily
optimal to treat all three spatial dimensions equivalentlywithin themodel.
Thus some authors use 2D CNNs applied to each 3D slice of the MRI,
potentially with immediately adjacent slices included as additional
channels in a so-called “2.5D” architecture. Mixed results suggest that the
optimal choice of architecture may be dependent on application and
training dataset19–21.

Segmentation and quantification
Perhaps the most well-studied application of DL within neuro-oncology is
that of tumor segmentation. Segmentation is the process of delineating
tumor regions (or sub-regions) within an image and is a key step in tumor
quantification, response assessment, and treatment planning, as well as a
preliminary step for further analyses of different tumor regions (see the
section “Classification”).

Fig. 1 | Examples of deep-learning-based work-
flows forMRI segmentation and classification. For
the segmentation task, the CNN receives an input
image, often consisting of multiple sequences, and
outputs a segmentation map according to the given
task, such as segmenting a tumor. For the classifi-
cation task, the model receives the input image and
outputs a classification into two or more classes.
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Public datasets and benchmarks
Theproliferationofworkon segmentationhasbeenmadepossible thanks to
the wide availability of relevant publicly accessible data. Publicly available
datasets allow researchers around the world to train DL models on multi-
institutional, high-quality datasets and thus serve as a benchmark for
comparing models. The largest public datasets of brain tumor MRI images
are listed in Tables 1–3.

Some of the most widely used public datasets come from the Brain
Tumor Segmentation (BraTS) challenge, hosted annually by the Medical
Image Computing and Computer-Assisted Intervention (MICCAI)
Society since 2012. Initially focused solely on the segmentation of gliomas,
BraTS has expanded over the years to include other CNS tumors. In 2022,
BraTS introduced a pediatric dataset and a dataset of adult-type diffuse
glioma of underrepresented patients (BraTS-Africa)22,23, and in 2023,
challenges for the segmentation of brain metastases andmeningiomas22,24

were added. Due to the scope, size, and accessibility of these datasets,
BraTS has become an important benchmark for state-of-the-art brain
tumor segmentation.

One challenge is that public datasets can greatly vary in quality and
content. For example, consider datasets available for brain metastases seg-
mentation projects.While some provide just a single imaging sequence (e.g.
MOLAB25), others may provide multiple sequences (e.g. UCSF-BMSR26).
Somemay provide the raw images (e.g. Brain-TR-GammaKnife27), whereas
others may provide only pre-processed versions (e.g. NYUMets28). Differ-
ences in annotationsmay also exist, with some datasets providing binarized
(tumor vs. no tumor) labels (e.g. BrainMetShare29) and others providing
multi-class (contrast-enhancing tumor, necrosis, and peritumoral edema)
labels (e.g. BraTS-METS30). As such, every dataset is composed of images
and annotations tailored towards a specific endpoint, which can create non-
trivial problems for combining datasets from different sources to solve a
single task such as segmentation.

Segmentation approaches and architectures
As the BraTS challenge is an important benchmark for the performance of
segmentation models, examining the winning architectures of the past

challenges provides an overview of the evolution of medical image seg-
mentation architectures.

One fundamental segmentation model is the U-Net, which was first
introduced by Ronneberger et al. in 201531 and has been the basis of the
winning segmentation models in BraTS since then as well as becoming
ubiquitous in other medical image segmentation tasks such as segmenting
intracranial metastases32 andmany other biological structures33. The U-Net
is composed of two main structures: the contracting path gradually
downsamples the image and extracts features at lower spatial resolution and
a higher semantic level, and then the expanding path re-combines these
features to create the segmentationmaskby gradually upsampling the image
again to the input resolution. Skip connections between layers in the con-
tracting path and the expanding path are used to preserve detailed infor-
mation lost during downsampling, ensuring fine detail in the output
segmentation mask.

Variousmodifications to the standardU-Nethave since beenproposed
to improve performance. A crucial early improvementwas the introduction
of the Dice loss by Milletari et al.17. The Dice loss function, based on the
similar Dice similarity coefficient (DSC) measures the overlap between the
predicted foreground region and the ground truth foreground region
regardless of the size of the foreground region. As a result, it is suitable for
segmentation problems in which there exists a large class imbalance
between the foreground and background classes, and/or in which fore-
ground sizes vary considerably between different samples in the dataset,
unlike the common cross-entropy loss. In 2018, Myronenko placed first in
the BraTS segmentation challenge by utilizing an asymmetrical U-Net with
residual blocks, which contain shortcuts within the network that help pre-
serve information and improve learning during training34. In 2019, the
winning architecture was a cascade of two similar U-Nets, where the
additional second model was used to refine the coarse segmentation maps
generated from the first35. In 2020, Isensee et al. proposed No-New-Net
(nnU-Net), which built a framework around a standard U-Net architecture
and automated most of the deep learning pipeline including image pre-
processing, model adaptation, hyperparameter tuning, and an ensembling
strategy, leading to improved performance and consistency33. Ensembling is

Table 1 | Overview of public datasets for MRI studies of brain tumors

Public Dataset Data Publisher No. of Cases/Patients Tumor Type

BraTS 2021a93 RSNA-ASNR-MICCAI 2000 patients Adult diffuse glioma

BraTS-Africa 202323 MICCAI-CAMERA- Lacuna Fund 95 cases Adult diffuse glioma

BraTS-PEDs 202322 CBTN-CONNECT- DIPGR-ASNR-MICCAI 228 patients Pediatric high-grade glioma

BraTS Meningioma 202424 RSNA-ASNR-MICCAI 1650 cases Meningioma

BraTS-METS 2023b30 RSNA-ASNR-MICCAI 328 cases Brain metastasis

NYUMets28 New York University 1429 patients Brain metastasis

UPenn-GBM132 University of Pennsylvania 630 patients Glioblastoma

UCSF-BMSR26 University of California San Francisco 412 patients Brain metastasis

TCGA-GBM133 TCGA Glioma Phenotype Research Group 262 patients Glioblastoma

Figshare Dataset134 Southern Medical University,
Guangzhou, China

233 patients Glioma, meningioma, pituitary

GLIS-RT Dataset82 Massachusetts General Hospital 230 patients Glioblastoma, astrocytoma, low-grade glioma

Pretreat-MetsToBrain-Masks135 Yale School of Medicine 200 patients Brain metastasis

TCGA-LGG136 TCGA Glioma Phenotype Research Group 199 patients Low-grade glioma

BrainMetShare29 Stanford University 156 patients Brain metastasis

CPTAC-GBM137 National Cancer Institute’sClinical Proteomic
Tumor Analysis Consortium

99 patients Glioblastoma

MOLAB25 University of Castilla-La Mancha 75 patients Brain metastasis

Brain-TR-Gamma-Knife27 University of Mississippi 47 patients Brain metastasis

IVY GAP138 Allen Institute for Brain Science 39 patients Glioblastoma
a Contains a subset of studies from the TCGA-GBM, TCGA-LGG, IVY GAP, and CPTAC-GBM Datasets.
bSubset of studies from the NYUMets, UCSF-BMSR, Pretreat-MetsToBrain-Masks, and BrainMetsShare Datasets.
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a technique in which different models are trained to perform the same task
and their individual outputs are combined into one final prediction. The
segmentation winner in 2021 improved on this nnU-Net solution by
incorporating an asymmetric contracting path to achieve a better balance of
resources between a more powerful contracting path and a simpler
expanding path, group normalization for more robust training with the
small batch sizes necessary when using large 3D images, and an axial
attention decoder focus to model attention on relevant parts of the input
image36. This improved architecture was ensembled together with DeepSeg
andDeepScan to create an even stronger solution for the 2022 segmentation
challenge14,37,38.

Object detection networks, which output coarse bounding box pre-
dictions rather than detailed voxel-wise classification, may be used as an
alternative to segmentation. This may be more appropriate where the
detection of lesions is more important than quantification and measure-
ment, and has the key advantage that they can be trained using simple
bounding box annotations, which are much quicker to perform than seg-
mentation masks. For example, Zhang et al.39 use the Faster R-CNN
architecture40 for the detection of brain metastases. Furthermore, in some
approaches such as DeSeg41, object detection outputs can be used to screen
for initial locations that can be fed to further models to perform detailed
segmentation.

Multi-sequences and missing sequences
Typically, CNNs for MRI image analysis are trained on a specific sequence
or set of sequences. Similar to a trained radiologist, the model processes
different sequences of a study to make its decision, as these sequences
highlight different aspects of the tumor. However, this multi-sequence

training can be a limitation at inference time if an imaging study does not
have all the required sequences. Therefore, several approaches have been
developed to deal with missing sequences for MRI imaging studies in order
to increase the applicability of trained models.

One approach includes network architectures that are designed to
accommodate variable input sequences and have been explicitly trained
for this task. One example of this is the Hetero-modal Image Segmenta-
tion approach by Havaei et al.42. Here, the model processes each sequence
input independently to create a high-level representation of each image.
These representations are then combined via simple operators (such as the
mean or standard deviation) in such a way as to ensure that an arbitrary
number of sequences can be provided to the model at test time. The
combined representation is then passed to further layers of the network
for segmentation. Using a different approach, Feng et al. directly trained a
model to handlemissing data by randomly replacing input sequenceswith
empty images. This allowed the model to adapt to missing sequences and
still perform the segmentation if one or more required sequences were
missing43.

A second approach generatesmissing sequences so that they can then
be used in models that expect a fixed set of input sequences. State-of-the-
art methods mostly use generative adversarial networks (GAN) to gen-
erate themissing target sequence from the available input sequences. Two
important differences between sequence generation models are which
sequences are required to generate the missing sequence and whether the
input images need to be spatially aligned. One approach used this idea to
generate T1-c and Double inversion recovery (DIR) images from three
common input sequences (T1, T2, FLAIR)44. In addition to GANs,
diffusion-based models, which gradually remove noise from a random

Table 3 | Overview of model architectures, training data, and metrics results from selected papers for classification tasks

Reference Dataset Input No. Patients Task Metric (result)

Recurrence vs. radiation necrosis

Gao et al.87 Private T1, T1-c, T2 146 Recurrence vs. radiation necrosis AUC: 0.915

Lee et al. (2020)88 Private T1, T1-c, T2, T2-FSE, FLAIR, ADC 46 Recurrence vs. radiation necrosis AUC: 0.81

Survival prediction

McKinley et al. (2020)89 BraTS 2020 T1, T1-c, T2, FLAIR 587 Overall survival (>15, 15–10, <10 months) Accuracy: 0.617

Yan et al. (2023)90 BraTS 2019 T1, T1-c, T2, FLAIR 205 Overall survival (>15, 15–10, <10 months) Accuracy: 0.548

IDH status prediction

Chang et al. (2018)9 Private/TCIA T1, T1-c, T2, FLAIR 291 IDH status prediction AUC: 0.95

Choi et al. (2020)15 Private/TCIA T1-c, T2, FLAIR 1166 IDH status prediction AUC: 0.86–0.96

Molecular biomarker prediction

Tak et al. (2024)91 Private/CBTN T2 326 BRAF mutational status prediction AUC: 0.73–0.82

Calabrese et al. (2020)92 Private T1, T1-c, T2, FLAIR 199 9 Molecular biomarkers prediction AUC: 0.55–0.97

Chen et al. (2020)94 TCIA T1-c/FLAIR 106 MGMT methylation status prediction AUC: 0.828–0.897

Yogananda et al. (2021)95 TCIA T2 247 MGMT methylation status prediction AUC: 0.93

Chen et al. (2022)96 Private T1, T1-c, T2, ADC 111 MGMT methylation status prediction AUC: 0.9

Saeed et al. (2022)97 BraTS 2021 T1, T1-c, T2, FLAIR 585 MGMT methylation status prediction AUC: 0.54–0.64

Robinet et al. (2023)98 BraTS 2021/Private T1, T1-c, T2, FLAIR 672 MGMT methylation status prediction AUC: 0.60–0.65

Table 2 | Overview of model architectures, training data, and metrics results from selected papers

Rerence Model architecture name Training data used Test set results (Dice)

Myronenko et al.34 Asymmetrical U-Net BraTS 2018 WT: 88.39, TC: 81.54, ET: 76.64

Jiang et al.35 Two-Stage Cascaded U-Net BraTS 2019 WT: 88.80, TC: 83.70, ET: 83.27

Isensee et al.33 nnU-Net (no new-Net) BraTS 2020 WT: 88.95, TC: 85.06, ET: 82.03

Luu and Park36 modified nnU-Net BraTS 2021 WT: 92.75, TC: 87.81, ET: 84.51

Zeineldin et al.14 Ensemble: DeepSeg, nnU-Net, and DeepSCAN BraTS 2022 WT: 92.94, TC: 87.88, ET: 88.03

WT whole tumor, TC tumor core, ET enhancing tumor.
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image to generate realistic data, have also been proposed for the genera-
tion of missing MRI sequences45.

Site generalization
It has been shown that DL model performance can suffer significantly if
applied to data fromdifferent sites, andMRI is particularly vulnerable to this
issue due to its flexibility and differences across scanners and protocols46.
One approach to address this is harmonization, where techniques like
StarGAN and CycleGAN standardize image appearance across sites to
improve model robustness47–50. StarGAN and CycleGAN are both gen-
erative adversarial networks (GAN) that are trained by having the image
generation model ("generator”) compete with a model that tries to identify
which images are real andwhich are synthetic ("discriminator”). As training
in this way progresses, the generator generates increasingly realistic images.
Another strategy is to apply extensive augmentation during training, adding
diverse artifacts to expose the model to a range of imaging conditions.
Methods such as SynthSeg, SynthMorph, and SynthStrip demonstrate that
this approach can improve generalization across sites51–53 for multiple tasks.

Pediatric brain tumors
Pediatric brain tumors represent the most common cause of cancer-related
mortality in children22. Although some parallels exist with adult brain
tumors, pediatric tumors often exhibit distinct imaging characteristics and
clinical presentations. For instance, adult glioblastomas (GBMs) and
pediatric DMGs are both high-grade gliomas associated with poor prog-
noses; however, their incidence rates and typical locations differ. GBMs,
with an incidence of ~3 per 100,000, predominantly affect older adults and
are frequently found in the frontal and/or temporal lobes, whereas DMGs
are considerably rarer and typically arise in the pons of children aged 5–10
years. Furthermore, characteristic imaging features like post-gadolinium
enhancement and necrosis, common in GBMs, are less consistently
observed in DMGs, particularly at initial diagnosis54,55. Consequently, spe-
cialized imaging tools are critical for characterizing and assessing these
pediatric tumors, deep learning models that were developed adult brain
tumors can not just be applied to pediatric brain tumors, due to the dif-
ferences between tumor presentations. As a result, separate deep-learning
models need to be developed for most applications of segmenting and
analyzing pediatric brain tumors. The BRATS challenge included a dataset
of pediatric tumors for the first time in 2023. This dataset contains MRI
sequences (T1, T1-c, T2, FLAIR) for 228 patients with pediatric high-grade
gliomas. The winning team here achieved a mean dice score of 0.65 for ET,
0.81 TC, and 0.83 for segmenting the whole tumor56.

Segmentation evaluation metrics
There are a variety of methods and metrics for evaluating the performance
of deep-learning models. Choosing the appropriate metric for a given
problem is crucial to ensure that it accurately captures the clinically relevant
aspects of the task. A recent study proposed a framework called Metrics
Reloaded, which provides a tool to guide researchers through the process of
choosing the right validation metrics for their DL model57.

The twomost importantmetrics for brain tumor segmentation are the
Dice score and the Hausdorff distance (HD). The Dice score measures the
overlap between the predicted segmentation and the ground truth seg-
mentation. It ranges from 0 (no overlap) to 1 (perfect overlap) and provides
an intuitive assessment of segmentation accuracy that measures only the
degree of overlap between the prediction and ground truth, regardless of the
absolute size of the region. The Hausdorff distance, on the other hand,
quantifies the maximum distance between any point on the predicted
segmentation boundary and the nearest point on the ground truth
boundary. As a distance metric, the HD ranges from 0 to infinity. To
mitigate the effect of outliers, the 95th percentile HD is often used. While
these metrics capture the agreement between the model prediction and the
ground truth, it has been shown that the scoresmay have a poor correlation
with clinician perception of segmentation quality58. Furthermore, currently,
DL-based segmentation is often corrected by clinicians to ensure quality.

Here, clinicians may prefer certain patterns in the model’s segmentation
behavior, for example over-segmentation rather than under-segmentation,
as itmay be easier to correct. These practical preferences are not capturedby
popular metrics of segmentation performance but may play an important
role in clinical adoption59.

Dice Similarity Coefficient ðDSCÞ ¼ 2 jGT \MSj
jGTj þ jMSj ð1Þ

GT ¼ GroundTruth Surface

MS ¼ Masked Segmentation
AverageHausdorff Distance ðAHDÞ ¼ max d SGT; SMS

� �
; d SMS; SGT

� �� �

ð2Þ

SGT ¼ GroundTruth Surface

SMS ¼ Masked Segmentation Surface

d ¼ Distance Function

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

ð3Þ

TP ¼ True Positives

TN ¼ TrueNegatives

FP ¼ False Positives

FN ¼ FalseNegatives

AUROC ¼
Z 1

0
TPRðtÞ dFPRðtÞ ð4Þ

TPR ¼ True Positive Rate

FPR ¼ False Positive Rate

Uncertainty
Another important aspect of the clinical application of deep-learning-based
segmentationmodels is thequantificationof segmentationuncertainty.This
approach can help clinicians when they are manually revising model seg-
mentations, as areas marked as uncertain are most likely to contain mis-
takes. The implementation of uncertainty can also help to build trust in DL
models. As part of the BraTS challenge in 2020, a metric to compare the
performance of uncertainty measures was introduced, and a variety of
solutions to the problem were submitted by participants60.

McKinley et al. proposed a novel loss function (a function that
measures the difference between the model prediction and the
ground-truth) for the task of uncertainty estimation in brain tumor
segmentation38. In their approach, the model outputted two prob-
abilities for each voxel in the input image; one that the predicted label
was correctly identifying the ground truth label and one that the
predicted label did not correspond to the ground-truth label. These
two outputs were used during model training to jointly optimize
tumor segmentation and uncertainty estimation. Other groups have
directly utilized the scores that the model outputs for each possible
label in the segmentation mask to derive uncertainty scores61,62. These
types of approaches can be further improved by combining models
into an ensemble, leveraging the strengths of each individual model
for a more accurate and robust outcome.

Other methods of quantifying uncertainty are based on the idea of
creating a distribution of outputs for a single input image andusing statistics
of that distribution to estimate uncertainty. In Monte Carlo dropout, a
fraction of the nodes in the network are randomly deactivated ("dropped
out”) and inference is performed a number of times, producing a dis-
tribution of results63. The variance in this distribution can be used to
quantify the uncertainty in the prediction. Zhou et al. incorporated this
technique into a 3D U-Net to obtain an uncertainty map for brain tumor
segmentation. This uncertainty was then used as an additional input in a
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second stage to improve segmentation performance on the BraTS 2018 and
2019 dataset64. In test time augmentation, input images are transformed
through random transforms, such as flipping, rotation, and scaling. The
inference is thenperformed for each of the transformed views of the original
input. This creates a distribution of outputs for each input image. Statistics
about this distribution, such as variance end entropy can then be used to
estimate uncertainty65. This approach has also been used for quantifying the
uncertainty of brain tumor segmentation66.

Generalizability plays an important role in medical DL application, as
trainedmodelsmaybe applied todatasetswithdifferent characteristics, such
as diseasemanifestation or image acquisition techniques. This change in the
dataset is commonly referred to as domain shift. Hoebel et al. demonstrated
the stability of uncertainty estimates for brain tumor segmentation quality
assessment even under domain shift between high- and low-grade
gliomas67. This suggests the potential for reliable uncertainty-based qual-
ity control tools in clinical practice, although further investigation is needed
to confirm generalizability across various scenarios.

Quantification
Quantification of tumor segmentations plays an important role in the
clinical applications of DL-based segmentation models. Metrics such
as tumor dimensions and volume are regularly used as criteria for
diagnostic and disease monitoring purposes. Examples of this include
the response assessment in neuro-oncology (RANO) and the response
assessment in pediatric neuro-oncology (RAPNO)68–70. This score is
derived from 2D measurements of the tumor’s maximal diameter and
is used to assess treatment response in brain tumors. An automated
deep-learning approach using a U-Net-based segmentation model
showed high correlation with human raters for both 2D and volu-
metric segmentations71,72.

One important challenge with manual dimension measurements is
their poor inter-rater reproducibility73. This can potentially be solved by
employing automateddeep-learning-basedmeasurements, that have shown
superior repeatability and reliability compared to human readers72. Fur-
thermore it has been shown that manual 2D RANO measurements are
inferior compared to 3D volumetric measurements16. DL-based segmen-
tation models play an important role in the clinical application of these
volumetric evaluations as they provide high-quality annotations many
orders ofmagnitude faster than a human annotator. Indeed, deep-learning-
based assessment of tumor response has been shown to be a significantly
better predictor of overall survival compared to RANO assessment16.

Response assessment
Comparing the most recent study to prior patient imaging is a core com-
ponent of a radiologist’s workflow for brain tumor assessment. It has been
argued that most current DL algorithms are not suitable for applications in
tasks where comparisons with previous images are necessary74. Developing
DL algorithms that can process longitudinal imaging data, therefore, plays
an important role towards advancing DL in radiology.

Kickingereder et al. developed an application-ready software infra-
structure for deep-learning-based segmentation of brain tumors16. They
utilized spatial and temporal tumor volume dynamics to predict patient
time to progression. This approach included the functionality to track
lesions across time points and consider new lesions. This tracking is
necessary for longitudinal volume and progression monitoring based on
individual lesions. Oermann et al. developed an architecture that can seg-
ment brain metastases using longitudinal imaging data28. The architecture,
which they call “segmentation through time”, uses a collection of U-Nets.
For time points after the baseline, the segmentation network also incorpo-
rates information about previous time points propagated by convolutional
long short-termmemory (LSTM) blocks. LSTM blocks are a type of neural
network architecture that can learn and remember patterns over long
sequences of data, making them well-suited for tasks involving time-series
data, such as analyzing changes inmedical images overmultiple timepoints.
Patel et al. developed a joint image registration and segmentation network

called SPIRS to segment a new time point scan using prior time point
information75. In their network, prior time point imaging is affinely and
deformably warped onto the new time point image. The warped prior time
point annotation is then used as a coarse initialization for the segmentation
of the new time point. This approach significantly improves the segmen-
tation performance for micro-metastatic brain lesions.

Another approach for estimating the treatment response of a tumor
over time is through tumor growth modeling. Cell proliferation and
migration within tumors can be mathematically modeled using a set of
partial differential equations. However, their clinical application is hindered
by the challenge of accurately estimating model parameters and other fac-
tors such as the initial tumor cell density from medical images. Recent
research has explored DL-based approaches to overcome these limitations
and improve parameter estimation efficiency and accuracy76,77. This has
made it possible to construct models that are able to obtain accurate
representationsof tumor cell distribution andproliferationparameters from
a single MRI scan. Predicting tumor invasion has important consequences
for radiotherapy planning, as it would enable radiation oncologists to more
accurately define radiationmargins around the tumor, potentially targeting
more of the tumor while reducing damage to healthy tissue77.

Radiation therapy
Together with surgical resection and chemotherapy, radiation therapy is a
fundamental component of treatment planning for many brain tumors. In
order to maximize the effect on the tumor while minimizing adverse side
effects of the radiation, the tumor and organs at risk, such as the brainstem,
eyes and optic chiasm need to be carefully outlined on imaging in order to
optimize the dose distribution. Additionally so called barrier structures,
anatomical structures that are natural barriers to tumor spread (i.e. falx
cerebri) are delineated in the imaging to optimize the margin around the
actual tumor in which radiation is applied. While radiation planning is
primarily performed on CT, MRI may also be acquired and used for
enhanced soft-tissue contrast to aid in the delineation of the target and
surrounding structures. In clinical practice these processes can be quite
time-consuming, with human annotators requiring about 20min to per-
form the contouring of relevant structures for a single patient78. Thus, there
exists a clinical need for fast, human-level delineation through automation.
Different deep-leaning-based solutions have been proposed for this
purpose78–81 and the GLIS-RT open dataset is available for benchmarking
model development82. DL-basedmethods have achieved excellent results in
segmenting larger structures, such as tentorium cerebelli, brain sinuses, or
ventricles, with clinically acceptable accuracy. FurthermoreDLmodels have
been shown to be more consistent in their outputs compared to human
experts81. However further development is needed to provide clinically
acceptable segmentations of smaller structures such as the optic apparatus78.

A particular challenge with radiation planning segmentation is the
presence of post-treatment changes, such as resection cavities, blood pro-
ducts, and gliosis83, which are under-represented in existing datasets and
segmentation models, with a recent survey finding that over 98% of pub-
lished research on glioma segmentation using pre-surgical imaging58. The
2024 BraTS challenge, for the first time, focuses on the important task of
segmentationof post-treatment brainMRIs83, and as such research, this area
is likely to receive considerable attention in the near future.

Once the target, organs at risk and barrier structures are delineated,
deep learning methods may additionally assist in selecting parameters for
generating the radiation treatment plan, however to our knowledge this has
only been demonstrated with CT imaging84,85.

Classification
Beyond segmentation, applications of DL to brain tumor imaging can also
include classification tasks. The most common architecture in medical
image classification tasks is the ResNet, introduced by He et al. in 201586. It
first uses convolutional filters to extract important features from the image,
similar to how the U-Net does for segmentation. These features are then
passed through a series of layers, each containing multiple convolutional

https://doi.org/10.1038/s41698-024-00789-2 Review article

npj Precision Oncology |             (2025) 9:2 6

www.nature.com/npjprecisiononcology


filters that identify increasingly complex patterns. Shortcut connections
within these layers help preserve information and improve learning. Finally,
a classification layer analyzes these extracted features and assigns the image
to one of the predefined categories.

Since much of the development of DL models relies upon the avail-
ability of data, there has been less work in this area compared to segmen-
tation, as there are fewer publicly available datasets.

Distinguishing tumor recurrence and radiation necrosis
Distinguishing tumor recurrence from radiation necrosis presents a sig-
nificant challenge in glioma management. This distinction is clinically cri-
tical as it entails fundamentally different treatment approaches. However
diagnosing this accurately can be difficult even for experienced clinicians as
both conditions can exhibit similar features on conventional MRI. This
challenge arises from the complex and often subtle differences in tumor
appearance and tissue response to radiation. In contrast, deep learning
models excel at analyzing intricate patterns in imaging data. Studies have
developed different CNNs that use multi-modal MRI data to distinguish
between recurrence and radiationnecrosis87,88. They showpromising results,
with one model significantly surpassing the accuracy of clinicians on this
task87.

Survival prediction
Another area in whichDL promises to enhance the clinical management of
brain tumors is survival prediction. There are two popular DL-based
approaches to the task: a multi-class classification problem or a Cox pro-
portional hazardsmodel. From2017 to 2020, theBraTSchallenge includeda
task focused on predicting the overall survival (in days) of glioma patients
who had undergone gross tumor resection from MRI data. The top-
performing approach from 2020 employed a two-stage strategy. First, a
segmentation model was used to delineate the tumor and its sub-
compartments. Next, features derived from the number of disconnected
tumor segments, along with the patient’s age, were inputted into both a
linear regression model and a random forest classifier. These models were
then combined, achieving an accuracy of 60% on the test dataset for clas-
sifying the patients into long-term survivors (>15 months), mid-term sur-
vivors (10–15 months), and short-term survivors (<10 months)89. A
different study explored the use of a convolutional denoising autoencoder
(DAE) network combined with a Cox proportional hazards model for
survival prediction in glioblastoma patients. The DAE was used to extract
features from multi-modal MRI data, which were then fed into the Cox
model for survival analysis. This approach achieved a concordance index
(C-index) of 0.74 on the test set90. Although these findings from both
approaches demonstrate the potential of DL for survival prediction,
achieving the level of accuracy required for robust clinical implementation
remains an open challenge.

Biomarker prediction
One of themost promising applications of DL in brain tumor analysis is the
prediction of genetic biomarkers directly from imaging data. This idea
carries transformative potential for clinical practice, as it could enable
clinicians to obtain important information about a tumor’s genetic profile
without the need for invasive biopsies or surgeries.

One example is the prediction of isocitrate dehydrogenase (IDH)
mutation status in gliomas. IDH mutation status is an important factor in
determining the prognosis and treatment of gliomas, and being able to
identify it pre-treatment can significantly impact clinical decision-making.
Deep learning-basedmethodshave shownpromise inpredicting IDHstatus
from MRI scans, offering a non-invasive alternative to traditional biopsy-
based methods9,15. A model that first performed automated tumor seg-
mentation and subsequently used both radiomics and deep-learning
derived features was able to predict the IDH mutational status of patients
diagnosed with gliomas with an accuracy of 78.8% and 93.8% on internal
and external test sets, respectively. This model used three different MRI
sequences (T1 post-contrast, T2 and FLAIR) as its input15. A recent

publication explored the ability of a deep learning model to predict the
mutational status of the BRAF gene in patients with pediatric low-grade
gliomas based on T2-weighted MRI scans. The model was able to classify
BRAF status into three classes (BRAF fusion, BRAF V600E, and wild-type)
with an accuracy of 75% and 77% on internal and external test sets,
respectively91.

Calabrese et al. implemented an approach in which the tumor sub-
compartments (i.e. enhancing tumor, non-enhancing tumor, and edema)
were first segmented by a deep-learningmodel and subsequently used as the
basis for radiomics feature extraction. These features were then passed to a
random forest regression model. The authors explored the predictive cap-
abilities of the model for nine different genetic biomarkers in glioblastoma.
The model showed good results for predicting IDH mutations, ATRX
mutations, chromosome 7/10 aneuploidies, and CDKN2 family mutations.
The sensitivity for those biomarkers ranged from 0.76 to 0.94 and the
specificity from 0.86 to 0.9292.

A widely discussed use-case is the prediction of O6-methylguanine-
DNAmethyltransferase (MGMT) promoter methylation status, which is a
key indicator of response to temozolomide chemotherapy in glioblastoma.
There is a large public dataset created for the BraTS 2021 challenge, which
provides information on the MGMT promoter methylation status along
with MRI scans for 2040 patients93. However, the feasibility of accurately
predictingMGMTstatus fromMRIdata remains controversial.While some
studies have reported promising results94–96, others have questioned the
validity of these findings and argued that predicting MGMT status from
MRI alone may not be possible with current techniques97,98. This highlights
the importance of critically examining results and ensuring transparency in
DL research, especially when considering clinical applications. Notably, in
the 2021 BraTS challenge, the winning model for MGMT prediction
achieved an AUROC (area under the receiver operating characteristic
curve) of only 0.62, which is considered poor and certainly not sufficient for
reliable clinical decision-making99. Such examples underscore the need for
rigorous validation and cautious interpretation of DL models before inte-
grating them into clinical workflows. Overall, the use of DL to predict
genetic biomarkers from imaging data is a rapidly evolving field with sig-
nificant potential to improve the diagnosis and treatment of brain tumors.

Future directions
While DL has demonstrated remarkable progress in brain tumor analysis,
the field continues to evolve rapidly, with several promising avenues for
future development.

Quantitative MRI
Quantitative MRI methods100,101, while not widely deployed clinically, hold
promise to increase the standardization of images between vendors by
directly quantifying tissue properties, though otherqualitative variations are
likely to persist. Further, early evidence suggests that such images may
provide further insight into tumor characteristics, such as infiltration
beyond the contrast-enhancing region visible in conventional qualitative
images102. However, currently, there is a lack of experimental studies
demonstrating the value of quantitativeMRI for developing AImodels. For
example, Tampu et al.103 found no statistically significant advantage of
utilizing quantitative relaxometry images over conventional T1 and T2
weighted images for developing AI models for the detection and identifi-
cation of brain tumor biomarkers, however, the study was conducted on a
very small dataset of 23 patients. Future work should focus on investigating
the value of quantitative MRI for AI model development across larger
datasets and multiple vendors.

Multimodal integration
The radiographic appearance of a tumor in anMR image cannot capture the
full complexity of a brain tumor in its full clinical context. Consideration of
other clinical information, including patient demographics, genomics, and
histopathology is therefore crucial for clinical decision-making. However,
despite the fact that deep learning models can naturally integrate many
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high-dimensional data types, most current work considers only a single
modality. DL has already shownpromise in analyzing other data types from
brain tumor patients. For instance, deep learning models trained on whole-
slide images (WSI) of histopathology slides have achieved high accuracy in
predicting 1p/19q codeletion status in gliomas, surpassing the performance
of traditional methods like fluorescence in situ hybridization (FISH)104.
Initial studies have explored the integration of WSI data with genomic and
transcriptomic information to predict survival outcomes in glioma
patients105, but there remains considerable potential for improved predic-
tions by leveraging multi-modal models.

Vision transformers
A recent and important development is the transformer architecture106.
While initially developed for applications related to natural language pro-
cessing, it was adapted towards image-based tasks by Dosovitskiy et al.107.
Due to the more flexible design of their proposed vision transformer (ViT)
architecture, it is better able to capture long-range interactions within an
image,meaning it can understand relationships between distant parts of the
image, which is important for tasks like identifying complex shapes or
patterns. As such, ViTs have been shown to outperform CNNs when given
sufficiently large amounts of training data107. Since most brain tumor
datasets are small, the potential benefits are yet to be realized. However, as
the availability of large dataset sizes improves, ViTs may become increas-
ingly used for brain tumor image analysis.

Foundation models
Another promising future direction is the development of foundation
models for brain tumor imaging. Foundation models are an emerging
paradigm in DL that involves the self-supervised training of large, general-
purposemodels on very large datasets of diverse data types108. These models
learn fundamental patterns and relationships within the data, enabling them
to perform a wide range of downstream tasks with remarkable accuracy and
efficiency. Unlike traditional DL models that are trained for specific tasks,
foundation models are adaptable and can be fine-tuned for different appli-
cations without requiring extensive retraining. Chen et al. recently intro-
ducedageneral-purpose foundationmodel forpathology thatwaspretrained
on more than 100 million images acquired from over 100,000 diagnostic
H&E-stainedWSIs across 20 different tissue types109. This model, after fine-
tuning with limited task-specific data, achieved excellent performance on a
range of tasks, including brain metastasis detection, glioma IDH1 mutation
prediction, and histomolecular subtyping. The model showed excellent
performance even on few-shot tasks for which only between 1 and 32 task-
specific trainingexamplesper classwereprovided to themodel. This is orders
of magnitude fewer examples than would be needed without a foundation
model. Another recent publication proposed a foundation model for cancer
imaging biomarker discovery using computed tomography (CT) data from
over 11,000 radiographic lesions110. After fine-tuning with limited data, their
model outperformed other state-of-the-art models on a variety of tasks such
as predicting malignancy in lung nodules and predicting survival in non-
small cell lungcancer (NSCLC).Although their analysisdidnot includebrain
lesions or MRI images, the results demonstrate the potential of similar
foundation models for MRI in neuro-oncology applications where large
datasets arenot available. The adoptionof such foundationmodels is likely to
accelerate future research on brain tumor analysis.

Limitations and challenges
Despite the significant progress over recent years in the application of DL to
brain tumor analysis, only a small number of brain tumor-related models
are approved for clinical use within the United States111. There remain
substantial challenges to further research progress and its translation.

Datasets
It remains challenging to collate imaging datasets for applications beyond
those covered by the existing public datasets112. Though vitally important,
patient privacy and consent are the most important barriers to the

widespread sharing of medical imaging data outside of individual hospitals
and radiology providers, which individually see relatively small numbers of
patients compared to those needed to train accurate deep learning models.
In addition to the images themselves, curating or creating appropriate and
accurate ground truth presents a further challenge, as the process is typically
time-consuming and requires considerable expertise, with 3D segmenta-
tions, in particular, being slow to generate. Where manual processes are
involved, there is often considerable inter-reader variability, which may or
may not be clinically significant depending on context. Previous studies
have found substantial variation between readers in obtaining quantitative
measurements manually from MRIs113–115. Even when large datasets are
created and released publicly, the utility of those images is limited by the
availability of accompanying ground truth. For example a dataset of seg-
mented brain MRIs containing tumors cannot be used for a study on out-
comes prediction if no information on outcomes was released.

As a consequence, most studies in brain tumor analysis either focus on
one of the existing public datasets, leading to the over-representation of
three associated tasks in the literature, or use small, often single-institutional
datasets that lack diversity. In particular, the availability of large datasets has
led to a focus on gliomas, brainmetastases, andmeningiomas at the expense
of work relating to rarer brain tumors, such as craniopharyngiomas, pine-
oblastomas, or parameningeal rhabdomyosarcomas.

Major initiatives such as the US National Cancer Institute’s Imaging
Data Commons (IDC)116 and the European Federation for Cancer Images
(EUCAIM), as well as challenges, such as BraTS will continue to serve an
important role in collating and standardizing access to imaging data at scale
for the research community. Furthermore, federated learning117,118, a tech-
nique wherein models are trained across multiple sites without data leaving
each site, will likely play an increasing role inmodel development in order to
create large datasets while retaining patient privacy but it is not without its
own technological and logistical challenges.

Reproducibility of research
The high variability of brain MRI data coupled with the small number of
cases often used in (frequently private) datasets leads to this area being
particularly vulnerable to issues surrounding lack of reproducibility. In
many cases, published articles have not yet been replicated by further stu-
dies, and in some cases further studies have been conducted but failed to
replicate the previous findings97. Results obtained on small, private datasets,
should be treated with caution as they fail to generalize beyond a single
institution or MRI scanner and may be the result of unintended bias or
spurious correlation present in the training data (for example, between a
clinical outcome and the scanner used to acquire the image), or may be the
result of chance. In some cases methodological failures may have given rise
to reporting of incorrect results: as an example, a paper on the prediction of
MGMT status from gliomas was withdrawn upon the discovery of an error
in the computer code used to conduct the study119, and a review of machine
learning in radiomic analyses (not using DL) identified common mistakes
that inflate performance120.

Where possible, the public release of datasets and source code can help
to reduce the likelihood of replication issues in research.

Domain shift and generalizability
As noted above, DL models can fail to generalize beyond the sites and
scanners representedwithin their trainingdata,which creates a considerable
challenge for deploying DL at scale, and the flexibility and complexity of
MRI as amodalitymake this a particular concern for brain tumor analysis46.
In addition to changes between sites, changes over time at a single site are
due to factors including scanner software, imaging protocols, clinical
workflows, and patient demographics, and this, in turn, can lead to per-
formance degradation121,122.

Bias and fairness
Another crucial consideration is fairness.While there is no single definition
of fairness within AI, generally speaking, it refers to unequal model
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performance on different subpopulations, for example, different races,
genders, or ages123,124. Unequal model performance can, in turn, lead to
unequal outcomes in clinical care. The causes of unfairness may simply be
under-representation of subpopulations within the training data, but it can
also bemore insidious and difficult to avoid. Biases and outcome differences
that exist within healthcare—and therefore inmodel training data—can be
propagated by artificial intelligence models125,126, because models can learn
to infer protected characteristics, such as age, race, and gender even if they
not provided directly to a DL model127, and then learn to associate these
with, for example, poorer outcomes that are a result of socio-economic
factors.

Therefore, model developers, especially those developing models
intended for clinical use, should, therefore, follow established guidelines to
screen their models for fairness across any relevant subpopulations123,124.

Clinical translation
Although deep learning models have significant potential to benefit patient
care, incorrect predictions or inappropriate use of DL models pose a sig-
nificant risk of harm. Several steps are crucial to minimize harm128,
including thorough validation of models on representative data for clinical
effectiveness and education of physicians in the capabilities and limitations
of the technology129 to reduce the risk of automation bias, where physicians
blindly follow the predictions of an algorithm130.

Explainability
WhereDLmodels are to be used for cancer treatment decision-making, it is
vital that their predictions are understandable to clinicians. Unfortunately,
most DL models, including most articles in this review, provide black-box
predictions. Building interpretable models remains one of the major
unsolved technical challenges within the field of DL. Many approaches to
the explainability of DL methods rely on determining which regions of the
image are relevant to the prediction using techniques, such as saliency or
occlusionmaps. However, this level of explanation is likely to be insufficient
for most of the applications discussed above. Counterfactual explanations,
which allow the user to visualize how the image would need to change to
change the prediction, may provide one more promising direction131.
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